/* * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "classfile/systemDictionary.hpp" #include "code/debugInfoRec.hpp" #include "gc_interface/collectedHeap.inline.hpp" #include "interpreter/bytecodeStream.hpp" #include "interpreter/bytecodeTracer.hpp" #include "interpreter/bytecodes.hpp" #include "interpreter/interpreter.hpp" #include "interpreter/oopMapCache.hpp" #include "memory/gcLocker.hpp" #include "memory/generation.hpp" #include "memory/oopFactory.hpp" #include "oops/klassOop.hpp" #include "oops/methodDataOop.hpp" #include "oops/methodOop.hpp" #include "oops/oop.inline.hpp" #include "oops/symbol.hpp" #include "prims/jvmtiExport.hpp" #include "prims/methodHandleWalk.hpp" #include "prims/nativeLookup.hpp" #include "runtime/arguments.hpp" #include "runtime/compilationPolicy.hpp" #include "runtime/frame.inline.hpp" #include "runtime/handles.inline.hpp" #include "runtime/relocator.hpp" #include "runtime/sharedRuntime.hpp" #include "runtime/signature.hpp" #include "utilities/quickSort.hpp" #include "utilities/xmlstream.hpp" // Implementation of methodOopDesc address methodOopDesc::get_i2c_entry() { assert(_adapter != NULL, "must have"); return _adapter->get_i2c_entry(); } address methodOopDesc::get_c2i_entry() { assert(_adapter != NULL, "must have"); return _adapter->get_c2i_entry(); } address methodOopDesc::get_c2i_unverified_entry() { assert(_adapter != NULL, "must have"); return _adapter->get_c2i_unverified_entry(); } char* methodOopDesc::name_and_sig_as_C_string() { return name_and_sig_as_C_string(Klass::cast(constants()->pool_holder()), name(), signature()); } char* methodOopDesc::name_and_sig_as_C_string(char* buf, int size) { return name_and_sig_as_C_string(Klass::cast(constants()->pool_holder()), name(), signature(), buf, size); } char* methodOopDesc::name_and_sig_as_C_string(Klass* klass, Symbol* method_name, Symbol* signature) { const char* klass_name = klass->external_name(); int klass_name_len = (int)strlen(klass_name); int method_name_len = method_name->utf8_length(); int len = klass_name_len + 1 + method_name_len + signature->utf8_length(); char* dest = NEW_RESOURCE_ARRAY(char, len + 1); strcpy(dest, klass_name); dest[klass_name_len] = '.'; strcpy(&dest[klass_name_len + 1], method_name->as_C_string()); strcpy(&dest[klass_name_len + 1 + method_name_len], signature->as_C_string()); dest[len] = 0; return dest; } char* methodOopDesc::name_and_sig_as_C_string(Klass* klass, Symbol* method_name, Symbol* signature, char* buf, int size) { Symbol* klass_name = klass->name(); klass_name->as_klass_external_name(buf, size); int len = (int)strlen(buf); if (len < size - 1) { buf[len++] = '.'; method_name->as_C_string(&(buf[len]), size - len); len = (int)strlen(buf); signature->as_C_string(&(buf[len]), size - len); } return buf; } int methodOopDesc::fast_exception_handler_bci_for(KlassHandle ex_klass, int throw_bci, TRAPS) { // exception table holds quadruple entries of the form (beg_bci, end_bci, handler_bci, klass_index) const int beg_bci_offset = 0; const int end_bci_offset = 1; const int handler_bci_offset = 2; const int klass_index_offset = 3; const int entry_size = 4; // access exception table typeArrayHandle table (THREAD, constMethod()->exception_table()); int length = table->length(); assert(length % entry_size == 0, "exception table format has changed"); // iterate through all entries sequentially constantPoolHandle pool(THREAD, constants()); for (int i = 0; i < length; i += entry_size) { int beg_bci = table->int_at(i + beg_bci_offset); int end_bci = table->int_at(i + end_bci_offset); assert(beg_bci <= end_bci, "inconsistent exception table"); if (beg_bci <= throw_bci && throw_bci < end_bci) { // exception handler bci range covers throw_bci => investigate further int handler_bci = table->int_at(i + handler_bci_offset); int klass_index = table->int_at(i + klass_index_offset); if (klass_index == 0) { return handler_bci; } else if (ex_klass.is_null()) { return handler_bci; } else { // we know the exception class => get the constraint class // this may require loading of the constraint class; if verification // fails or some other exception occurs, return handler_bci klassOop k = pool->klass_at(klass_index, CHECK_(handler_bci)); KlassHandle klass = KlassHandle(THREAD, k); assert(klass.not_null(), "klass not loaded"); if (ex_klass->is_subtype_of(klass())) { return handler_bci; } } } } return -1; } void methodOopDesc::mask_for(int bci, InterpreterOopMap* mask) { Thread* myThread = Thread::current(); methodHandle h_this(myThread, this); #ifdef ASSERT bool has_capability = myThread->is_VM_thread() || myThread->is_ConcurrentGC_thread() || myThread->is_GC_task_thread(); if (!has_capability) { if (!VerifyStack && !VerifyLastFrame) { // verify stack calls this outside VM thread warning("oopmap should only be accessed by the " "VM, GC task or CMS threads (or during debugging)"); InterpreterOopMap local_mask; instanceKlass::cast(method_holder())->mask_for(h_this, bci, &local_mask); local_mask.print(); } } #endif instanceKlass::cast(method_holder())->mask_for(h_this, bci, mask); return; } int methodOopDesc::bci_from(address bcp) const { assert(is_native() && bcp == code_base() || contains(bcp) || is_error_reported(), "bcp doesn't belong to this method"); return bcp - code_base(); } // Return (int)bcx if it appears to be a valid BCI. // Return bci_from((address)bcx) if it appears to be a valid BCP. // Return -1 otherwise. // Used by profiling code, when invalid data is a possibility. // The caller is responsible for validating the methodOop itself. int methodOopDesc::validate_bci_from_bcx(intptr_t bcx) const { // keep bci as -1 if not a valid bci int bci = -1; if (bcx == 0 || (address)bcx == code_base()) { // code_size() may return 0 and we allow 0 here // the method may be native bci = 0; } else if (frame::is_bci(bcx)) { if (bcx < code_size()) { bci = (int)bcx; } } else if (contains((address)bcx)) { bci = (address)bcx - code_base(); } // Assert that if we have dodged any asserts, bci is negative. assert(bci == -1 || bci == bci_from(bcp_from(bci)), "sane bci if >=0"); return bci; } address methodOopDesc::bcp_from(int bci) const { assert((is_native() && bci == 0) || (!is_native() && 0 <= bci && bci < code_size()), "illegal bci"); address bcp = code_base() + bci; assert(is_native() && bcp == code_base() || contains(bcp), "bcp doesn't belong to this method"); return bcp; } int methodOopDesc::object_size(bool is_native) { // If native, then include pointers for native_function and signature_handler int extra_bytes = (is_native) ? 