/* * Copyright 2000-2007 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. * */ # include "incls/_precompiled.incl" # include "incls/_methodDataOop.cpp.incl" // ================================================================== // DataLayout // // Overlay for generic profiling data. // Some types of data layouts need a length field. bool DataLayout::needs_array_len(u1 tag) { return (tag == multi_branch_data_tag); } // Perform generic initialization of the data. More specific // initialization occurs in overrides of ProfileData::post_initialize. void DataLayout::initialize(u1 tag, u2 bci, int cell_count) { _header._bits = (intptr_t)0; _header._struct._tag = tag; _header._struct._bci = bci; for (int i = 0; i < cell_count; i++) { set_cell_at(i, (intptr_t)0); } if (needs_array_len(tag)) { set_cell_at(ArrayData::array_len_off_set, cell_count - 1); // -1 for header. } } // ================================================================== // ProfileData // // A ProfileData object is created to refer to a section of profiling // data in a structured way. // Constructor for invalid ProfileData. ProfileData::ProfileData() { _data = NULL; } #ifndef PRODUCT void ProfileData::print_shared(outputStream* st, const char* name) { st->print("bci: %d", bci()); st->fill_to(tab_width_one); st->print("%s", name); tab(st); int trap = trap_state(); if (trap != 0) { char buf[100]; st->print("trap(%s) ", Deoptimization::format_trap_state(buf, sizeof(buf), trap)); } int flags = data()->flags(); if (flags != 0) st->print("flags(%d) ", flags); } void ProfileData::tab(outputStream* st) { st->fill_to(tab_width_two); } #endif // !PRODUCT // ================================================================== // BitData // // A BitData corresponds to a one-bit flag. This is used to indicate // whether a checkcast bytecode has seen a null value. #ifndef PRODUCT void BitData::print_data_on(outputStream* st) { print_shared(st, "BitData"); } #endif // !PRODUCT // ================================================================== // CounterData // // A CounterData corresponds to a simple counter. #ifndef PRODUCT void CounterData::print_data_on(outputStream* st) { print_shared(st, "CounterData"); st->print_cr("count(%u)", count()); } #endif // !PRODUCT // ================================================================== // JumpData // // A JumpData is used to access profiling information for a direct // branch. It is a counter, used for counting the number of branches, // plus a data displacement, used for realigning the data pointer to // the corresponding target bci. void JumpData::post_initialize(BytecodeStream* stream, methodDataOop mdo) { assert(stream->bci() == bci(), "wrong pos"); int target; Bytecodes::Code c = stream->code(); if (c == Bytecodes::_goto_w || c == Bytecodes::_jsr_w) { target = stream->dest_w(); } else { target = stream->dest(); } int my_di = mdo->dp_to_di(dp()); int target_di = mdo->bci_to_di(target); int offset = target_di - my_di; set_displacement(offset); } #ifndef PRODUCT void JumpData::print_data_on(outputStream* st) { print_shared(st, "JumpData"); st->print_cr("taken(%u) displacement(%d)", taken(), displacement()); } #endif // !PRODUCT // ================================================================== // ReceiverTypeData // // A ReceiverTypeData is used to access profiling information about a // dynamic type check. It consists of a counter which counts the total times // that the check is reached, and a series of (klassOop, count) pairs // which are used to store a type profile for the receiver of the check. void ReceiverTypeData::follow_contents() { for (uint row = 0; row < row_limit(); row++) { if (receiver(row) != NULL) { MarkSweep::mark_and_push(adr_receiver(row)); } } } #ifndef SERIALGC void ReceiverTypeData::follow_contents(ParCompactionManager* cm) { for (uint row = 0; row < row_limit(); row++) { if (receiver(row) != NULL) { PSParallelCompact::mark_and_push(cm, adr_receiver(row)); } } } #endif // SERIALGC void ReceiverTypeData::oop_iterate(OopClosure* blk) { for (uint row = 0; row < row_limit(); row++) { if (receiver(row) != NULL) { blk->do_oop(adr_receiver(row)); } } } void ReceiverTypeData::oop_iterate_m(OopClosure* blk, MemRegion mr) { for (uint row = 0; row < row_limit(); row++) { if (receiver(row) != NULL) { oop* adr = adr_receiver(row); if (mr.contains(adr)) { blk->do_oop(adr); } } } } void ReceiverTypeData::adjust_pointers() { for (uint row = 0; row < row_limit(); row++) { if (receiver(row) != NULL) { MarkSweep::adjust_pointer(adr_receiver(row)); } } } #ifndef SERIALGC void ReceiverTypeData::update_pointers() { for (uint row = 0; row < row_limit(); row++) { if (receiver_unchecked(row) != NULL) { PSParallelCompact::adjust_pointer(adr_receiver(row)); } } } void ReceiverTypeData::update_pointers(HeapWord* beg_addr, HeapWord* end_addr) { // The loop bounds could be computed based on beg_addr/end_addr and the // boundary test hoisted outside the loop (see klassVTable for an example); // however, row_limit() is small enough (2) to make that less efficient. for (uint row = 0; row < row_limit(); row++) { if (receiver_unchecked(row) != NULL) { PSParallelCompact::adjust_pointer(adr_receiver(row), beg_addr, end_addr); } } } #endif // SERIALGC #ifndef PRODUCT void ReceiverTypeData::print_receiver_data_on(outputStream* st) { uint row; int entries = 0; for (row = 0; row < row_limit(); row++) { if (receiver(row) != NULL) entries++; } st->print_cr("count(%u) entries(%u)", count(), entries); for (row = 0; row < row_limit(); row++) { if (receiver(row) != NULL) { tab(st); receiver(row)->print_value_on(st); st->print_cr("(%u)", receiver_count(row)); } } } void ReceiverTypeData::print_data_on(outputStream* st) { print_shared(st, "ReceiverTypeData"); print_receiver_data_on(st); } void VirtualCallData::print_data_on(outputStream* st) { print_shared(st, "VirtualCallData"); print_receiver_data_on(st); } #endif // !PRODUCT // ================================================================== // RetData // // A RetData is used to access profiling information for a ret bytecode. // It is composed of a count of the number of times that the ret has // been executed, followed by a series of triples of the form // (bci, count, di) which count the number of times that some bci was the // target of the ret and cache a corresponding displacement. void RetData::post_initialize(BytecodeStream* stream, methodDataOop mdo) { for (uint row = 0; row < row_limit(); row++) { set_bci_displacement(row, -1); set_bci(row, no_bci); } // release so other threads see a consistent state. bci is used as // a valid flag for bci_displacement. OrderAccess::release(); } // This routine needs to atomically update the RetData structure, so the // caller needs to hold the RetData_lock before it gets here. Since taking // the lock can block (and allow GC) and since RetData is a ProfileData is a // wrapper around a derived oop, taking the lock in _this_ method will // basically cause the 'this' pointer's _data field to contain junk after the // lock. We require the caller to take the lock before making the ProfileData // structure. Currently the only caller is InterpreterRuntime::update_mdp_for_ret address RetData::fixup_ret(int return_bci, methodDataHandle h_mdo) { // First find the mdp which corresponds to the return bci. address mdp = h_mdo->bci_to_dp(return_bci); // Now check to see if any of the cache slots are open. for (uint row = 0; row < row_limit(); row++) { if (bci(row) == no_bci) { set_bci_displacement(row, mdp - dp()); set_bci_count(row, DataLayout::counter_increment); // Barrier to ensure displacement is written before the bci; allows // the interpreter to read displacement without fear of race condition. release_set_bci(row, return_bci); break; } } return mdp; } #ifndef PRODUCT void RetData::print_data_on(outputStream* st) { print_shared(st, "RetData"); uint row; int entries = 0; for (row = 0; row < row_limit(); row++) { if (bci(row) != no_bci) entries++; } st->print_cr("count(%u) entries(%u)", count(), entries); for (row = 0; row < row_limit(); row++) { if (bci(row) != no_bci) { tab(st); st->print_cr("bci(%d: count(%u) displacement(%d))", bci(row), bci_count(row), bci_displacement(row)); } } } #endif // !PRODUCT // ================================================================== // BranchData // // A BranchData is used to access profiling data for a two-way branch. // It consists of taken and not_taken counts as well as a data displacement // for the taken case. void BranchData::post_initialize(BytecodeStream* stream, methodDataOop mdo) { assert(stream->bci() == bci(), "wrong pos"); int target = stream->dest(); int my_di = mdo->dp_to_di(dp()); int target_di = mdo->bci_to_di(target); int offset = target_di - my_di; set_displacement(offset); } #ifndef PRODUCT void BranchData::print_data_on(outputStream* st) { print_shared(st, "BranchData"); st->print_cr("taken(%u) displacement(%d)", taken(), displacement()); tab(st); st->print_cr("not taken(%u)", not_taken()); } #endif // ================================================================== // MultiBranchData // // A MultiBranchData is used to access profiling information for // a multi-way branch (*switch bytecodes). It consists of a series // of (count, displacement) pairs, which count the number of times each // case was taken and specify the data displacment for each branch target. int MultiBranchData::compute_cell_count(BytecodeStream* stream) { int cell_count = 0; if (stream->code() == Bytecodes::_tableswitch) { Bytecode_tableswitch* sw = Bytecode_tableswitch_at(stream->bcp()); cell_count = 1 + per_case_cell_count * (1 + sw->length()); // 1 for default } else { Bytecode_lookupswitch* sw = Bytecode_lookupswitch_at(stream->bcp()); cell_count = 1 + per_case_cell_count * (sw->number_of_pairs() + 1); // 1 for default } return cell_count; } void MultiBranchData::post_initialize(BytecodeStream* stream, methodDataOop mdo) { assert(stream->bci() == bci(), "wrong pos"); int target; int my_di; int target_di; int offset; if (stream->code() == Bytecodes::_tableswitch) { Bytecode_tableswitch* sw = Bytecode_tableswitch_at(stream->bcp()); int len = sw->length(); assert(array_len() == per_case_cell_count * (len + 1), "wrong len"); for (int count = 0; count < len; count++) { target = sw->dest_offset_at(count) + bci(); my_di = mdo->dp_to_di(dp()); target_di = mdo->bci_to_di(target); offset = target_di - my_di; set_displacement_at(count, offset); } target = sw->default_offset() + bci(); my_di = mdo->dp_to_di(dp()); target_di = mdo->bci_to_di(target); offset = target_di - my_di; set_default_displacement(offset); } else { Bytecode_lookupswitch* sw = Bytecode_lookupswitch_at(stream->bcp()); int npairs = sw->number_of_pairs(); assert(array_len() == per_case_cell_count * (npairs + 1), "wrong len"); for (int count = 0; count < npairs; count++) { LookupswitchPair *pair = sw->pair_at(count); target = pair->offset() + bci(); my_di = mdo->dp_to_di(dp()); target_di = mdo->bci_to_di(target); offset = target_di - my_di; set_displacement_at(count, offset); } target = sw->default_offset() + bci(); my_di = mdo->dp_to_di(dp()); target_di = mdo->bci_to_di(target); offset = target_di - my_di; set_default_displacement(offset); } } #ifndef PRODUCT void MultiBranchData::print_data_on(outputStream* st) { print_shared(st, "MultiBranchData"); st->print_cr("default_count(%u) displacement(%d)", default_count(), default_displacement()); int cases = number_of_cases(); for (int i = 0; i < cases; i++) { tab(st); st->print_cr("count(%u) displacement(%d)", count_at(i), displacement_at(i)); } } #endif // ================================================================== // methodDataOop // // A methodDataOop holds information which has been collected about // a method. int methodDataOopDesc::bytecode_cell_count(Bytecodes::Code code) { switch (code) { case Bytecodes::_checkcast: case Bytecodes::_instanceof: case Bytecodes::_aastore: if (TypeProfileCasts) { return ReceiverTypeData::static_cell_count(); } else { return BitData::static_cell_count(); } case Bytecodes::_invokespecial: case Bytecodes::_invokestatic: return