/* * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "memory/allocation.inline.hpp" #include "opto/callnode.hpp" #include "opto/chaitin.hpp" #include "opto/live.hpp" #include "opto/machnode.hpp" // Compute live-in/live-out. We use a totally incremental algorithm. The LIVE // problem is monotonic. The steady-state solution looks like this: pull a // block from the worklist. It has a set of delta's - values which are newly // live-in from the block. Push these to the live-out sets of all predecessor // blocks. At each predecessor, the new live-out values are ANDed with what is // already live-out (extra stuff is added to the live-out sets). Then the // remaining new live-out values are ANDed with what is locally defined. // Leftover bits become the new live-in for the predecessor block, and the pred // block is put on the worklist. // The locally live-in stuff is computed once and added to predecessor // live-out sets. This separate compilation is done in the outer loop below. PhaseLive::PhaseLive( const PhaseCFG &cfg, const LRG_List &names, Arena *arena ) : Phase(LIVE), _cfg(cfg), _names(names), _arena(arena), _live(0) { } void PhaseLive::compute(uint maxlrg) { _maxlrg = maxlrg; _worklist = new (_arena) Block_List(); // Init the sparse live arrays. This data is live on exit from here! // The _live info is the live-out info. _live = (IndexSet*)_arena->Amalloc(sizeof(IndexSet) * _cfg.number_of_blocks()); uint i; for (i = 0; i < _cfg.number_of_blocks(); i++) { _live[i].initialize(_maxlrg); } // Init the sparse arrays for delta-sets. ResourceMark rm; // Nuke temp storage on exit // Does the memory used by _defs and _deltas get reclaimed? Does it matter? TT // Array of values defined locally in blocks _defs = NEW_RESOURCE_ARRAY(IndexSet,_cfg.number_of_blocks()); for (i = 0; i < _cfg.number_of_blocks(); i++) { _defs[i].initialize(_maxlrg); } // Array of delta-set pointers, indexed by block pre_order-1. _deltas = NEW_RESOURCE_ARRAY(IndexSet*,_cfg.number_of_blocks()); memset( _deltas, 0, sizeof(IndexSet*)* _cfg.number_of_blocks()); _free_IndexSet = NULL; // Blocks having done pass-1 VectorSet first_pass(Thread::current()->resource_area()); // Outer loop: must compute local live-in sets and push into predecessors. for (uint j = _cfg.number_of_blocks(); j > 0; j--) { Block* block = _cfg.get_block(j - 1); // Compute the local live-in set. Start with any new live-out bits. IndexSet* use = getset(block); IndexSet* def = &_defs[block->_pre_order-1]; DEBUG_ONLY(IndexSet *def_outside = getfreeset();) uint i; for (i = block->number_of_nodes(); i > 1; i--) { Node* n = block->get_node(i-1); if (n->is_Phi()) { break; } uint r = _names[n->_idx]; assert(!def_outside->member(r), "Use of external LRG overlaps the same LRG defined in this block"); def->insert( r ); use->remove( r ); uint cnt = n->req(); for (uint k = 1; k < cnt; k++) { Node *nk = n->in(k); uint nkidx = nk->_idx; if (_cfg.get_block_for_node(nk) != block) { uint u = _names[nkidx]; use->insert(u); DEBUG_ONLY(def_outside->insert(u);) } } } #ifdef ASSERT def_outside->set_next(_free_IndexSet); _free_IndexSet = def_outside; // Drop onto free list #endif // Remove anything defined by Phis and the block start instruction for (uint k = i; k > 0; k--) { uint r = _names[block->get_node(k - 1)->_idx]; def->insert(r); use->remove(r); } // Push these live-in things to predecessors for (uint l = 1; l < block->num_preds(); l++) { Block* p = _cfg.get_block_for_node(block->pred(l)); add_liveout(p, use, first_pass); // PhiNode uses go in the live-out set of prior blocks. for (uint k = i; k > 