2*sizeof(address*) : 0; int extra_words = align_size_up(extra_bytes, BytesPerWord) / BytesPerWord; return align_object_size(header_size() + extra_words); } Symbol* methodOopDesc::klass_name() const { klassOop k = method_holder(); assert(k->is_klass(), "must be klass"); instanceKlass* ik = (instanceKlass*) k->klass_part(); return ik->name(); } void methodOopDesc::set_interpreter_kind() { int kind = Interpreter::method_kind(methodOop(this)); assert(kind != Interpreter::invalid, "interpreter entry must be valid"); set_interpreter_kind(kind); } // Attempt to return method oop to original state. Clear any pointers // (to objects outside the shared spaces). We won't be able to predict // where they should point in a new JVM. Further initialize some // entries now in order allow them to be write protected later. void methodOopDesc::remove_unshareable_info() { unlink_method(); set_interpreter_kind(); } bool methodOopDesc::was_executed_more_than(int n) { // Invocation counter is reset when the methodOop is compiled. // If the method has compiled code we therefore assume it has // be excuted more than n times. if (is_accessor() || is_empty_method() || (code() != NULL)) { // interpreter doesn't bump invocation counter of trivial methods // compiler does not bump invocation counter of compiled methods return true; } else if (_invocation_counter.carry() || (method_data() != NULL && method_data()->invocation_counter()->carry())) { // The carry bit is set when the counter overflows and causes // a compilation to occur. We don't know how many times // the counter has been reset, so we simply assume it has // been executed more than n times. return true; } else { return invocation_count() > n; } } #ifndef PRODUCT void methodOopDesc::print_invocation_count() { if (is_static()) tty->print("static "); if (is_final()) tty->print("final "); if (is_synchronized()) tty->print("synchronized "); if (is_native()) tty->print("native "); method_holder()->klass_part()->name()->print_symbol_on(tty); tty->print("."); name()->print_symbol_on(tty); signature()->print_symbol_on(tty); if (WizardMode) { // dump the size of the byte codes tty->print(" {%d}", code_size()); } tty->cr(); tty->print_cr (" interpreter_invocation_count: %8d ", interpreter_invocation_count()); tty->print_cr (" invocation_counter: %8d ", invocation_count()); tty->print_cr (" backedge_counter: %8d ", backedge_count()); if (CountCompiledCalls) { tty->print_cr (" compiled_invocation_count: %8d ", compiled_invocation_count()); } } #endif // Build a methodDataOop object to hold information about this method // collected in the interpreter. void methodOopDesc::build_interpreter_method_data(methodHandle method, TRAPS) { // Do not profile method if current thread holds the pending list lock, // which avoids deadlock for acquiring the MethodData_lock. if (instanceRefKlass::owns_pending_list_lock((JavaThread*)THREAD)) { return; } // Grab a lock here to prevent multiple // methodDataOops from being created. MutexLocker ml(MethodData_lock, THREAD); if (method->method_data() == NULL) { methodDataOop method_data = oopFactory::new_methodData(method, CHECK); method->set_method_data(method_data); if (PrintMethodData && (Verbose || WizardMode)) { ResourceMark rm(THREAD); tty->print("build_interpreter_method_data for "); method->print_name(tty); tty->cr(); // At the end of the run, the MDO, full of data, will be dumped. } } } void methodOopDesc::cleanup_inline_caches() { // The current system doesn't use inline caches in the interpreter // => nothing to do (keep this method around for future use) } int methodOopDesc::extra_stack_words() { // not an inline function, to avoid a header dependency on Interpreter return extra_stack_entries() * Interpreter::stackElementSize; } void methodOopDesc::compute_size_of_parameters(Thread *thread) { ArgumentSizeComputer asc(signature()); set_size_of_parameters(asc.size() + (is_static() ? 0 : 1)); } #ifdef CC_INTERP void methodOopDesc::set_result_index(BasicType type) { _result_index = Interpreter::BasicType_as_index(type); } #endif BasicType methodOopDesc::result_type() const { ResultTypeFinder rtf(signature()); return rtf.type(); } bool methodOopDesc::is_empty_method() const { return code_size() == 1 && *code_base() == Bytecodes::_return; } bool methodOopDesc::is_vanilla_constructor() const { // Returns true if this method is a vanilla constructor, i.e. an "" "()V" method // which only calls the superclass vanilla constructor and possibly does stores of // zero constants to local fields: // // aload_0 // invokespecial // indexbyte1 // indexbyte2 // // followed by an (optional) sequence of: // // aload_0 // aconst_null / iconst_0 / fconst_0 / dconst_0 // putfield // indexbyte1 // indexbyte2 // // followed by: // // return assert(name() == vmSymbols::object_initializer_name(), "Should only be called for default constructors"); assert(signature() == vmSymbols::void_method_signature(), "Should only be called for default constructors"); int size = code_size(); // Check if size match if (size == 0 || size % 5 != 0) return false; address cb = code_base(); int last = size - 1; if (cb[0] != Bytecodes::_aload_0 || cb[1] != Bytecodes::_invokespecial || cb[last] != Bytecodes::_return) { // Does not call superclass default constructor return false; } // Check optional sequence for (int i = 4; i < last; i += 5) { if (cb[i] != Bytecodes::_aload_0) return false; if (!Bytecodes::is_zero_const(Bytecodes::cast(cb[i+1]))) return false; if (cb[i+2] != Bytecodes::_putfield) return false; } return true; } bool methodOopDesc::compute_has_loops_flag() { BytecodeStream bcs(methodOop(this)); Bytecodes::Code bc; while ((bc = bcs.next()) >= 0) { switch( bc ) { case Bytecodes::_ifeq: case Bytecodes::_ifnull: case Bytecodes::_iflt: case Bytecodes::_ifle: case Bytecodes::_ifne: case Bytecodes::_ifnonnull: case Bytecodes::_ifgt: case Bytecodes::_ifge: case Bytecodes::_if_icmpeq: case Bytecodes::_if_icmpne: case Bytecodes::_if_icmplt: case Bytecodes::_if_icmpgt: case Bytecodes::_if_icmple: case Bytecodes::_if_icmpge: case Bytecodes::_if_acmpeq: case Bytecodes::_if_acmpne: case Bytecodes::_goto: case Bytecodes::_jsr: if( bcs.dest() < bcs.next_bci() ) _access_flags.set_has_loops(); break; case Bytecodes::_goto_w: case Bytecodes::_jsr_w: if( bcs.dest_w() < bcs.next_bci() ) _access_flags.set_has_loops(); break; } } _access_flags.set_loops_flag_init(); return _access_flags.has_loops(); } bool methodOopDesc::is_final_method() const { // %%% Should