CounterData::static_cell_count(); case Bytecodes::_goto: case Bytecodes::_goto_w: case Bytecodes::_jsr: case Bytecodes::_jsr_w: return JumpData::static_cell_count(); case Bytecodes::_invokevirtual: case Bytecodes::_invokeinterface: return VirtualCallData::static_cell_count(); case Bytecodes::_ret: return RetData::static_cell_count(); case Bytecodes::_ifeq: case Bytecodes::_ifne: case Bytecodes::_iflt: case Bytecodes::_ifge: case Bytecodes::_ifgt: case Bytecodes::_ifle: case Bytecodes::_if_icmpeq: case Bytecodes::_if_icmpne: case Bytecodes::_if_icmplt: case Bytecodes::_if_icmpge: case Bytecodes::_if_icmpgt: case Bytecodes::_if_icmple: case Bytecodes::_if_acmpeq: case Bytecodes::_if_acmpne: case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: return BranchData::static_cell_count(); case Bytecodes::_lookupswitch: case Bytecodes::_tableswitch: return variable_cell_count; } return no_profile_data; } // Compute the size of the profiling information corresponding to // the current bytecode. int methodDataOopDesc::compute_data_size(BytecodeStream* stream) { int cell_count = bytecode_cell_count(stream->code()); if (cell_count == no_profile_data) { return 0; } if (cell_count == variable_cell_count) { cell_count = MultiBranchData::compute_cell_count(stream); } // Note: cell_count might be zero, meaning that there is just // a DataLayout header, with no extra cells. assert(cell_count >= 0, "sanity"); return DataLayout::compute_size_in_bytes(cell_count); } int methodDataOopDesc::compute_extra_data_count(int data_size, int empty_bc_count) { if (ProfileTraps) { // Assume that up to 3% of BCIs with no MDP will need to allocate one. int extra_data_count = (uint)(empty_bc_count * 3) / 128 + 1; // If the method is large, let the extra BCIs grow numerous (to ~1%). int one_percent_of_data = (uint)data_size / (DataLayout::header_size_in_bytes()*128); if (extra_data_count < one_percent_of_data) extra_data_count = one_percent_of_data; if (extra_data_count > empty_bc_count) extra_data_count = empty_bc_count; // no need for more return extra_data_count; } else { return 0; } } // Compute the size of the methodDataOop necessary to store // profiling information about a given method. Size is in bytes. int methodDataOopDesc::compute_allocation_size_in_bytes(methodHandle method) { int data_size = 0; BytecodeStream stream(method); Bytecodes::Code c; int empty_bc_count = 0; // number of bytecodes lacking data while ((c = stream.next()) >= 0) { int size_in_bytes = compute_data_size(&stream); data_size += size_in_bytes; if (size_in_bytes == 0) empty_bc_count += 1; } int object_size = in_bytes(data_offset()) + data_size; // Add some extra DataLayout cells (at least one) to track stray traps. int extra_data_count = compute_extra_data_count(data_size, empty_bc_count); object_size += extra_data_count * DataLayout::compute_size_in_bytes(0); return object_size; } // Compute the size of the methodDataOop necessary to store // profiling information about a given method. Size is in words int methodDataOopDesc::compute_allocation_size_in_words(methodHandle method) { int byte_size = compute_allocation_size_in_bytes(method); int word_size = align_size_up(byte_size, BytesPerWord) / BytesPerWord; return align_object_size(word_size); } // Initialize an individual data segment. Returns the size of // the segment in bytes. int methodDataOopDesc::initialize_data(BytecodeStream* stream, int data_index) { int cell_count = -1; int tag = DataLayout::no_tag; DataLayout* data_layout = data_layout_at(data_index); Bytecodes::Code c = stream->code(); switch (c) { case Bytecodes::_checkcast: case Bytecodes::_instanceof: case Bytecodes::_aastore: if (TypeProfileCasts) { cell_count = ReceiverTypeData::static_cell_count(); tag = DataLayout::receiver_type_data_tag; } else { cell_count = BitData::static_cell_count(); tag = DataLayout::bit_data_tag; } break; case Bytecodes::_invokespecial: case Bytecodes::_invokestatic: cell_count = CounterData::static_cell_count(); tag = DataLayout::counter_data_tag; break; case Bytecodes::_goto: case Bytecodes::_goto_w: case Bytecodes::_jsr: case Bytecodes::_jsr_w: cell_count = JumpData::static_cell_count(); tag = DataLayout::jump_data_tag; break; case Bytecodes::_invokevirtual: case Bytecodes::_invokeinterface: cell_count = VirtualCallData::static_cell_count(); tag = DataLayout::virtual_call_data_tag; break; case Bytecodes::_ret: cell_count = RetData::static_cell_count(); tag = DataLayout::ret_data_tag; break; case Bytecodes::_ifeq: case Bytecodes::_ifne: case Bytecodes::_iflt: case Bytecodes::_ifge: case Bytecodes::_ifgt: case Bytecodes::_ifle: case Bytecodes::_if_icmpeq: case Bytecodes::_if_icmpne: case Bytecodes::_if_icmplt: case Bytecodes::_if_icmpge: case Bytecodes::_if_icmpgt: case Bytecodes::_if_icmple: case Bytecodes::_if_acmpeq: case Bytecodes::_if_acmpne: case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: cell_count = BranchData::static_cell_count(); tag = DataLayout::branch_data_tag; break; case Bytecodes::_lookupswitch: case Bytecodes::_tableswitch: cell_count = MultiBranchData::compute_cell_count(stream); tag = DataLayout::multi_branch_data_tag; break; } assert(tag == DataLayout::multi_branch_data_tag || cell_count == bytecode_cell_count(c), "cell counts must agree"); if (cell_count >= 0) { assert(tag != DataLayout::no_tag, "bad tag"); assert(bytecode_has_profile(c), "agree w/ BHP"); data_layout->initialize(tag, stream->bci(), cell_count); return DataLayout::compute_size_in_bytes(cell_count); } else { assert(!bytecode_has_profile(c), "agree w/ !BHP"); return 0; } } // Get the data at an arbitrary (sort of) data index. ProfileData* methodDataOopDesc::data_at(int data_index) { if (out_of_bounds(data_index)) { return NULL; } DataLayout* data_layout = data_layout_at(data_index); switch (data_layout->tag()) { case DataLayout::no_tag: default: ShouldNotReachHere(); return NULL; case DataLayout::bit_data_tag: return new BitData(data_layout); case DataLayout::counter_data_tag: return new CounterData(data_layout); case DataLayout::jump_data_tag: return new JumpData(data_layout); case DataLayout::receiver_type_data_tag: return new ReceiverTypeData(data_layout); case DataLayout::virtual_call_data_tag: return new VirtualCallData(data_layout); case DataLayout::ret_data_tag: return new RetData(data_layout); case DataLayout::branch_data_tag: return new BranchData(data_layout); case DataLayout::multi_branch_data_tag: return new MultiBranchData(data_layout); }; } // Iteration over data. ProfileData* methodDataOopDesc::next_data(ProfileData* current) { int current_index = dp_to_di(current->dp()); int next_index = current_index + current->size_in_bytes(); ProfileData* next = data_at(next_index); return next; } // Give each of the data entries a chance to perform specific // data initialization. void methodDataOopDesc::post_initialize(BytecodeStream* stream) { ResourceMark rm; ProfileData* data; for (data = first_data(); is_valid(data); data = next_data(data)) { stream->set_start(data->bci()); stream->next(); data->post_initialize(stream, this); } } // Initialize the methodDataOop corresponding to a given method. void methodDataOopDesc::initialize(methodHandle method) { ResourceMark rm; // Set the method back-pointer. _method = method(); set_creation_mileage(mileage_of(method())); // Initialize flags and trap history. _nof_decompiles = 0; _nof_overflow_recompiles = 0; _nof_overflow_traps = 0; assert(sizeof(_trap_hist) % sizeof(HeapWord) == 0, "align"); Copy::zero_to_words((HeapWord*) &_trap_hist, sizeof(_trap_hist) / sizeof(HeapWord)); // Go through the bytecodes and allocate and initialize the // corresponding data cells. int data_size = 0; int empty_bc_count = 0; // number of bytecodes lacking data BytecodeStream stream(method); Bytecodes::Code c; while ((c = stream.next()) >= 0) { int size_in_bytes = initialize_data(&stream, data_size); data_size += size_in_bytes; if (size_in_bytes == 0) empty_bc_count += 1; } _data_size = data_size; int object_size = in_bytes(data_offset()) + data_size; // Add some extra DataLayout cells (at least one) to track