0; k--) { add_liveout(p, _names[block->get_node(k-1)->in(l)->_idx], first_pass); } } freeset(block); first_pass.set(block->_pre_order); // Inner loop: blocks that picked up new live-out values to be propagated while (_worklist->size()) { Block* block = _worklist->pop(); IndexSet *delta = getset(block); assert( delta->count(), "missing delta set" ); // Add new-live-in to predecessors live-out sets for (uint l = 1; l < block->num_preds(); l++) { Block* predecessor = _cfg.get_block_for_node(block->pred(l)); add_liveout(predecessor, delta, first_pass); } freeset(block); } // End of while-worklist-not-empty } // End of for-all-blocks-outer-loop // We explicitly clear all of the IndexSets which we are about to release. // This allows us to recycle their internal memory into IndexSet's free list. for (i = 0; i < _cfg.number_of_blocks(); i++) { _defs[i].clear(); if (_deltas[i]) { // Is this always true? _deltas[i]->clear(); } } IndexSet *free = _free_IndexSet; while (free != NULL) { IndexSet *temp = free; free = free->next(); temp->clear(); } } #ifndef PRODUCT void PhaseLive::stats(uint iters) const { } #endif // Get an IndexSet for a block. Return existing one, if any. Make a new // empty one if a prior one does not exist. IndexSet *PhaseLive::getset( Block *p ) { IndexSet *delta = _deltas[p->_pre_order-1]; if( !delta ) // Not on worklist? // Get a free set; flag as being on worklist delta = _deltas[p->_pre_order-1] = getfreeset(); return delta; // Return set of new live-out items } // Pull from free list, or allocate. Internal allocation on the returned set // is always from thread local storage. IndexSet *PhaseLive::getfreeset( ) { IndexSet *f = _free_IndexSet; if( !f ) { f = new IndexSet; // f->set_arena(Thread::current()->resource_area()); f->initialize(_maxlrg, Thread::current()->resource_area()); } else { // Pull from free list _free_IndexSet = f->next(); //f->_cnt = 0; // Reset to empty // f->set_arena(Thread::current()->resource_area()); f->initialize(_maxlrg, Thread::current()->resource_area()); } return f; } // Free an IndexSet from a block. void PhaseLive::freeset( const Block *p ) { IndexSet *f = _deltas[p->_pre_order-1]; f->set_next(_free_IndexSet); _free_IndexSet = f; // Drop onto free list _deltas[p->_pre_order-1] = NULL; } // Add a live-out value to a given blocks live-out set. If it is new, then // also add it to the delta set and stick the block on the worklist. void PhaseLive::add_liveout( Block *p, uint r, VectorSet &first_pass ) { IndexSet *live = &_live[p->_pre_order-1]; if( live->insert(r) ) { // If actually inserted... // We extended the live-out set. See if the value is generated locally. // If it is not, then we must extend the live-in set. if( !_defs[p->_pre_order-1].member( r ) ) { if( !_deltas[p->_pre_order-1] && // Not on worklist? first_pass.test(p->_pre_order) ) _worklist->push(p); // Actually go on worklist if already 1st pass getset(p)->insert(r); } } } // Add a vector of live-out values to a given blocks live-out set. void PhaseLive::add_liveout( Block *p, IndexSet *lo, VectorSet &first_pass ) { IndexSet *live = &_live[p->_pre_order-1]; IndexSet *defs = &_defs[p->_pre_order-1]; IndexSet *on_worklist = _deltas[p->_pre_order-1]; IndexSet *delta = on_worklist ? on_worklist : getfreeset(); IndexSetIterator elements(lo); uint r; while ((r = elements.next()) != 0) { if( live->insert(r) && // If actually inserted... !defs->member( r ) ) // and not defined locally delta->insert(r); // Then add to live-in set } if( delta->count() ) { // If actually added things _deltas[p->_pre_order-1] = delta; // Flag as on worklist now if( !on_worklist && // Not on worklist? first_pass.test(p->_pre_order) ) _worklist->push(p); // Actually go on worklist if already 1st pass } else { // Nothing there; just free it delta->set_next(_free_IndexSet); _free_IndexSet = delta; // Drop onto free list } } #ifndef PRODUCT // Dump the live-out set for a block void PhaseLive::dump( const Block *b ) const { tty->print("Block %d: ",b->_pre_order); tty->print("LiveOut: "); _live[b->_pre_order-1].dump(); uint cnt = b->number_of_nodes(); for( uint i=0; iprint("L%d/", _names[b->get_node(i)->_idx] ); b->get_node(i)->dump(); } tty->print("\n"); } // Verify that base pointers and derived pointers are still sane. void PhaseChaitin::verify_base_ptrs( ResourceArea *a ) const { #ifdef ASSERT Unique_Node_List worklist(a); for (uint i = 0; i < _cfg.number_of_blocks(); i++) { Block* block = _cfg.get_block(i); for (uint j = block->end_idx() + 1; j > 1; j--) { Node* n = block->get_node(j-1); if (n->is_Phi()) { break; } // Found a safepoint? if (n->is_MachSafePoint()) { MachSafePointNode *sfpt = n->as_MachSafePoint(); JVMState* jvms = sfpt->jvms(); if (jvms != NULL) { // Now scan for a live derived pointer if (jvms->oopoff() < sfpt->req()) { // Check each derived/base pair for (uint idx = jvms->oopoff(); idx < sfpt->req(); idx++) { Node *check = sfpt->in(idx); bool is_derived = ((idx - jvms->oopoff()) & 1) == 0; // search upwards through spills and spill phis for AddP worklist.clear(); worklist.push(check); uint k = 0; while( k < worklist.size() ) { check = worklist.at(k); assert(check,"Bad base or derived pointer"); // See PhaseChaitin::find_base_for_derived() for all cases. int isc = check->is_Copy(); if( isc ) { worklist.push(check->in(isc)); } else if( check->is_Phi() ) { for (uint m = 1; m < check->req(); m++) worklist.push(check->in(m)); } else if( check->is_Con() ) { if (is_derived) { // Derived is NULL+offset assert(!is_derived || check->bottom_type()->is_ptr()->ptr() == TypePtr::Null,"Bad derived pointer"); } else { assert(check->bottom_type()->is_ptr()->_offset == 0,"Bad base pointer"); // Base either ConP(NULL) or loadConP if (check->is_Mach()) { assert(check->as_Mach()->ideal_Opcode() == Op_ConP,"Bad base pointer"); } else { assert(check->Opcode() == Op_ConP && check->bottom_type()->is_ptr()->ptr() == TypePtr::Null,"Bad base pointer"); } } } else if( check->bottom_type()->is_ptr()->_offset == 0 ) { if(check->is_Proj() || check->is_Mach() && (check->as_Mach()->ideal_Opcode() == Op_CreateEx || check->as_Mach()->ideal_Opcode() == Op_ThreadLocal || check->as_Mach()->ideal_Opcode() == Op_CMoveP || check->as_Mach()->ideal_Opcode() == Op_CheckCastPP || #ifdef _LP64 UseCompressedOops && check->as_Mach()->ideal_Opcode() == Op_CastPP || UseCompressedOops && check->as_Mach()->ideal_Opcode() == Op_DecodeN || UseCompressedKlassPointers && check->as_Mach()->ideal_Opcode() == Op_DecodeNKlass || #endif check->as_Mach()->ideal_Opcode() == Op_LoadP || check->as_Mach()->ideal_Opcode() == Op_LoadKlass)) { // Valid nodes } else { check->dump(); assert(false,"Bad base or derived pointer"); } } else { assert(is_derived,"Bad base pointer"); assert(check->is_Mach() && check->as_Mach()->ideal_Opcode() == Op_AddP,"Bad derived pointer"); } k++; assert(k < 100000,"Derived pointer checking in infinite loop"); } // End while } } // End of check for derived pointers } // End of Kcheck for debug info } // End of if found a safepoint } // End of forall instructions in block } // End of forall blocks #endif } // Verify that graphs and base pointers are still sane. void PhaseChaitin::verify( ResourceArea *a, bool verify_ifg ) const { #ifdef ASSERT if( VerifyOpto || VerifyRegisterAllocator ) { _cfg.verify(); verify_base_ptrs(a); if(verify_ifg) _ifg->verify(this); } #endif } #endif