/* * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP #define SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP #include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp" #include "gc_implementation/g1/g1_specialized_oop_closures.hpp" #include "gc_implementation/g1/survRateGroup.hpp" #include "gc_implementation/shared/ageTable.hpp" #include "gc_implementation/shared/spaceDecorator.hpp" #include "memory/space.inline.hpp" #include "memory/watermark.hpp" #ifndef SERIALGC // A HeapRegion is the smallest piece of a G1CollectedHeap that // can be collected independently. // NOTE: Although a HeapRegion is a Space, its // Space::initDirtyCardClosure method must not be called. // The problem is that the existence of this method breaks // the independence of barrier sets from remembered sets. // The solution is to remove this method from the definition // of a Space. class CompactibleSpace; class ContiguousSpace; class HeapRegionRemSet; class HeapRegionRemSetIterator; class HeapRegion; class HeapRegionSetBase; #define HR_FORMAT SIZE_FORMAT":(%s)["PTR_FORMAT","PTR_FORMAT","PTR_FORMAT"]" #define HR_FORMAT_PARAMS(_hr_) \ (_hr_)->hrs_index(), \ (_hr_)->is_survivor() ? "S" : (_hr_)->is_young() ? "E" : "-", \ (_hr_)->bottom(), (_hr_)->top(), (_hr_)->end() // A dirty card to oop closure for heap regions. It // knows how to get the G1 heap and how to use the bitmap // in the concurrent marker used by G1 to filter remembered // sets. class HeapRegionDCTOC : public ContiguousSpaceDCTOC { public: // Specification of possible DirtyCardToOopClosure filtering. enum FilterKind { NoFilterKind, IntoCSFilterKind, OutOfRegionFilterKind }; protected: HeapRegion* _hr; FilterKind _fk; G1CollectedHeap* _g1; void walk_mem_region_with_cl(MemRegion mr, HeapWord* bottom, HeapWord* top, OopClosure* cl); // We don't specialize this for FilteringClosure; filtering is handled by // the "FilterKind" mechanism. But we provide this to avoid a compiler // warning. void walk_mem_region_with_cl(MemRegion mr, HeapWord* bottom, HeapWord* top, FilteringClosure* cl) { HeapRegionDCTOC::walk_mem_region_with_cl(mr, bottom, top, (OopClosure*)cl); } // Get the actual top of the area on which the closure will // operate, given where the top is assumed to be (the end of the // memory region passed to do_MemRegion) and where the object // at the top is assumed to start. For example, an object may // start at the top but actually extend past the assumed top, // in which case the top becomes the end of the object. HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj) { return ContiguousSpaceDCTOC::get_actual_top(top, top_obj); } // Walk the given memory region from bottom to (actual) top // looking for objects and applying the oop closure (_cl) to // them. The base implementation of this treats the area as // blocks, where a block may or may not be an object. Sub- // classes should override this to provide more accurate // or possibly more efficient walking. void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top) { Filtering_DCTOC::walk_mem_region(mr, bottom, top); } public: HeapRegionDCTOC(G1CollectedHeap* g1, HeapRegion* hr, OopClosure* cl, CardTableModRefBS::PrecisionStyle precision, FilterKind fk); }; // The complicating factor is that BlockOffsetTable diverged // significantly, and we need functionality that is only in the G1 version. // So I copied that code, which led to an alternate G1 version of // OffsetTableContigSpace. If the two versions of BlockOffsetTable could // be reconciled, then G1OffsetTableContigSpace could go away. // The idea behind time stamps is the following. Doing a save_marks on // all regions at every GC pause is time consuming (if I remember // well, 10ms or so). So, we would like to do that only for regions // that are GC alloc regions. To achieve this, we use time // stamps. For every evacuation pause, G1CollectedHeap generates a // unique time stamp (essentially a counter that gets // incremented). Every time we want to call save_marks on a region, // we set the saved_mark_word to top and also copy the current GC // time stamp to the time stamp field of the space. Reading the // saved_mark_word involves checking the time stamp of the // region. If it is the same as the current GC time stamp, then we // can safely read the saved_mark_word field, as it is valid. If the // time stamp of the region is not the same as the current GC time // stamp, then we instead read top, as the saved_mark_word field is // invalid. Time stamps (on the regions and also on the // G1CollectedHeap) are reset at every cleanup (we iterate over // the regions anyway) and at the end of a Full