stray traps. int extra_data_count = compute_extra_data_count(data_size, empty_bc_count); object_size += extra_data_count * DataLayout::compute_size_in_bytes(0); // Set an initial hint. Don't use set_hint_di() because // first_di() may be out of bounds if data_size is 0. // In that situation, _hint_di is never used, but at // least well-defined. _hint_di = first_di(); post_initialize(&stream); set_object_is_parsable(object_size); } // Get a measure of how much mileage the method has on it. int methodDataOopDesc::mileage_of(methodOop method) { int mileage = 0; int iic = method->interpreter_invocation_count(); if (mileage < iic) mileage = iic; InvocationCounter* ic = method->invocation_counter(); InvocationCounter* bc = method->backedge_counter(); int icval = ic->count(); if (ic->carry()) icval += CompileThreshold; if (mileage < icval) mileage = icval; int bcval = bc->count(); if (bc->carry()) bcval += CompileThreshold; if (mileage < bcval) mileage = bcval; return mileage; } bool methodDataOopDesc::is_mature() const { uint current = mileage_of(_method); uint initial = creation_mileage(); if (current < initial) return true; // some sort of overflow uint target; if (ProfileMaturityPercentage <= 0) target = (uint) -ProfileMaturityPercentage; // absolute value else target = (uint)( (ProfileMaturityPercentage * CompileThreshold) / 100 ); return (current >= initial + target); } // Translate a bci to its corresponding data index (di). address methodDataOopDesc::bci_to_dp(int bci) { ResourceMark rm; ProfileData* data = data_before(bci); ProfileData* prev = NULL; for ( ; is_valid(data); data = next_data(data)) { if (data->bci() >= bci) { if (data->bci() == bci) set_hint_di(dp_to_di(data->dp())); else if (prev != NULL) set_hint_di(dp_to_di(prev->dp())); return data->dp(); } prev = data; } return (address)limit_data_position(); } // Translate a bci to its corresponding data, or NULL. ProfileData* methodDataOopDesc::bci_to_data(int bci) { ProfileData* data = data_before(bci); for ( ; is_valid(data); data = next_data(data)) { if (data->bci() == bci) { set_hint_di(dp_to_di(data->dp())); return data; } else if (data->bci() > bci) { break; } } return bci_to_extra_data(bci, false); } // Translate a bci to its corresponding extra data, or NULL. ProfileData* methodDataOopDesc::bci_to_extra_data(int bci, bool create_if_missing) { DataLayout* dp = extra_data_base(); DataLayout* end = extra_data_limit(); DataLayout* avail = NULL; for (; dp < end; dp = next_extra(dp)) { // No need for "OrderAccess::load_acquire" ops, // since the data structure is monotonic. if (dp->tag() == DataLayout::no_tag) break; if (dp->bci() == bci) { assert(dp->tag() == DataLayout::bit_data_tag, "sane"); return new BitData(dp); } } if (create_if_missing && dp < end) { // Allocate this one. There is no mutual exclusion, // so two threads could allocate different BCIs to the // same data layout. This means these extra data // records, like most other MDO contents, must not be // trusted too much. DataLayout temp; temp.initialize(DataLayout::bit_data_tag, bci, 0); dp->release_set_header(temp.header()); assert(dp->tag() == DataLayout::bit_data_tag, "sane"); //NO: assert(dp->bci() == bci, "no concurrent allocation"); return new BitData(dp); } return NULL; } #ifndef PRODUCT void methodDataOopDesc::print_data_on(outputStream* st) { ResourceMark rm; ProfileData* data = first_data(); for ( ; is_valid(data); data = next_data(data)) { st->print("%d", dp_to_di(data->dp())); st->fill_to(6); data->print_data_on(st); } DataLayout* dp = extra_data_base(); DataLayout* end = extra_data_limit(); for (; dp < end; dp = next_extra(dp)) { // No need for "OrderAccess::load_acquire" ops, // since the data structure is monotonic. if (dp->tag() == DataLayout::no_tag) break; if (dp == extra_data_base()) st->print_cr("--- Extra data:"); data = new BitData(dp); st->print("%d", dp_to_di(data->dp())); st->fill_to(6); data->print_data_on(st); } } #endif void methodDataOopDesc::verify_data_on(outputStream* st) { NEEDS_CLEANUP; // not yet implemented. }