return true for private methods also, // since there is no way to override them. return is_final() || Klass::cast(method_holder())->is_final(); } bool methodOopDesc::is_strict_method() const { return is_strict(); } bool methodOopDesc::can_be_statically_bound() const { if (is_final_method()) return true; return vtable_index() == nonvirtual_vtable_index; } bool methodOopDesc::is_accessor() const { if (code_size() != 5) return false; if (size_of_parameters() != 1) return false; if (java_code_at(0) != Bytecodes::_aload_0 ) return false; if (java_code_at(1) != Bytecodes::_getfield) return false; if (java_code_at(4) != Bytecodes::_areturn && java_code_at(4) != Bytecodes::_ireturn ) return false; return true; } bool methodOopDesc::is_initializer() const { return name() == vmSymbols::object_initializer_name() || is_static_initializer(); } bool methodOopDesc::has_valid_initializer_flags() const { return (is_static() || instanceKlass::cast(method_holder())->major_version() < 51); } bool methodOopDesc::is_static_initializer() const { // For classfiles version 51 or greater, ensure that the clinit method is // static. Non-static methods with the name "" are not static // initializers. (older classfiles exempted for backward compatibility) return name() == vmSymbols::class_initializer_name() && has_valid_initializer_flags(); } objArrayHandle methodOopDesc::resolved_checked_exceptions_impl(methodOop this_oop, TRAPS) { int length = this_oop->checked_exceptions_length(); if (length == 0) { // common case return objArrayHandle(THREAD, Universe::the_empty_class_klass_array()); } else { methodHandle h_this(THREAD, this_oop); objArrayOop m_oop = oopFactory::new_objArray(SystemDictionary::Class_klass(), length, CHECK_(objArrayHandle())); objArrayHandle mirrors (THREAD, m_oop); for (int i = 0; i < length; i++) { CheckedExceptionElement* table = h_this->checked_exceptions_start(); // recompute on each iteration, not gc safe klassOop k = h_this->constants()->klass_at(table[i].class_cp_index, CHECK_(objArrayHandle())); assert(Klass::cast(k)->is_subclass_of(SystemDictionary::Throwable_klass()), "invalid exception class"); mirrors->obj_at_put(i, Klass::cast(k)->java_mirror()); } return mirrors; } }; int methodOopDesc::line_number_from_bci(int bci) const { if (bci == SynchronizationEntryBCI) bci = 0; assert(bci == 0 || 0 <= bci && bci < code_size(), "illegal bci"); int best_bci = 0; int best_line = -1; if (has_linenumber_table()) { // The line numbers are a short array of 2-tuples [start_pc, line_number]. // Not necessarily sorted and not necessarily one-to-one. CompressedLineNumberReadStream stream(compressed_linenumber_table()); while (stream.read_pair()) { if (stream.bci() == bci) { // perfect match return stream.line(); } else { // update best_bci/line if (stream.bci() < bci && stream.bci() >= best_bci) { best_bci = stream.bci(); best_line = stream.line(); } } } } return best_line; } bool methodOopDesc::is_klass_loaded_by_klass_index(int klass_index) const { if( _constants->tag_at(klass_index).is_unresolved_klass() ) { Thread *thread = Thread::current(); Symbol* klass_name = _constants->klass_name_at(klass_index); Handle loader(thread, instanceKlass::cast(method_holder())->class_loader()); Handle prot (thread, Klass::cast(method_holder())->protection_domain()); return SystemDictionary::find(klass_name, loader, prot, thread) != NULL; } else { return true; } } bool methodOopDesc::is_klass_loaded(int refinfo_index, bool must_be_resolved) const { int klass_index = _constants->klass_ref_index_at(refinfo_index); if (must_be_resolved) { // Make sure klass is resolved in constantpool. if (constants()->tag_at(klass_index).is_unresolved_klass()) return false; } return is_klass_loaded_by_klass_index(klass_index); } void methodOopDesc::set_native_function(address function, bool post_event_flag) { assert(function != NULL, "use clear_native_function to unregister natives"); address* native_function = native_function_addr(); // We can see racers trying to place the same native function into place. Once // is plenty. address current = *native_function; if (current == function) return; if (post_event_flag && JvmtiExport::should_post_native_method_bind() && function != NULL) { // native_method_throw_unsatisfied_link_error_entry() should only // be passed when post_event_flag is false. assert(function != SharedRuntime::native_method_throw_unsatisfied_link_error_entry(), "post_event_flag mis-match"); // post the bind event, and possible change the bind function JvmtiExport::post_native_method_bind(this, &function); } *native_function = function; // This function can be called more than once. We must make sure that we always // use the latest registered method -> check if a stub already has been generated. // If so, we have to make it not_entrant. nmethod* nm = code(); // Put it into local variable to guard against concurrent updates if (nm != NULL) { nm->make_not_entrant(); } } bool methodOopDesc::has_native_function() const { address func = native_function(); return (func != NULL && func != SharedRuntime::native_method_throw_unsatisfied_link_error_entry()); } void methodOopDesc::clear_native_function() { set_native_function( SharedRuntime::native_method_throw_unsatisfied_link_error_entry(), !native_bind_event_is_interesting); clear_code(); } void methodOopDesc::set_signature_handler(address handler) { address* signature_handler = signature_handler_addr(); *signature_handler = handler; } bool methodOopDesc::is_not_compilable(int comp_level) const { if (is_method_handle_invoke()) { // compilers must recognize this method specially, or not at all return true; } if (number_of_breakpoints() > 0) { return true; } if (comp_level == CompLevel_any) { return is_not_c1_compilable() || is_not_c2_compilable(); } if (is_c1_compile(comp_level)) { return is_not_c1_compilable(); } if (is_c2_compile(comp_level)) { return is_not_c2_compilable(); } return false; } // call this when compiler finds that this method is not compilable void methodOopDesc::set_not_compilable(int comp_level, bool report) { if (PrintCompilation && report) { ttyLocker ttyl; tty->print("made not compilable "); this->print_short_name(tty); int size = this->code_size(); if (size > 0) tty->print(" (%d bytes)", size); tty->cr(); } if ((TraceDeoptimization || LogCompilation) && (xtty != NULL)) { ttyLocker ttyl; xtty->begin_elem("make_not_compilable thread='%d'", (int) os::current_thread_id()); xtty->method(methodOop(this)); xtty->stamp(); xtty->end_elem(); } if (comp_level == CompLevel_all) { set_not_c1_compilable(); set_not_c2_compilable(); } else { if (is_c1_compile(comp_level)) { set_not_c1_compilable(); } else if (is_c2_compile(comp_level)) { set_not_c2_compilable(); } } CompilationPolicy::policy()->disable_compilation(this); } // Revert to using the interpreter and clear out the nmethod void methodOopDesc::clear_code() { // this may be NULL if c2i adapters have not been made yet // Only should happen at allocate time. if (_adapter == NULL) { _from_compiled_entry = NULL; } else { _from_compiled_entry = _adapter->get_c2i_entry(); } OrderAccess::storestore(); _from_interpreted_entry = _i2i_entry; OrderAccess::storestore(); _code = NULL; } // Called by class data sharing to remove any entry points (which are not shared) void methodOopDesc::unlink_method() { _code = NULL; _i2i_entry = NULL; _from_interpreted_entry = NULL; if (is_native()) { *native_function_addr() = NULL; set_signature_handler(NULL); } NOT_PRODUCT(set_compiled_invocation_count(0);) invocation_counter()->reset(); backedge_counter()->reset(); _adapter = NULL; _from_compiled_entry = NULL; assert(_method_data == NULL, "unexpected method data?"); set_method_data(NULL); set_interpreter_throwout_count(0); set_interpreter_invocation_count(0); } // Called when the method_holder is getting linked. Setup entrypoints so the method // is ready to be called from interpreter, compiler, and vtables. void methodOopDesc::link_method(methodHandle h_method, TRAPS) { // If the code cache is full, we may reenter this function for the // leftover methods that weren't linked. if (_i2i_entry != NULL) return; assert(_adapter == NULL, "init'd to NULL" ); assert( _code == NULL, "nothing compiled yet" ); // Setup interpreter entrypoint assert(this == h_method(), "wrong h_method()" ); address entry = Interpreter::entry_for_method(h_method); assert(entry != NULL, "interpreter entry must be non-null"); // Sets both _i2i_entry and _from_interpreted_entry set_interpreter_entry(entry); if (is_native() && !is_method_handle_invoke()) { set_native_function( SharedRuntime::native_method_throw_unsatisfied_link_error_entry(), !native_bind_event_is_interesting); } // Setup compiler entrypoint. This is made eagerly, so we do not need // special handling of vtables. An alternative is to make adapters more // lazily by calling make_adapter() from from_compiled_entry() for the // normal calls. For vtable calls life gets more complicated. When a // call-site goes mega-morphic we need adapters in all methods which can be // called from the vtable. We need adapters on such methods that get loaded // later. Ditto for mega-morphic itable calls. If this proves to be a // problem we'll make these lazily later. (void) make_adapters(h_method, CHECK); // ONLY USE the h_method now as make_adapter may have blocked } address methodOopDesc::make_adapters(methodHandle mh, TRAPS) { // Adapters for compiled code are made eagerly here. They are fairly // small (generally < 100 bytes) and quick to make (and cached and shared) // so making them eagerly shouldn't be too expensive. AdapterHandlerEntry* adapter = AdapterHandlerLibrary::get_adapter(mh); if (adapter == NULL ) { THROW_MSG_NULL(vmSymbols::java_lang_VirtualMachineError(), "out of space in CodeCache for adapters"); } mh->set_adapter_entry(adapter); mh->_from_compiled_entry = adapter->get_c2i_entry(); return adapter->get_c2i_entry(); } // The verified_code_entry() must be called when a invoke is resolved // on this method. // It returns the compiled code entry point, after asserting not null. // This function is called after potential safepoints so that nmethod // or adapter that it points to is still live and valid. // This function must not hit a safepoint! address methodOopDesc::verified_code_entry() { debug_only(No_Safepoint_Verifier nsv;) nmethod *code = (nmethod *)OrderAccess::load_ptr_acquire(&_code); if (code == NULL && UseCodeCacheFlushing) { nmethod *saved_code = CodeCache::find_and_remove_saved_code(this); if (saved_code != NULL) { methodHandle method(this); assert( ! saved_code->is_osr_method(), "should not get here for osr" ); set_code( method, saved_code ); } } assert(_from_compiled_entry != NULL, "must be set"); return _from_compiled_entry; } // Check that if an nmethod ref exists, it has a backlink to this or no backlink at all // (could be racing a deopt). // Not inline to avoid circular ref. bool methodOopDesc::check_code() const { // cached in a register or local. There's a race on the value of the field. nmethod *code = (nmethod *)OrderAccess::load_ptr_acquire(&_code); return code == NULL || (code->method() == NULL) || (code->method() == (methodOop)this && !code->is_osr_method()); } // Install compiled code. Instantly it can execute. void methodOopDesc::set_code(methodHandle mh, nmethod *code) { assert( code, "use clear_code to remove code" ); assert( mh->check_code(), "" ); guarantee(mh->adapter() != NULL, "Adapter blob must already exist!"); // These writes must happen in this order, because the interpreter will // directly jump to from_interpreted_entry which jumps to an i2c adapter // which jumps to _from_compiled_entry. mh->_code = code; // Assign before allowing compiled code to exec int comp_level = code->comp_level(); // In theory there could be a race here. In practice it is unlikely // and not worth worrying about. if (comp_level > mh->highest_comp_level()) { mh->set_highest_comp_level(comp_level); } OrderAccess::storestore(); #ifdef SHARK mh->_from_interpreted_entry = code->insts_begin(); #else mh->_from_compiled_entry = code->verified_entry_point(); OrderAccess::storestore(); // Instantly compiled code can execute. mh->_from_interpreted_entry = mh->get_i2c_entry(); #endif // SHARK } bool methodOopDesc::is_overridden_in(klassOop k) const { instanceKlass* ik = instanceKlass::cast(k); if (ik->is_interface()) return false; // If method is an interface, we skip it - except if it // is a miranda method if (instanceKlass::cast(method_holder())->is_interface()) { // Check that method is not a miranda method if (ik->lookup_method(name(), signature()) == NULL) { // No implementation exist - so miranda method return false; } return true; } assert(ik->is_subclass_of(method_holder()), "should be subklass"); assert(ik->vtable() != NULL, "vtable should exist"); if (vtable_index() == nonvirtual_vtable_index) { return false; } else { methodOop vt_m = ik->method_at_vtable(vtable_index()); return vt_m != methodOop(this); } } // give advice about whether this methodOop should be cached or not bool methodOopDesc::should_not_be_cached() const { if (is_old()) { // This method has been redefined. It is either EMCP or obsolete // and we don't want to cache it because that would pin the method // down and prevent it from being collectible if and when it // finishes executing. return true; } if (mark()->should_not_be_cached()) { // It is either not safe or not a good idea to cache this // method at this time because of the state of the embedded // markOop. See markOop.cpp for the gory details. return true; } // caching this method should be just fine return false; } bool methodOopDesc::is_method_handle_invoke_name(vmSymbols::SID name_sid) { switch (name_sid) { case vmSymbols::VM_SYMBOL_ENUM_NAME(invokeExact_name): case vmSymbols::VM_SYMBOL_ENUM_NAME(invoke_name): return true; } if (AllowInvokeGeneric && name_sid == vmSymbols::VM_SYMBOL_ENUM_NAME(invokeGeneric_name)) return true; return false; } // Constant pool structure for invoke methods: enum { _imcp_invoke_name = 1, // utf8: 'invokeExact' or 'invokeGeneric' _imcp_invoke_signature, // utf8: (variable Symbol*) _imcp_method_type_value, // string: (variable java/lang/invoke/MethodType, sic) _imcp_limit }; oop methodOopDesc::method_handle_type() const { if (!is_method_handle_invoke()) { assert(false, "caller resp."); return NULL; } oop mt = constants()->resolved_string_at(_imcp_method_type_value); assert(mt->klass() == SystemDictionary::MethodType_klass(), ""); return mt; } jint* methodOopDesc::method_type_offsets_chain() { static jint pchase[] = { -1, -1, -1 }; if (pchase[0] == -1) { jint step0 = in_bytes(constants_offset()); jint step1 = (constantPoolOopDesc::header_size() + _imcp_method_type_value) * HeapWordSize; // do this in reverse to avoid races: OrderAccess::release_store(&pchase[1], step1); OrderAccess::release_store(&pchase[0], step0); } return pchase; } //------------------------------------------------------------------------------ // methodOopDesc::is_method_handle_adapter // // Tests if this method is an internal adapter frame from the // MethodHandleCompiler. // Must be consistent with MethodHandleCompiler::get_method_oop(). bool methodOopDesc::is_method_handle_adapter() const { if (is_synthetic() && !is_native() && // has code from MethodHandleCompiler is_method_handle_invoke_name(name()) && MethodHandleCompiler::klass_is_method_handle_adapter_holder(method_holder())) { assert(!is_method_handle_invoke(), "disjoint"); return true; } else { return false; } } methodHandle methodOopDesc::make_invoke_method(KlassHandle holder, Symbol* name, Symbol* signature, Handle method_type, TRAPS) { ResourceMark rm; methodHandle empty; assert(holder() == SystemDictionary::MethodHandle_klass(), "must be a JSR 292 magic type"); if (TraceMethodHandles) { tty->print("Creating invoke method for "); signature->print_value(); tty->cr(); } // invariant: cp->symbol_at_put is preceded by a refcount increment (more usually a lookup) name->increment_refcount(); signature->increment_refcount(); // record non-BCP method types in the constant pool GrowableArray* extra_klasses = NULL; for (int i = -1, len = java_lang_invoke_MethodType::ptype_count(method_type()); i < len; i++) { oop ptype = (i == -1 ? java_lang_invoke_MethodType::rtype(method_type()) : java_lang_invoke_MethodType::ptype(method_type(), i)); klassOop klass = check_non_bcp_klass(java_lang_Class::as_klassOop(ptype)); if (klass != NULL) { if (extra_klasses == NULL) extra_klasses = new GrowableArray(len+1); bool dup = false; for (int j = 0; j < extra_klasses->length(); j++) { if (extra_klasses->at(j) == klass) { dup = true; break; } } if (!dup) extra_klasses->append(KlassHandle(THREAD, klass)); } } int extra_klass_count = (extra_klasses == NULL ? 0 : extra_klasses->length()); int cp_length = _imcp_limit + extra_klass_count; constantPoolHandle cp; { constantPoolOop cp_oop = oopFactory::new_constantPool(cp_length, IsSafeConc, CHECK_(empty)); cp = constantPoolHandle(THREAD, cp_oop); } cp->symbol_at_put(_imcp_invoke_name, name); cp->symbol_at_put(_imcp_invoke_signature, signature); cp->string_at_put(_imcp_method_type_value, Universe::the_null_string()); for (int j = 0; j < extra_klass_count; j++) { KlassHandle klass = extra_klasses->at(j); cp->klass_at_put(_imcp_limit + j, klass()); } cp->set_preresolution(); cp->set_pool_holder(holder()); // set up the fancy stuff: cp->pseudo_string_at_put(_imcp_method_type_value, method_type()); methodHandle m; { int flags_bits = (JVM_MH_INVOKE_BITS | JVM_ACC_PUBLIC | JVM_ACC_FINAL); methodOop m_oop = oopFactory::new_method(0, accessFlags_from(flags_bits), 0, 0, 0, IsSafeConc, CHECK_(empty)); m = methodHandle(THREAD, m_oop); } m->set_constants(cp()); m->set_name_index(_imcp_invoke_name); m->set_signature_index(_imcp_invoke_signature); assert(is_method_handle_invoke_name(m->name()), ""); assert(m->signature() == signature, ""); assert(m->is_method_handle_invoke(), ""); #ifdef CC_INTERP ResultTypeFinder rtf(signature); m->set_result_index(rtf.type()); #endif m->compute_size_of_parameters(THREAD); m->set_exception_table(Universe::the_empty_int_array()); m->init_intrinsic_id(); assert(m->intrinsic_id() == vmIntrinsics::_invokeExact || m->intrinsic_id() == vmIntrinsics::_invokeGeneric, "must be an invoker"); // Finally, set up its entry points. assert(m->method_handle_type() == method_type(), ""); assert(m->can_be_statically_bound(), ""); m->set_vtable_index(methodOopDesc::nonvirtual_vtable_index); m->link_method(m, CHECK_(empty)); #ifdef ASSERT // Make sure the pointer chase works. address p = (address) m(); for (jint* pchase = method_type_offsets_chain(); (*pchase) != -1; pchase++) { p = *(address*)(p + (*pchase)); } assert((oop)p == method_type(), "pointer chase is correct"); #endif if (TraceMethodHandles && (Verbose || WizardMode)) m->print_on(tty); return m; } klassOop methodOopDesc::check_non_bcp_klass(klassOop klass) { if (klass != NULL && Klass::cast(klass)->class_loader() != NULL) { if (Klass::cast(klass)->oop_is_objArray()) klass = objArrayKlass::cast(klass)->bottom_klass(); return klass; } return NULL; } methodHandle methodOopDesc:: clone_with_new_data(methodHandle m, u_char* new_code, int new_code_length, u_char* new_compressed_linenumber_table, int new_compressed_linenumber_size, TRAPS) { // Code below does not work for native methods - they should never get rewritten anyway assert(!m->is_native(), "cannot rewrite native methods"); // Allocate new methodOop AccessFlags flags = m->access_flags(); int checked_exceptions_len = m->checked_exceptions_length(); int localvariable_len = m->localvariable_table_length(); // Allocate newm_oop with the is_conc_safe parameter set // to IsUnsafeConc to indicate that newm_oop is not yet // safe for concurrent processing by a GC. methodOop newm_oop = oopFactory::new_method(new_code_length, flags, new_compressed_linenumber_size, localvariable_len, checked_exceptions_len, IsUnsafeConc, CHECK_(methodHandle())); methodHandle newm (THREAD, newm_oop); NOT_PRODUCT(int nmsz = newm->is_parsable() ? newm->size() : -1;) int new_method_size = newm->method_size(); // Create a shallow copy of methodOopDesc part, but be careful to preserve the new constMethodOop constMethodOop newcm = newm->constMethod(); NOT_PRODUCT(int ncmsz = newcm->is_parsable() ? newcm->size() : -1;) int new_const_method_size = newm->constMethod()->object_size(); memcpy(newm(), m(), sizeof(methodOopDesc)); // Create shallow copy of constMethodOopDesc, but be careful to preserve the methodOop // is_conc_safe is set to false because that is the value of // is_conc_safe initialzied into newcm and the copy should // not overwrite that value. During the window during which it is // tagged as unsafe, some extra work could be needed during precleaning // or concurrent marking but those phases will be correct. Setting and // resetting is done in preference to a careful copying into newcm to // avoid having to know the precise layout of a constMethodOop. m->constMethod()->set_is_conc_safe(oopDesc::IsUnsafeConc); assert(m->constMethod()->is_parsable(), "Should remain parsable"); // NOTE: this is a reachable object that transiently signals "conc_unsafe" // However, no allocations are done during this window // during which it is tagged conc_unsafe, so we are assured that any concurrent // thread will not wait forever for the object to revert to "conc_safe". // Further, any such conc_unsafe object will indicate a stable size // through the transition. memcpy(newcm, m->constMethod(), sizeof(constMethodOopDesc)); m->constMethod()->set_is_conc_safe(oopDesc::IsSafeConc); assert(m->constMethod()->is_parsable(), "Should remain parsable"); // Reset correct method/const method, method size, and parameter info newcm->set_method(newm()); newm->set_constMethod(newcm); assert(newcm->method() == newm(), "check"); newm->constMethod()->set_code_size(new_code_length); newm->constMethod()->set_constMethod_size(new_const_method_size); newm->set_method_size(new_method_size); assert(newm->code_size() == new_code_length, "check"); assert(newm->checked_exceptions_length() == checked_exceptions_len, "check"); assert(newm->localvariable_table_length() == localvariable_len, "check"); // Copy new byte codes memcpy(newm->code_base(), new_code, new_code_length); // Copy line number table if (new_compressed_linenumber_size > 0) { memcpy(newm->compressed_linenumber_table(), new_compressed_linenumber_table, new_compressed_linenumber_size); } // Copy checked_exceptions if (checked_exceptions_len > 0) { memcpy(newm->checked_exceptions_start(), m->checked_exceptions_start(), checked_exceptions_len * sizeof(CheckedExceptionElement)); } // Copy local variable number table if (localvariable_len > 0) { memcpy(newm->localvariable_table_start(), m->localvariable_table_start(), localvariable_len * sizeof(LocalVariableTableElement)); } // Only set is_conc_safe to true when changes to newcm are // complete. assert(!newm->is_parsable() || nmsz < 0 || newm->size() == nmsz, "newm->size() inconsistency"); assert(!newcm->is_parsable() || ncmsz < 0 || newcm->size() == ncmsz, "newcm->size() inconsistency"); newcm->set_is_conc_safe(true); return newm; } vmSymbols::SID methodOopDesc::klass_id_for_intrinsics(klassOop holder) { // if loader is not the default loader (i.e., != NULL), we can't know the intrinsics // because we are not loading from core libraries if (instanceKlass::cast(holder)->class_loader() != NULL) return vmSymbols::NO_SID; // regardless of name, no intrinsics here // see if the klass name is well-known: Symbol* klass_name = instanceKlass::cast(holder)->name(); return vmSymbols::find_sid(klass_name); } void methodOopDesc::init_intrinsic_id() { assert(_intrinsic_id == vmIntrinsics::_none, "do this just once"); const uintptr_t max_id_uint = right_n_bits((int)(sizeof(_intrinsic_id) * BitsPerByte)); assert((uintptr_t)vmIntrinsics::ID_LIMIT <= max_id_uint, "else fix size"); assert(intrinsic_id_size_in_bytes() == sizeof(_intrinsic_id), ""); // the klass name is well-known: vmSymbols::SID klass_id = klass_id_for_intrinsics(method_holder()); assert(klass_id != vmSymbols::NO_SID, "caller responsibility"); // ditto for method and signature: vmSymbols::SID name_id = vmSymbols::find_sid(name()); if (name_id == vmSymbols::NO_SID) return; vmSymbols::SID sig_id = vmSymbols::find_sid(signature()); if (klass_id != vmSymbols::VM_SYMBOL_ENUM_NAME(java_lang_invoke_MethodHandle) && sig_id == vmSymbols::NO_SID) return; jshort flags = access_flags().as_short(); vmIntrinsics::ID id = vmIntrinsics::find_id(klass_id, name_id, sig_id, flags); if (id != vmIntrinsics::_none) { set_intrinsic_id(id); return; } // A few slightly irregular cases: switch (klass_id) { case vmSymbols::VM_SYMBOL_ENUM_NAME(java_lang_StrictMath): // Second chance: check in regular Math. switch (name_id) { case vmSymbols::VM_SYMBOL_ENUM_NAME(min_name): case vmSymbols::VM_SYMBOL_ENUM_NAME(max_name): case vmSymbols::VM_SYMBOL_ENUM_NAME(sqrt_name): // pretend it is the corresponding method in the non-strict class: klass_id = vmSymbols::VM_SYMBOL_ENUM_NAME(java_lang_Math); id = vmIntrinsics::find_id(klass_id, name_id, sig_id, flags); break; } break; // Signature-polymorphic methods: MethodHandle.invoke*, InvokeDynamic.*. case vmSymbols::VM_SYMBOL_ENUM_NAME(java_lang_invoke_MethodHandle): if (is_static() || !is_native()) break; switch (name_id) { case vmSymbols::VM_SYMBOL_ENUM_NAME(invokeGeneric_name): if (!AllowInvokeGeneric) break; case vmSymbols::VM_SYMBOL_ENUM_NAME(invoke_name): id = vmIntrinsics::_invokeGeneric; break; case vmSymbols::VM_SYMBOL_ENUM_NAME(invokeExact_name): id = vmIntrinsics::_invokeExact; break; } break; case vmSymbols::VM_SYMBOL_ENUM_NAME(java_lang_invoke_InvokeDynamic): if (!is_static() || !is_native()) break; id = vmIntrinsics::_invokeDynamic; break; } if (id != vmIntrinsics::_none) { // Set up its iid. It is an alias method. set_intrinsic_id(id); return; } } // These two methods are static since a GC may move the methodOopDesc bool methodOopDesc::load_signature_classes(methodHandle m, TRAPS) { bool sig_is_loaded = true; Handle class_loader(THREAD, instanceKlass::cast(m->method_holder())->class_loader()); Handle protection_domain(THREAD, Klass::cast(m->method_holder())->protection_domain()); ResourceMark rm(THREAD); Symbol* signature = m->signature(); for(SignatureStream ss(signature); !ss.is_done(); ss.next()) { if (ss.is_object()) { Symbol* sym = ss.as_symbol(CHECK_(false)); Symbol* name = sym; klassOop klass = SystemDictionary::resolve_or_null(name, class_loader, protection_domain, THREAD); // We are loading classes eagerly. If a ClassNotFoundException or // a LinkageError was generated, be sure to ignore it. if (HAS_PENDING_EXCEPTION) { if (PENDING_EXCEPTION->is_a(SystemDictionary::ClassNotFoundException_klass()) || PENDING_EXCEPTION->is_a(SystemDictionary::LinkageError_klass())) { CLEAR_PENDING_EXCEPTION; } else { return false; } } if( klass == NULL) { sig_is_loaded = false; } } } return sig_is_loaded; } bool methodOopDesc::has_unloaded_classes_in_signature(methodHandle m, TRAPS) { Handle class_loader(THREAD, instanceKlass::cast(m->method_holder())->class_loader()); Handle protection_domain(THREAD, Klass::cast(m->method_holder())->protection_domain()); ResourceMark rm(THREAD); Symbol* signature = m->signature(); for(SignatureStream ss(signature); !ss.is_done(); ss.next()) { if (ss.type() == T_OBJECT) { Symbol* name = ss.as_symbol_or_null(); if (name == NULL) return true; klassOop klass = SystemDictionary::find(name, class_loader, protection_domain, THREAD); if (klass == NULL) return true; } } return false; } // Exposed so field engineers can debug VM void methodOopDesc::print_short_name(outputStream* st) { ResourceMark rm; #ifdef PRODUCT st->print(" %s::", method_holder()->klass_part()->external_name()); #else st->print(" %s::", method_holder()->klass_part()->internal_name()); #endif name()->print_symbol_on(st); if (WizardMode) signature()->print_symbol_on(st); } // This is only done during class loading, so it is OK to assume method_idnum matches the methods() array static void reorder_based_on_method_index(objArrayOop methods, objArrayOop annotations, GrowableArray* temp_array) { if (annotations == NULL) { return; } int length = methods->length(); int i; // Copy to temp array temp_array->clear(); for (i = 0; i < length; i++) { temp_array->append(annotations->obj_at(i)); } // Copy back using old method indices for (i = 0; i < length; i++) { methodOop m = (methodOop) methods->obj_at(i); annotations->obj_at_put(i, temp_array->at(m->method_idnum())); } } // Comparer for sorting an object array containing // methodOops. // Used non-template method_comparator methods since // Visual Studio 2003 compiler generates incorrect // optimized code for it. static int method_comparator_narrowOop(narrowOop a, narrowOop b) { methodOop m = (methodOop)oopDesc::decode_heap_oop_not_null(a); methodOop n = (methodOop)oopDesc::decode_heap_oop_not_null(b); return m->name()->fast_compare(n->name()); } static int method_comparator_oop(oop a, oop b) { methodOop m = (methodOop)a; methodOop n = (methodOop)b; return m->name()->fast_compare(n->name()); } // This is only done during class loading, so it is OK to assume method_idnum matches the methods() array void methodOopDesc::sort_methods(objArrayOop methods, objArrayOop methods_annotations, objArrayOop methods_parameter_annotations, objArrayOop methods_default_annotations, bool idempotent) { int length = methods->length(); if (length > 1) { bool do_annotations = false; if (methods_annotations != NULL || methods_parameter_annotations != NULL || methods_default_annotations != NULL) { do_annotations = true; } if (do_annotations) { // Remember current method ordering so we can reorder annotations for (int i = 0; i < length; i++) { methodOop m = (methodOop) methods->obj_at(i); m->set_method_idnum(i); } } { No_Safepoint_Verifier nsv; if (UseCompressedOops) { QuickSort::sort((narrowOop*)(methods->base()), length, method_comparator_narrowOop, idempotent); } else { QuickSort::sort((oop*)(methods->base()), length, method_comparator_oop, idempotent); } if (UseConcMarkSweepGC) { // For CMS we need to dirty the cards for the array BarrierSet* bs = Universe::heap()->barrier_set(); assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt"); bs->write_ref_array(methods->base(), length); } } // Sort annotations if necessary assert(methods_annotations == NULL || methods_annotations->length() == methods->length(), ""); assert(methods_parameter_annotations == NULL || methods_parameter_annotations->length() == methods->length(), ""); assert(methods_default_annotations == NULL || methods_default_annotations->length() == methods->length(), ""); if (do_annotations) { ResourceMark rm; // Allocate temporary storage GrowableArray* temp_array = new GrowableArray(length); reorder_based_on_method_index(methods, methods_annotations, temp_array); reorder_based_on_method_index(methods, methods_parameter_annotations, temp_array); reorder_based_on_method_index(methods, methods_default_annotations, temp_array); } // Reset method ordering for (int i = 0; i < length; i++) { methodOop m = (methodOop) methods->obj_at(i); m->set_method_idnum(i); } } } //----------------------------------------------------------------------------------- // Non-product code #ifndef PRODUCT class SignatureTypePrinter : public SignatureTypeNames { private: outputStream* _st; bool _use_separator; void type_name(const char* name) { if (_use_separator) _st->print(", "); _st->print(name); _use_separator = true; } public: SignatureTypePrinter(Symbol* signature, outputStream* st) : SignatureTypeNames(signature) { _st = st; _use_separator = false; } void print_parameters() { _use_separator = false; iterate_parameters(); } void print_returntype() { _use_separator = false; iterate_returntype(); } }; void methodOopDesc::print_name(outputStream* st) { Thread *thread = Thread::current(); ResourceMark rm(thread); SignatureTypePrinter sig(signature(), st); st->print("%s ", is_static() ? "static" : "virtual"); sig.print_returntype(); st->print(" %s.", method_holder()->klass_part()->internal_name()); name()->print_symbol_on(st); st->print("("); sig.print_parameters(); st->print(")"); } void methodOopDesc::print_codes_on(outputStream* st) const { print_codes_on(0, code_size(), st); } void methodOopDesc::print_codes_on(int from, int to, outputStream* st) const { Thread *thread = Thread::current(); ResourceMark rm(thread); methodHandle mh (thread, (methodOop)this); BytecodeStream s(mh); s.set_interval(from, to); BytecodeTracer::set_closure(BytecodeTracer::std_closure()); while (s.next() >= 0) BytecodeTracer::trace(mh, s.bcp(), st); } #endif // not PRODUCT // Simple compression of line number tables. We use a regular compressed stream, except that we compress deltas // between (bci,line) pairs since they are smaller. If (bci delta, line delta) fits in (5-bit unsigned, 3-bit unsigned) // we save it as one byte, otherwise we write a 0xFF escape character and use regular compression. 