GC. The current scheme // that uses sequential unsigned ints will fail only if we have 4b // evacuation pauses between two cleanups, which is _highly_ unlikely. class G1OffsetTableContigSpace: public ContiguousSpace { friend class VMStructs; protected: G1BlockOffsetArrayContigSpace _offsets; Mutex _par_alloc_lock; volatile unsigned _gc_time_stamp; // When we need to retire an allocation region, while other threads // are also concurrently trying to allocate into it, we typically // allocate a dummy object at the end of the region to ensure that // no more allocations can take place in it. However, sometimes we // want to know where the end of the last "real" object we allocated // into the region was and this is what this keeps track. HeapWord* _pre_dummy_top; public: // Constructor. If "is_zeroed" is true, the MemRegion "mr" may be // assumed to contain zeros. G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray, MemRegion mr, bool is_zeroed = false); void set_bottom(HeapWord* value); void set_end(HeapWord* value); virtual HeapWord* saved_mark_word() const; virtual void set_saved_mark(); void reset_gc_time_stamp() { _gc_time_stamp = 0; } // See the comment above in the declaration of _pre_dummy_top for an // explanation of what it is. void set_pre_dummy_top(HeapWord* pre_dummy_top) { assert(is_in(pre_dummy_top) && pre_dummy_top <= top(), "pre-condition"); _pre_dummy_top = pre_dummy_top; } HeapWord* pre_dummy_top() { return (_pre_dummy_top == NULL) ? top() : _pre_dummy_top; } void reset_pre_dummy_top() { _pre_dummy_top = NULL; } virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space); virtual void clear(bool mangle_space); HeapWord* block_start(const void* p); HeapWord* block_start_const(const void* p) const; // Add offset table update. virtual HeapWord* allocate(size_t word_size); HeapWord* par_allocate(size_t word_size); // MarkSweep support phase3 virtual HeapWord* initialize_threshold(); virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end); virtual void print() const; void reset_bot() { _offsets.zero_bottom_entry(); _offsets.initialize_threshold(); } void update_bot_for_object(HeapWord* start, size_t word_size) { _offsets.alloc_block(start, word_size); } void print_bot_on(outputStream* out) { _offsets.print_on(out); } }; class HeapRegion: public G1OffsetTableContigSpace { friend class VMStructs; private: enum HumongousType { NotHumongous = 0, StartsHumongous, ContinuesHumongous }; // Requires that the region "mr" be dense with objects, and begin and end // with an object. void oops_in_mr_iterate(MemRegion mr, OopClosure* cl); // The remembered set for this region. // (Might want to make this "inline" later, to avoid some alloc failure // issues.) HeapRegionRemSet* _rem_set; G1BlockOffsetArrayContigSpace* offsets() { return &_offsets; } protected: // The index of this region in the heap region sequence. size_t _hrs_index; HumongousType _humongous_type; // For a humongous region, region in which it starts. HeapRegion* _humongous_start_region; // For the start region of a humongous sequence, it's original end(). HeapWord* _orig_end; // True iff the region is in current collection_set. bool _in_collection_set; // True iff an attempt to evacuate an object in the region failed. bool _evacuation_failed; // A heap region may be a member one of a number of special subsets, each // represented as linked lists through the field below. Currently, these // sets include: // The collection set. // The set of allocation regions used in a collection pause. // Spaces that may contain gray objects. HeapRegion* _next_in_special_set; // next region in the young "generation" region set HeapRegion* _next_young_region; // Next region whose cards need cleaning HeapRegion* _next_dirty_cards_region; // Fields used by the HeapRegionSetBase class and subclasses. HeapRegion* _next; #ifdef ASSERT HeapRegionSetBase* _containing_set; #endif // ASSERT bool _pending_removal; // For parallel heapRegion traversal. jint _claimed; // We use concurrent marking to determine the amount of live data // in each heap region. size_t _prev_marked_bytes; // Bytes known to be live via last completed marking. size_t _next_marked_bytes; // Bytes known to be live via in-progress marking. // See "sort_index" method. -1 means is not in the array. int _sort_index; // double _gc_efficiency; // enum YoungType { NotYoung, // a region is not young Young, // a region is young Survivor // a region is young and it contains survivors }; volatile YoungType _young_type; int _young_index_in_cset; SurvRateGroup* _surv_rate_group; int _age_index; // The start of the unmarked area. The unmarked area extends from this // word until the top and/or end of the region, and is the part // of the region for which no marking was done, i.e. objects may // have been allocated in this part since the last mark phase. // "prev" is the top at the start of the last completed marking. // "next" is the top at the start of the in-progress marking (if any.) HeapWord* _prev_top_at_mark_start; HeapWord* _next_top_at_mark_start; // If a collection pause is in progress, this is the top at the start // of that pause. // We've counted the marked bytes of objects below here. HeapWord* _top_at_conc_mark_count; void init_top_at_mark_start() { assert(_prev_marked_bytes == 0 && _next_marked_bytes == 0, "Must be called after zero_marked_bytes."); HeapWord* bot = bottom(); _prev_top_at_mark_start = bot; _next_top_at_mark_start = bot; _top_at_conc_mark_count = bot; } void set_young_type(YoungType new_type) { //assert(_young_type != new_type, "setting the same type" ); // TODO: add more assertions here _young_type = new_type; } // Cached attributes used in the collection set policy information // The RSet length that was added to the total value // for the collection set. size_t _recorded_rs_length; // The predicted elapsed time that was added to total value // for the collection set. double _predicted_elapsed_time_ms; // The predicted number of bytes to copy that was added to // the total value for the collection set. size_t _predicted_bytes_to_copy; public: // If "is_zeroed" is "true", the region "mr" can be assumed to contain zeros. HeapRegion(size_t hrs_index, G1BlockOffsetSharedArray* sharedOffsetArray, MemRegion mr, bool is_zeroed); static int LogOfHRGrainBytes; static int LogOfHRGrainWords; static size_t GrainBytes; static size_t GrainWords; static size_t CardsPerRegion; static size_t align_up_to_region_byte_size(size_t sz) { return (sz + (size_t) GrainBytes - 1) & ~((1 << (size_t) LogOfHRGrainBytes) - 1); } // It sets up the heap region size (GrainBytes / GrainWords), as // well as other related fields that are based on the heap region // size (LogOfHRGrainBytes / LogOfHRGrainWords / // CardsPerRegion). All those fields are considered constant // throughout the JVM's execution, therefore they should only be set // up once during initialization time. static void setup_heap_region_size(uintx min_heap_size); enum ClaimValues { InitialClaimValue = 0, FinalCountClaimValue = 1, NoteEndClaimValue = 2, ScrubRemSetClaimValue = 3, ParVerifyClaimValue = 4, RebuildRSClaimValue = 5, CompleteMarkCSetClaimValue = 6 }; inline HeapWord* par_allocate_no_bot_updates(size_t word_size) { assert(is_young(), "we can only skip BOT updates on young regions"); return ContiguousSpace::par_allocate(word_size); } inline HeapWord* allocate_no_bot_updates(size_t word_size) { assert(is_young(), "we can only skip BOT updates on young regions"); return ContiguousSpace::allocate(word_size); } // If this region is a member of a HeapRegionSeq, the index in that // sequence, otherwise -1. size_t hrs_index() const { return _hrs_index; } // The number of bytes marked live in the region in the last marking phase. size_t marked_bytes() { return _prev_marked_bytes; } size_t live_bytes() { return (top() - prev_top_at_mark_start()) * HeapWordSize + marked_bytes(); } // The number of bytes counted in the next marking. size_t next_marked_bytes() { return _next_marked_bytes; } // The number of bytes live wrt the next marking. size_t next_live_bytes() { return (top() - next_top_at_mark_start()) * HeapWordSize + next_marked_bytes(); } // A lower bound on the amount of garbage bytes in the region. size_t garbage_bytes() { size_t used_at_mark_start_bytes = (prev_top_at_mark_start() - bottom()) * HeapWordSize; assert(used_at_mark_start_bytes >= marked_bytes(), "Can't mark more than we have."); return used_at_mark_start_bytes - marked_bytes(); } // An upper bound on the number of live bytes in the region. size_t max_live_bytes() { return used() - garbage_bytes(); } void add_to_marked_bytes(size_t incr_bytes) { _next_marked_bytes = _next_marked_bytes + incr_bytes; assert(_next_marked_bytes <= used(), "invariant" ); } void zero_marked_bytes() { _prev_marked_bytes = _next_marked_bytes = 0; } bool isHumongous() const { return _humongous_type != NotHumongous; } bool startsHumongous() const { return _humongous_type == StartsHumongous; } bool continuesHumongous() const { return _humongous_type == ContinuesHumongous; } // For a humongous region, region in which it starts. HeapRegion* humongous_start_region() const { return _humongous_start_region; } // Same as Space::is_in_reserved, but will use the original size of the region. // The original size