0x0 is used // as end-of-stream terminator. void CompressedLineNumberWriteStream::write_pair_regular(int bci_delta, int line_delta) { // bci and line number does not compress into single byte. // Write out escape character and use regular compression for bci and line number. write_byte((jubyte)0xFF); write_signed_int(bci_delta); write_signed_int(line_delta); } // See comment in methodOop.hpp which explains why this exists. #if defined(_M_AMD64) && _MSC_VER >= 1400 #pragma optimize("", off) void CompressedLineNumberWriteStream::write_pair(int bci, int line) { write_pair_inline(bci, line); } #pragma optimize("", on) #endif CompressedLineNumberReadStream::CompressedLineNumberReadStream(u_char* buffer) : CompressedReadStream(buffer) { _bci = 0; _line = 0; }; bool CompressedLineNumberReadStream::read_pair() { jubyte next = read_byte(); // Check for terminator if (next == 0) return false; if (next == 0xFF) { // Escape character, regular compression used _bci += read_signed_int(); _line += read_signed_int(); } else { // Single byte compression used _bci += next >> 3; _line += next & 0x7; } return true; } Bytecodes::Code methodOopDesc::orig_bytecode_at(int bci) const { BreakpointInfo* bp = instanceKlass::cast(method_holder())->breakpoints(); for (; bp != NULL; bp = bp->next()) { if (bp->match(this, bci)) { return bp->orig_bytecode(); } } ShouldNotReachHere(); return Bytecodes::_shouldnotreachhere; } void methodOopDesc::set_orig_bytecode_at(int bci, Bytecodes::Code code) { assert(code != Bytecodes::_breakpoint, "cannot patch breakpoints this way"); BreakpointInfo* bp = instanceKlass::cast(method_holder())->breakpoints(); for (; bp != NULL; bp = bp->next()) { if (bp->match(this, bci)) { bp->set_orig_bytecode(code); // and continue, in case there is more than one } } } void methodOopDesc::set_breakpoint(int bci) { instanceKlass* ik = instanceKlass::cast(method_holder()); BreakpointInfo *bp = new BreakpointInfo(this, bci); bp->set_next(ik->breakpoints()); ik->set_breakpoints(bp); // do this last: bp->set(this); } static void clear_matches(methodOop m, int bci) { instanceKlass* ik = instanceKlass::cast(m->method_holder()); BreakpointInfo* prev_bp = NULL; BreakpointInfo* next_bp; for (BreakpointInfo* bp = ik->breakpoints(); bp != NULL; bp = next_bp) { next_bp = bp->next(); // bci value of -1 is used to delete all breakpoints in method m (ex: clear_all_breakpoint). if (bci >= 0 ? bp->match(m, bci) : bp->match(m)) { // do this first: bp->clear(m); // unhook it if (prev_bp != NULL) prev_bp->set_next(next_bp); else ik->set_breakpoints(next_bp); delete bp; // When class is redefined JVMTI sets breakpoint in all versions of EMCP methods // at same location. So we have multiple matching (method_index and bci) // BreakpointInfo nodes in BreakpointInfo list. We should just delete one // breakpoint for clear_breakpoint request and keep all other method versions // BreakpointInfo for future clear_breakpoint request. // bcivalue of -1 is used to clear all breakpoints (see clear_all_breakpoints) // which is being called when class is unloaded. We delete all the Breakpoint // information for all versions of method. We may not correctly restore the original // bytecode in all method versions, but that is ok. Because the class is being unloaded // so these methods won't be used anymore. if (bci >= 0) { break; } } else { // This one is a keeper. prev_bp = bp; } } } void methodOopDesc::clear_breakpoint(int bci) { assert(bci >= 0, ""); clear_matches(this, bci); } void methodOopDesc::clear_all_breakpoints() { clear_matches(this, -1); } int methodOopDesc::invocation_count() { if (TieredCompilation) { const methodDataOop mdo = method_data(); if (invocation_counter()->carry() || ((mdo != NULL) ? mdo->invocation_counter()->carry() : false)) { return InvocationCounter::count_limit; } else { return invocation_counter()->count() + ((mdo != NULL) ? mdo->invocation_counter()->count() : 0); } } else { return invocation_counter()->count(); } } int methodOopDesc::backedge_count() { if (TieredCompilation) { const methodDataOop mdo = method_data(); if (backedge_counter()->carry() || ((mdo != NULL) ? mdo->backedge_counter()->carry() : false)) { return InvocationCounter::count_limit; } else { return backedge_counter()->count() + ((mdo != NULL) ? mdo->backedge_counter()->count() : 0); } } else { return backedge_counter()->count(); } } int methodOopDesc::highest_comp_level() const { methodDataOop mdo = method_data(); if (mdo != NULL) { return mdo->highest_comp_level(); } else { return CompLevel_none; } } int methodOopDesc::highest_osr_comp_level() const { methodDataOop mdo = method_data(); if (mdo != NULL) { return mdo->highest_osr_comp_level(); } else { return CompLevel_none; } } void methodOopDesc::set_highest_comp_level(int level) { methodDataOop mdo = method_data(); if (mdo != NULL) { mdo->set_highest_comp_level(level); } } void methodOopDesc::set_highest_osr_comp_level(int level) { methodDataOop mdo = method_data(); if (mdo != NULL) { mdo->set_highest_osr_comp_level(level); } } BreakpointInfo::BreakpointInfo(methodOop m, int bci) { _bci = bci; _name_index = m->name_index(); _signature_index = m->signature_index(); _orig_bytecode = (Bytecodes::Code) *m->bcp_from(_bci); if (_orig_bytecode == Bytecodes::_breakpoint) _orig_bytecode = m->orig_bytecode_at(_bci); _next = NULL; } void BreakpointInfo::set(methodOop method) { #ifdef ASSERT { Bytecodes::Code code = (Bytecodes::Code) *method->bcp_from(_bci); if (code == Bytecodes::_breakpoint) code = method->orig_bytecode_at(_bci); assert(orig_bytecode() == code, "original bytecode must be the same"); } #endif *method->bcp_from(_bci) = Bytecodes::_breakpoint; method->incr_number_of_breakpoints(); SystemDictionary::notice_modification(); { // Deoptimize all dependents on this method Thread *thread = Thread::current(); HandleMark hm(thread); methodHandle mh(thread, method); Universe::flush_dependents_on_method(mh); } } void BreakpointInfo::clear(methodOop method) { *method->bcp_from(_bci) = orig_bytecode(); assert(method->number_of_breakpoints() > 0, "must not go negative"); method->decr_number_of_breakpoints(); }