is different only for start humongous regions. They get // their _end set up to be the end of the last continues region of the // corresponding humongous object. bool is_in_reserved_raw(const void* p) const { return _bottom <= p && p < _orig_end; } // Makes the current region be a "starts humongous" region, i.e., // the first region in a series of one or more contiguous regions // that will contain a single "humongous" object. The two parameters // are as follows: // // new_top : The new value of the top field of this region which // points to the end of the humongous object that's being // allocated. If there is more than one region in the series, top // will lie beyond this region's original end field and on the last // region in the series. // // new_end : The new value of the end field of this region which // points to the end of the last region in the series. If there is // one region in the series (namely: this one) end will be the same // as the original end of this region. // // Updating top and end as described above makes this region look as // if it spans the entire space taken up by all the regions in the // series and an single allocation moved its top to new_top. This // ensures that the space (capacity / allocated) taken up by all // humongous regions can be calculated by just looking at the // "starts humongous" regions and by ignoring the "continues // humongous" regions. void set_startsHumongous(HeapWord* new_top, HeapWord* new_end); // Makes the current region be a "continues humongous' // region. first_hr is the "start humongous" region of the series // which this region will be part of. void set_continuesHumongous(HeapRegion* first_hr); // Unsets the humongous-related fields on the region. void set_notHumongous(); // If the region has a remembered set, return a pointer to it. HeapRegionRemSet* rem_set() const { return _rem_set; } // True iff the region is in current collection_set. bool in_collection_set() const { return _in_collection_set; } void set_in_collection_set(bool b) { _in_collection_set = b; } HeapRegion* next_in_collection_set() { assert(in_collection_set(), "should only invoke on member of CS."); assert(_next_in_special_set == NULL || _next_in_special_set->in_collection_set(), "Malformed CS."); return _next_in_special_set; } void set_next_in_collection_set(HeapRegion* r) { assert(in_collection_set(), "should only invoke on member of CS."); assert(r == NULL || r->in_collection_set(), "Malformed CS."); _next_in_special_set = r; } // Methods used by the HeapRegionSetBase class and subclasses. // Getter and setter for the next field used to link regions into // linked lists. HeapRegion* next() { return _next; } void set_next(HeapRegion* next) { _next = next; } // Every region added to a set is tagged with a reference to that // set. This is used for doing consistency checking to make sure that // the contents of a set are as they should be and it's only // available in non-product builds. #ifdef ASSERT void set_containing_set(HeapRegionSetBase* containing_set) { assert((containing_set == NULL && _containing_set != NULL) || (containing_set != NULL && _containing_set == NULL), err_msg("containing_set: "PTR_FORMAT" " "_containing_set: "PTR_FORMAT, containing_set, _containing_set)); _containing_set = containing_set; } HeapRegionSetBase* containing_set() { return _containing_set; } #else // ASSERT void set_containing_set(HeapRegionSetBase* containing_set) { } // containing_set() is only used in asserts so there's no reason // to provide a dummy version of it. #endif // ASSERT // If we want to remove regions from a list in bulk we can simply tag // them with the pending_removal tag and call the // remove_all_pending() method on the list. bool pending_removal() { return _pending_removal; } void set_pending_removal(bool pending_removal) { if (pending_removal) { assert(!_pending_removal && containing_set() != NULL, "can only set pending removal to true if it's false and " "the region belongs to a region set"); } else { assert( _pending_removal && containing_set() == NULL, "can only set pending removal to false if it's true and " "the region does not belong to a region set"); } _pending_removal = pending_removal; } HeapRegion* get_next_young_region() { return _next_young_region; } void set_next_young_region(HeapRegion* hr) { _next_young_region = hr; } HeapRegion* get_next_dirty_cards_region() const { return _next_dirty_cards_region; } HeapRegion** next_dirty_cards_region_addr() { return &_next_dirty_cards_region; } void set_next_dirty_cards_region(HeapRegion* hr) { _next_dirty_cards_region = hr; } bool is_on_dirty_cards_region_list() const { return get_next_dirty_cards_region() != NULL; } HeapWord* orig_end() { return _orig_end; } // Allows logical separation between objects allocated before and after. void save_marks(); // Reset HR stuff to default values. void hr_clear(bool par, bool clear_space); void par_clear(); void initialize(MemRegion mr, bool clear_space, bool mangle_space); // Get the start of the unmarked area in this region. HeapWord* prev_top_at_mark_start() const { return _prev_top_at_mark_start; } HeapWord* next_top_at_mark_start() const { return _next_top_at_mark_start; } // Apply "cl->do_oop" to (the addresses of) all reference fields in objects // allocated in the current region before the last call to "save_mark". void oop_before_save_marks_iterate(OopClosure* cl); // Note the start or end of marking. This tells the heap region // that the collector is about to start or has finished (concurrently) // marking the heap. // Note the start of a marking phase. Record the // start of the unmarked area of the region here. void note_start_of_marking(bool during_initial_mark) { init_top_at_conc_mark_count(); _next_marked_bytes = 0; if (during_initial_mark && is_young() && !is_survivor()) _next_top_at_mark_start = bottom(); else _next_top_at_mark_start = top(); } // Note the end of a marking phase. Install the start of // the unmarked area that was captured at start of marking. void note_end_of_marking() { _prev_top_at_mark_start = _next_top_at_mark_start; _prev_marked_bytes = _next_marked_bytes; _next_marked_bytes = 0; guarantee(_prev_marked_bytes <= (size_t) (prev_top_at_mark_start() - bottom()) * HeapWordSize, "invariant"); } // After an evacuation, we need to update _next_top_at_mark_start // to be the current top. Note this is only valid if we have only // ever evacuated into this region. If we evacuate, allocate, and // then evacuate we are in deep doodoo. void note_end_of_copying() { assert(top() >= _next_top_at_mark_start, "Increase only"); _next_top_at_mark_start = top(); } // Returns "false" iff no object in the region was allocated when the // last mark phase ended. bool is_marked() { return _prev_top_at_mark_start != bottom(); } // If "is_marked()" is true, then this is the index of the region in // an array constructed at the end of marking of the regions in a // "desirability" order. int sort_index() { return _sort_index; } void set_sort_index(int i) { _sort_index = i; } void init_top_at_conc_mark_count() { _top_at_conc_mark_count = bottom(); } void set_top_at_conc_mark_count(HeapWord *cur) { assert(bottom() <= cur && cur <= end(), "Sanity."); _top_at_conc_mark_count = cur; } HeapWord* top_at_conc_mark_count() { return _top_at_conc_mark_count; } void reset_during_compaction() { guarantee( isHumongous() && startsHumongous(), "should only be called for humongous regions"); zero_marked_bytes(); init_top_at_mark_start(); } // void calc_gc_efficiency(void); double gc_efficiency() { return _gc_efficiency;} // bool is_young() const { return _young_type != NotYoung; } bool is_survivor() const { return _young_type == Survivor; } int young_index_in_cset() const { return _young_index_in_cset; } void set_young_index_in_cset(int index) { assert( (index == -1) || is_young(), "pre-condition" ); _young_index_in_cset = index; } int age_in_surv_rate_group() { assert( _surv_rate_group != NULL, "pre-condition" ); assert( _age_index > -1, "pre-condition" ); return _surv_rate_group->age_in_group(_age_index); } void record_surv_words_in_group(size_t words_survived) { assert( _surv_rate_group != NULL, "pre-condition" ); assert( _age_index > -1, "pre-condition" ); int age_in_group = age_in_surv_rate_group(); _surv_rate_group->record_surviving_words(age_in_group, words_survived); } int age_in_surv_rate_group_cond() { if (_surv_rate_group != NULL) return age_in_surv_rate_group(); else return -1; } SurvRateGroup* surv_rate_group() { return _surv_rate_group; } void install_surv_rate_group(SurvRateGroup* surv_rate_group) { assert( surv_rate_group != NULL, "pre-condition" ); assert( _surv_rate_group == NULL, "pre-condition" ); assert( is_young(), "pre-condition" ); _surv_rate_group = surv_rate_group; _age_index = surv_rate_group->next_age_index(); } void uninstall_surv_rate_group() { if (_surv_rate_group != NULL) { assert( _age_index > -1, "pre-condition" ); assert( is_young(), "pre-condition" ); _surv_rate_group = NULL; _age_index = -1; } else { assert( _age_index == -1, "pre-condition" ); } } void set_young() { set_young_type(Young); } void set_survivor() { set_young_type(Survivor); } void set_not_young() { set_young_type(NotYoung); } // Determine if an object has been allocated since the last // mark performed by the collector. This returns true iff the object // is within the unmarked area of the region. bool obj_allocated_since_prev_marking(oop obj) const { return (HeapWord *) obj >= prev_top_at_mark_start(); } bool obj_allocated_since_next_marking(oop obj) const { return (HeapWord *) obj >= next_top_at_mark_start(); } // For parallel heapRegion traversal. bool claimHeapRegion(int claimValue); jint claim_value() { return _claimed; } // Use this carefully: only when you're sure no one is claiming... void set_claim_value(int claimValue) { _claimed = claimValue; } // Returns the "evacuation_failed" property of the region. bool evacuation_failed() { return _evacuation_failed; } // Sets the "evacuation_failed" property of the region. void set_evacuation_failed(bool b) { _evacuation_failed = b; if (b) { init_top_at_conc_mark_count(); _next_marked_bytes = 0; } } // Requires that "mr" be entirely within the region. // Apply "cl->do_object" to all objects that intersect with "mr". // If the iteration encounters an unparseable portion of the region, // or if "cl->abort()" is true after a closure application, // terminate the iteration and return the address of the start of the // subregion that isn't done. (The two can be distinguished by querying // "cl->abort()".) Return of "NULL" indicates that the iteration // completed. HeapWord* object_iterate_mem_careful(MemRegion mr, ObjectClosure* cl); // filter_young: if true and the region is a young region then we // skip the iteration. // card_ptr: if not NULL, and we decide that the card is not young // and we iterate over it, we'll clean the card before we start the // iteration. HeapWord* oops_on_card_seq_iterate_careful(MemRegion mr, FilterOutOfRegionClosure* cl, bool filter_young, jbyte* card_ptr); // A version of block start that is guaranteed to find *some* block // boundary at or before "p", but does not object iteration, and may // therefore be used safely when the heap is unparseable. HeapWord* block_start_careful(const void* p) const { return _offsets.block_start_careful(p); } // Requires that "addr" is within the region. Returns the start of the // first ("careful") block that starts at or after "addr", or else the // "end" of the region if there is no such block. HeapWord* next_block_start_careful(HeapWord* addr); size_t recorded_rs_length() const { return _recorded_rs_length; } double predicted_elapsed_time_ms() const { return _predicted_elapsed_time_ms; } size_t predicted_bytes_to_copy() const { return _predicted_bytes_to_copy; } void set_recorded_rs_length(size_t rs_length) { _recorded_rs_length = rs_length; } void set_predicted_elapsed_time_ms(double ms) { _predicted_elapsed_time_ms = ms; } void set_predicted_bytes_to_copy(size_t bytes) { _predicted_bytes_to_copy = bytes; } #define HeapRegion_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix) \ virtual void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl); SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(HeapRegion_OOP_SINCE_SAVE_MARKS_DECL) CompactibleSpace* next_compaction_space() const; virtual void reset_after_compaction(); void print() const; void print_on(outputStream* st) const; // vo == UsePrevMarking -> use "prev" marking information, // vo == UseNextMarking -> use "next" marking information // vo == UseMarkWord -> use the mark word in the object header // // NOTE: Only the "prev" marking information is guaranteed to be // consistent most of the time, so most calls to this should use // vo == UsePrevMarking. // Currently, there is only one case where this is called with // vo == UseNextMarking, which is to verify the "next" marking // information at the end of remark. // Currently there is only one place where this is called with // vo == UseMarkWord, which is to verify the marking during a // full GC. void verify(bool allow_dirty, VerifyOption vo, bool *failures) const; // Override; it uses the "prev" marking information virtual void verify(bool allow_dirty) const; }; // HeapRegionClosure is used for iterating over regions. // Terminates the iteration when the "doHeapRegion" method returns "true". class HeapRegionClosure : public StackObj { friend class HeapRegionSeq; friend class G1CollectedHeap; bool _complete; void incomplete() { _complete = false; } public: HeapRegionClosure(): _complete(true) {} // Typically called on each region until it returns true. virtual bool doHeapRegion(HeapRegion* r) = 0; // True after iteration if the closure was applied to all heap regions // and returned "false" in all cases. bool complete() { return _complete; } }; #endif // SERIALGC #endif // SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP