/* * Copyright (c) 2002, 2018, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012, 2018, SAP SE. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef CPU_PPC_VM_ASSEMBLER_PPC_HPP #define CPU_PPC_VM_ASSEMBLER_PPC_HPP #include "asm/register.hpp" // Address is an abstraction used to represent a memory location // as used in assembler instructions. // PPC instructions grok either baseReg + indexReg or baseReg + disp. // So far we do not use this as simplification by this class is low // on PPC with its simple addressing mode. Use RegisterOrConstant to // represent an offset. class Address VALUE_OBJ_CLASS_SPEC { }; class AddressLiteral VALUE_OBJ_CLASS_SPEC { private: address _address; RelocationHolder _rspec; RelocationHolder rspec_from_rtype(relocInfo::relocType rtype, address addr) { switch (rtype) { case relocInfo::external_word_type: return external_word_Relocation::spec(addr); case relocInfo::internal_word_type: return internal_word_Relocation::spec(addr); case relocInfo::opt_virtual_call_type: return opt_virtual_call_Relocation::spec(); case relocInfo::static_call_type: return static_call_Relocation::spec(); case relocInfo::runtime_call_type: return runtime_call_Relocation::spec(); case relocInfo::none: return RelocationHolder(); default: ShouldNotReachHere(); return RelocationHolder(); } } protected: // creation AddressLiteral() : _address(NULL), _rspec(NULL) {} public: AddressLiteral(address addr, RelocationHolder const& rspec) : _address(addr), _rspec(rspec) {} AddressLiteral(address addr, relocInfo::relocType rtype = relocInfo::none) : _address((address) addr), _rspec(rspec_from_rtype(rtype, (address) addr)) {} AddressLiteral(oop* addr, relocInfo::relocType rtype = relocInfo::none) : _address((address) addr), _rspec(rspec_from_rtype(rtype, (address) addr)) {} intptr_t value() const { return (intptr_t) _address; } const RelocationHolder& rspec() const { return _rspec; } }; // Argument is an abstraction used to represent an outgoing // actual argument or an incoming formal parameter, whether // it resides in memory or in a register, in a manner consistent // with the PPC Application Binary Interface, or ABI. This is // often referred to as the native or C calling convention. class Argument VALUE_OBJ_CLASS_SPEC { private: int _number; // The number of the argument. public: enum { // Only 8 registers may contain integer parameters. n_register_parameters = 8, // Can have up to 8 floating registers. n_float_register_parameters = 8, // PPC C calling conventions. // The first eight arguments are passed in int regs if they are int. n_int_register_parameters_c = 8, // The first thirteen float arguments are passed in float regs. n_float_register_parameters_c = 13, // Only the first 8 parameters are not placed on the stack. Aix disassembly // shows that xlC places all float args after argument 8 on the stack AND // in a register. This is not documented, but we follow this convention, too. n_regs_not_on_stack_c = 8, }; // creation Argument(int number) : _number(number) {} int number() const { return _number; } // Locating register-based arguments: bool is_register() const { return _number < n_register_parameters; } Register as_register() const { assert(is_register(), "must be a register argument"); return as_Register(number() + R3_ARG1->encoding()); } }; #if !defined(ABI_ELFv2) // A ppc64 function descriptor. struct FunctionDescriptor VALUE_OBJ_CLASS_SPEC { private: address _entry; address _toc; address _env; public: inline address entry() const { return _entry; } inline address toc() const { return _toc; } inline address env() const { return _env; } inline void set_entry(address entry) { _entry = entry; } inline void set_toc( address toc) { _toc = toc; } inline void set_env( address env) { _env = env; } inline static ByteSize entry_offset() { return byte_offset_of(FunctionDescriptor, _entry); } inline static ByteSize toc_offset() { return byte_offset_of(FunctionDescriptor, _toc); } inline static ByteSize env_offset() { return byte_offset_of(FunctionDescriptor, _env); } // Friend functions can be called without loading toc and env. enum { friend_toc = 0xcafe, friend_env = 0xc0de }; inline bool is_friend_function() const { return (toc() == (address) friend_toc) && (env() == (address) friend_env); } // Constructor for stack-allocated instances. FunctionDescriptor() { _entry = (address) 0xbad; _toc = (address) 0xbad; _env = (address) 0xbad; } }; #endif class Assembler : public AbstractAssembler { protected: // Displacement routines static void print_instruction(int inst); static int patched_branch(int dest_pos, int inst, int inst_pos); static int branch_destination(int inst, int pos); friend class AbstractAssembler; // Code patchers need various routines like inv_wdisp() friend class NativeInstruction; friend class NativeGeneralJump; friend class Relocation; public: enum shifts { XO_21_29_SHIFT = 2, XO_21_30_SHIFT = 1, XO_27_29_SHIFT = 2, XO_30_31_SHIFT = 0, SPR_5_9_SHIFT = 11u, // SPR_5_9 field in bits 11 -- 15 SPR_0_4_SHIFT = 16u, // SPR_0_4 field in bits 16 -- 20 RS_SHIFT = 21u, // RS field in bits 21 -- 25 OPCODE_SHIFT = 26u, // opcode in bits 26 -- 31 }; enum opcdxos_masks { XL_FORM_OPCODE_MASK = (63u << OPCODE_SHIFT) | (1023u << 1), ADDI_OPCODE_MASK = (63u << OPCODE_SHIFT), ADDIS_OPCODE_MASK = (63u << OPCODE_SHIFT), BXX_OPCODE_MASK = (63u << OPCODE_SHIFT), BCXX_OPCODE_MASK = (63u << OPCODE_SHIFT), // trap instructions TDI_OPCODE_MASK = (63u << OPCODE_SHIFT), TWI_OPCODE_MASK = (63u << OPCODE_SHIFT), TD_OPCODE_MASK = (63u << OPCODE_SHIFT) | (1023u << 1), TW_OPCODE_MASK = (63u << OPCODE_SHIFT) | (1023u << 1), LD_OPCODE_MASK = (63u << OPCODE_SHIFT) | (3u << XO_30_31_SHIFT), // DS-FORM STD_OPCODE_MASK = LD_OPCODE_MASK, STDU_OPCODE_MASK = STD_OPCODE_MASK, STDX_OPCODE_MASK = (63u << OPCODE_SHIFT) | (1023u << 1), STDUX_OPCODE_MASK = STDX_OPCODE_MASK, STW_OPCODE_MASK = (63u << OPCODE_SHIFT), STWU_OPCODE_MASK = STW_OPCODE_MASK, STWX_OPCODE_MASK = (63u << OPCODE_SHIFT) | (1023u << 1), STWUX_OPCODE_MASK = STWX_OPCODE_MASK, MTCTR_OPCODE_MASK = ~(31u << RS_SHIFT), ORI_OPCODE_MASK = (63u << OPCODE_SHIFT), ORIS_OPCODE_MASK = (63u << OPCODE_SHIFT), RLDICR_OPCODE_MASK = (63u << OPCODE_SHIFT) | (7u << XO_27_29_SHIFT) }; enum opcdxos { ADD_OPCODE = (31u << OPCODE_SHIFT | 266u << 1), ADDC_OPCODE = (31u << OPCODE_SHIFT | 10u << 1), ADDI_OPCODE = (14u << OPCODE_SHIFT), ADDIS_OPCODE = (15u << OPCODE_SHIFT), ADDIC__OPCODE = (13u << OPCODE_SHIFT), ADDE_OPCODE = (31u << OPCODE_SHIFT | 138u << 1), SUBF_OPCODE = (31u << OPCODE_SHIFT | 40u << 1), SUBFC_OPCODE = (31u << OPCODE_SHIFT | 8u << 1), SUBFE_OPCODE = (31u << OPCODE_SHIFT | 136u << 1), SUBFIC_OPCODE = (8u << OPCODE_SHIFT), SUBFZE_OPCODE = (31u << OPCODE_SHIFT | 200u << 1), DIVW_OPCODE = (31u << OPCODE_SHIFT | 491u << 1), MULLW_OPCODE = (31u << OPCODE_SHIFT | 235u << 1), MULHW_OPCODE = (31u << OPCODE_SHIFT | 75u << 1), MULHWU_OPCODE = (31u << OPCODE_SHIFT | 11u << 1), MULLI_OPCODE = (7u << OPCODE_SHIFT), AND_OPCODE = (31u << OPCODE_SHIFT | 28u << 1), ANDI_OPCODE = (28u << OPCODE_SHIFT), ANDIS_OPCODE = (29u << OPCODE_SHIFT), ANDC_OPCODE = (31u << OPCODE_SHIFT | 60u << 1), ORC_OPCODE = (31u << OPCODE_SHIFT | 412u << 1), OR_OPCODE = (31u << OPCODE_SHIFT | 444u << 1), ORI_OPCODE = (24u << OPCODE_SHIFT), ORIS_OPCODE = (25u << OPCODE_SHIFT), XOR_OPCODE = (31u << OPCODE_SHIFT | 316u << 1), XORI_OPCODE = (26u << OPCODE_SHIFT), XORIS_OPCODE = (27u << OPCODE_SHIFT), NEG_OPCODE = (31u << OPCODE_SHIFT | 104u << 1), RLWINM_OPCODE = (21u << OPCODE_SHIFT), CLRRWI_OPCODE = RLWINM_OPCODE, CLRLWI_OPCODE = RLWINM_OPCODE, RLWIMI_OPCODE = (20u << OPCODE_SHIFT), SLW_OPCODE = (31u << OPCODE_SHIFT | 24u << 1), SLWI_OPCODE = RLWINM_OPCODE, SRW_OPCODE = (31u << OPCODE_SHIFT | 536u << 1), SRWI_OPCODE = RLWINM_OPCODE, SRAW_OPCODE = (31u << OPCODE_SHIFT | 792u << 1), SRAWI_OPCODE = (31u << OPCODE_SHIFT | 824u << 1), CMP_OPCODE = (31u << OPCODE_SHIFT | 0u << 1), CMPI_OPCODE = (11u << OPCODE_SHIFT), CMPL_OPCODE = (31u << OPCODE_SHIFT | 32u << 1), CMPLI_OPCODE = (10u << OPCODE_SHIFT), ISEL_OPCODE = (31u << OPCODE_SHIFT | 15u << 1), // Special purpose registers MTSPR_OPCODE = (31u << OPCODE_SHIFT | 467u << 1), MFSPR_OPCODE = (31u << OPCODE_SHIFT | 339u << 1), MTXER_OPCODE = (MTSPR_OPCODE | 1 << SPR_0_4_SHIFT), MFXER_OPCODE = (MFSPR_OPCODE | 1 << SPR_0_4_SHIFT), MTDSCR_OPCODE = (MTSPR_OPCODE | 3 << SPR_0_4_SHIFT), MFDSCR_OPCODE = (MFSPR_OPCODE | 3 << SPR_0_4_SHIFT), MTLR_OPCODE = (MTSPR_OPCODE | 8 << SPR_0_4_SHIFT), MFLR_OPCODE = (MFSPR_OPCODE | 8 << SPR_0_4_SHIFT), MTCTR_OPCODE = (MTSPR_OPCODE | 9 << SPR_0_4_SHIFT), MFCTR_OPCODE = (MFSPR_OPCODE | 9 << SPR_0_4_SHIFT), MTTFHAR_OPCODE = (MTSPR_OPCODE | 128 << SPR_0_4_SHIFT), MFTFHAR_OPCODE = (MFSPR_OPCODE | 128 << SPR_0_4_SHIFT), MTTFIAR_OPCODE = (MTSPR_OPCODE | 129 << SPR_0_4_SHIFT), MFTFIAR_OPCODE = (MFSPR_OPCODE | 129 << SPR_0_4_SHIFT), MTTEXASR_OPCODE = (MTSPR_OPCODE | 130 << SPR_0_4_SHIFT), MFTEXASR_OPCODE = (MFSPR_OPCODE | 130 << SPR_0_4_SHIFT), MTTEXASRU_OPCODE = (MTSPR_OPCODE | 131 << SPR_0_4_SHIFT), MFTEXASRU_OPCODE = (MFSPR_OPCODE | 131 << SPR_0_4_SHIFT), MTVRSAVE_OPCODE = (MTSPR_OPCODE | 256 << SPR_0_4_SHIFT), MFVRSAVE_OPCODE = (MFSPR_OPCODE | 256 << SPR_0_4_SHIFT), MFTB_OPCODE = (MFSPR_OPCODE | 268 << SPR_0_4_SHIFT), MTCRF_OPCODE = (31u << OPCODE_SHIFT | 144u << 1), MFCR_OPCODE = (31u << OPCODE_SHIFT | 19u << 1), MCRF_OPCODE = (19u << OPCODE_SHIFT | 0u << 1), // condition register logic instructions CRAND_OPCODE = (19u << OPCODE_SHIFT | 257u << 1), CRNAND_OPCODE = (19u << OPCODE_SHIFT | 225u << 1), CROR_OPCODE = (19u << OPCODE_SHIFT | 449u << 1), CRXOR_OPCODE = (19u << OPCODE_SHIFT | 193u << 1), CRNOR_OPCODE = (19u << OPCODE_SHIFT | 33u << 1), CREQV_OPCODE = (19u << OPCODE_SHIFT | 289u << 1), CRANDC_OPCODE = (19u << OPCODE_SHIFT | 129u << 1), CRORC_OPCODE = (19u << OPCODE_SHIFT | 417u << 1), BCLR_OPCODE = (19u << OPCODE_SHIFT | 16u << 1), BXX_OPCODE = (18u << OPCODE_SHIFT), BCXX_OPCODE = (16u << OPCODE_SHIFT), // CTR-related opcodes BCCTR_OPCODE = (19u << OPCODE_SHIFT | 528u << 1), LWZ_OPCODE = (32u << OPCODE_SHIFT), LWZX_OPCODE = (31u << OPCODE_SHIFT | 23u << 1), LWZU_OPCODE = (33u << OPCODE_SHIFT), LWBRX_OPCODE = (31u << OPCODE_SHIFT | 534 << 1), LHA_OPCODE = (42u << OPCODE_SHIFT), LHAX_OPCODE = (31u << OPCODE_SHIFT | 343u << 1), LHAU_OPCODE = (43u << OPCODE_SHIFT), LHZ_OPCODE = (40u << OPCODE_SHIFT), LHZX_OPCODE = (31u << OPCODE_SHIFT | 279u << 1), LHZU_OPCODE = (41u << OPCODE_SHIFT), LHBRX_OPCODE = (31u << OPCODE_SHIFT | 790 << 1), LBZ_OPCODE = (34u << OPCODE_SHIFT), LBZX_OPCODE = (31u << OPCODE_SHIFT | 87u << 1), LBZU_OPCODE = (35u << OPCODE_SHIFT), STW_OPCODE = (36u << OPCODE_SHIFT), STWX_OPCODE = (31u << OPCODE_SHIFT | 151u << 1), STWU_OPCODE = (37u << OPCODE_SHIFT), STWUX_OPCODE = (31u << OPCODE_SHIFT | 183u << 1), STH_OPCODE = (44u << OPCODE_SHIFT), STHX_OPCODE = (31u << OPCODE_SHIFT | 407u << 1), STHU_OPCODE = (45u << OPCODE_SHIFT), STB_OPCODE = (38u << OPCODE_SHIFT), STBX_OPCODE = (31u << OPCODE_SHIFT | 215u << 1), STBU_OPCODE = (39u << OPCODE_SHIFT), EXTSB_OPCODE = (31u << OPCODE_SHIFT | 954u << 1), EXTSH_OPCODE = (31u << OPCODE_SHIFT | 922u << 1), EXTSW_OPCODE = (31u << OPCODE_SHIFT | 986u << 1), // X-FORM // 32 bit opcode encodings LWA_OPCODE = (58u << OPCODE_SHIFT | 2u << XO_30_31_SHIFT), // DS-FORM LWAX_OPCODE = (31u << OPCODE_SHIFT | 341u << XO_21_30_SHIFT), // X-FORM CNTLZW_OPCODE = (31u << OPCODE_SHIFT | 26u << XO_21_30_SHIFT), // X-FORM // 64 bit opcode encodings LD_OPCODE = (58u << OPCODE_SHIFT | 0u << XO_30_31_SHIFT), // DS-FORM LDU_OPCODE = (58u << OPCODE_SHIFT | 1u << XO_30_31_SHIFT), // DS-FORM LDX_OPCODE = (31u << OPCODE_SHIFT | 21u << XO_21_30_SHIFT), // X-FORM STD_OPCODE = (62u << OPCODE_SHIFT | 0u << XO_30_31_SHIFT), // DS-FORM STDU_OPCODE = (62u << OPCODE_SHIFT | 1u << XO_30_31_SHIFT), // DS-FORM STDUX_OPCODE = (31u << OPCODE_SHIFT | 181u << 1), // X-FORM STDX_OPCODE = (31u << OPCODE_SHIFT | 149u << XO_21_30_SHIFT), // X-FORM RLDICR_OPCODE = (30u << OPCODE_SHIFT | 1u << XO_27_29_SHIFT), // MD-FORM RLDICL_OPCODE = (30u << OPCODE_SHIFT | 0u << XO_27_29_SHIFT), // MD-FORM RLDIC_OPCODE = (30u << OPCODE_SHIFT | 2u << XO_27_29_SHIFT), // MD-FORM RLDIMI_OPCODE = (30u << OPCODE_SHIFT | 3u << XO_27_29_SHIFT), // MD-FORM SRADI_OPCODE = (31u << OPCODE_SHIFT | 413u << XO_21_29_SHIFT), // XS-FORM SLD_OPCODE = (31u << OPCODE_SHIFT | 27u << 1), // X-FORM SRD_OPCODE = (31u << OPCODE_SHIFT | 539u << 1), // X-FORM SRAD_OPCODE = (31u << OPCODE_SHIFT | 794u << 1), // X-FORM MULLD_OPCODE = (31u << OPCODE_SHIFT | 233u << 1), // XO-FORM MULHD_OPCODE = (31u << OPCODE_SHIFT | 73u << 1), // XO-FORM MULHDU_OPCODE = (31u << OPCODE_SHIFT | 9u << 1), // XO-FORM DIVD_OPCODE = (31u << OPCODE_SHIFT | 489u << 1), // XO-FORM CNTLZD_OPCODE = (31u << OPCODE_SHIFT | 58u << XO_21_30_SHIFT), // X-FORM NAND_OPCODE = (31u << OPCODE_SHIFT | 476u << XO_21_30_SHIFT), // X-FORM NOR_OPCODE = (31u << OPCODE_SHIFT | 124u << XO_21_30_SHIFT), // X-FORM // opcodes only used for floating arithmetic FADD_OPCODE = (63u << OPCODE_SHIFT | 21u << 1), FADDS_OPCODE = (59u << OPCODE_SHIFT | 21u << 1), FCMPU_OPCODE = (63u << OPCODE_SHIFT | 00u << 1), FDIV_OPCODE = (63u << OPCODE_SHIFT | 18u << 1), FDIVS_OPCODE = (59u << OPCODE_SHIFT | 18u << 1), FMR_OPCODE = (63u << OPCODE_SHIFT | 72u << 1), // These are special Power6 opcodes, reused for "lfdepx" and "stfdepx" // on Power7. Do not use. // MFFGPR_OPCODE = (31u << OPCODE_SHIFT | 607u << 1), // MFTGPR_OPCODE = (31u << OPCODE_SHIFT | 735u << 1), CMPB_OPCODE = (31u << OPCODE_SHIFT | 508 << 1), POPCNTB_OPCODE = (31u << OPCODE_SHIFT | 122 << 1), POPCNTW_OPCODE = (31u << OPCODE_SHIFT | 378 << 1), POPCNTD_OPCODE = (31u << OPCODE_SHIFT | 506 << 1), FABS_OPCODE = (63u << OPCODE_SHIFT | 264u << 1), FNABS_OPCODE = (63u << OPCODE_SHIFT | 136u << 1), FMUL_OPCODE = (63u << OPCODE_SHIFT | 25u << 1), FMULS_OPCODE = (59u << OPCODE_SHIFT | 25u << 1), FNEG_OPCODE = (63u << OPCODE_SHIFT | 40u << 1), FSUB_OPCODE = (63u << OPCODE_SHIFT | 20u << 1), FSUBS_OPCODE = (59u << OPCODE_SHIFT | 20u << 1), // PPC64-internal FPU conversion opcodes FCFID_OPCODE = (63u << OPCODE_SHIFT | 846u << 1), FCFIDS_OPCODE = (59u << OPCODE_SHIFT | 846u << 1), FCTID_OPCODE = (63u << OPCODE_SHIFT | 814u << 1), FCTIDZ_OPCODE = (63u << OPCODE_SHIFT | 815u << 1), FCTIW_OPCODE = (63u << OPCODE_SHIFT | 14u << 1), FCTIWZ_OPCODE = (63u << OPCODE_SHIFT | 15u << 1), FRSP_OPCODE = (63u << OPCODE_SHIFT | 12u << 1), // WARNING: using fmadd results in a non-compliant vm. Some floating // point tck tests will fail. FMADD_OPCODE = (59u << OPCODE_SHIFT | 29u << 1), DMADD_OPCODE = (63u << OPCODE_SHIFT | 29u << 1), FMSUB_OPCODE = (59u << OPCODE_SHIFT | 28u << 1), DMSUB_OPCODE = (63u << OPCODE_SHIFT | 28u << 1), FNMADD_OPCODE = (59u << OPCODE_SHIFT | 31u << 1), DNMADD_OPCODE = (63u << OPCODE_SHIFT | 31u << 1), FNMSUB_OPCODE = (59u << OPCODE_SHIFT | 30u << 1), DNMSUB_OPCODE = (63u << OPCODE_SHIFT | 30u << 1), LFD_OPCODE = (50u << OPCODE_SHIFT | 00u << 1), LFDU_OPCODE = (51u << OPCODE_SHIFT | 00u << 1), LFDX_OPCODE = (31u << OPCODE_SHIFT | 599u << 1), LFS_OPCODE = (48u << OPCODE_SHIFT | 00u << 1), LFSU_OPCODE = (49u << OPCODE_SHIFT | 00u << 1), LFSX_OPCODE = (31u << OPCODE_SHIFT | 535u << 1), STFD_OPCODE = (54u << OPCODE_SHIFT | 00u << 1), STFDU_OPCODE = (55u << OPCODE_SHIFT | 00u << 1), STFDX_OPCODE = (31u << OPCODE_SHIFT | 727u << 1), STFS_OPCODE = (52u << OPCODE_SHIFT | 00u << 1), STFSU_OPCODE = (53u << OPCODE_SHIFT | 00u << 1), STFSX_OPCODE = (31u << OPCODE_SHIFT | 663u << 1), FSQRT_OPCODE = (63u << OPCODE_SHIFT | 22u << 1), // A-FORM FSQRTS_OPCODE = (59u << OPCODE_SHIFT | 22u << 1), // A-FORM // Vector instruction support for >= Power6 // Vector Storage Access LVEBX_OPCODE = (31u << OPCODE_SHIFT | 7u << 1), LVEHX_OPCODE = (31u << OPCODE_SHIFT | 39u << 1), LVEWX_OPCODE = (31u << OPCODE_SHIFT | 71u << 1), LVX_OPCODE = (31u << OPCODE_SHIFT | 103u << 1), LVXL_OPCODE = (31u << OPCODE_SHIFT | 359u << 1), STVEBX_OPCODE = (31u << OPCODE_SHIFT | 135u << 1), STVEHX_OPCODE = (31u << OPCODE_SHIFT | 167u << 1), STVEWX_OPCODE = (31u << OPCODE_SHIFT | 199u << 1), STVX_OPCODE = (31u << OPCODE_SHIFT | 231u << 1), STVXL_OPCODE = (31u << OPCODE_SHIFT | 487u << 1), LVSL_OPCODE = (31u << OPCODE_SHIFT | 6u << 1), LVSR_OPCODE = (31u << OPCODE_SHIFT | 38u << 1), // Vector-Scalar (VSX) instruction support. LXVD2X_OPCODE = (31u << OPCODE_SHIFT | 844u << 1), STXVD2X_OPCODE = (31u << OPCODE_SHIFT | 972u << 1), MTVSRD_OPCODE = (31u << OPCODE_SHIFT | 179u << 1), MFVSRD_OPCODE = (31u << OPCODE_SHIFT | 51u << 1), // Vector Permute and Formatting VPKPX_OPCODE = (4u << OPCODE_SHIFT | 782u ), VPKSHSS_OPCODE = (4u << OPCODE_SHIFT | 398u ), VPKSWSS_OPCODE = (4u << OPCODE_SHIFT | 462u ), VPKSHUS_OPCODE = (4u << OPCODE_SHIFT | 270u ), VPKSWUS_OPCODE = (4u << OPCODE_SHIFT | 334u ), VPKUHUM_OPCODE = (4u << OPCODE_SHIFT | 14u ), VPKUWUM_OPCODE = (4u << OPCODE_SHIFT | 78u ), VPKUHUS_OPCODE = (4u << OPCODE_SHIFT | 142u ), VPKUWUS_OPCODE = (4u << OPCODE_SHIFT | 206u ), VUPKHPX_OPCODE = (4u << OPCODE_SHIFT | 846u ), VUPKHSB_OPCODE = (4u << OPCODE_SHIFT | 526u ), VUPKHSH_OPCODE = (4u << OPCODE_SHIFT | 590u ), VUPKLPX_OPCODE = (4u << OPCODE_SHIFT | 974u ), VUPKLSB_OPCODE = (4u << OPCODE_SHIFT | 654u ), VUPKLSH_OPCODE = (4u << OPCODE_SHIFT | 718u ), VMRGHB_OPCODE = (4u << OPCODE_SHIFT | 12u ), VMRGHW_OPCODE = (4u << OPCODE_SHIFT | 140u ), VMRGHH_OPCODE = (4u << OPCODE_SHIFT | 76u ), VMRGLB_OPCODE = (4u << OPCODE_SHIFT | 268u ), VMRGLW_OPCODE = (4u << OPCODE_SHIFT | 396u ), VMRGLH_OPCODE = (4u << OPCODE_SHIFT | 332u ), VSPLT_OPCODE = (4u << OPCODE_SHIFT | 524u ), VSPLTH_OPCODE = (4u << OPCODE_SHIFT | 588u ), VSPLTW_OPCODE = (4u << OPCODE_SHIFT | 652u ), VSPLTISB_OPCODE= (4u << OPCODE_SHIFT | 780u ), VSPLTISH_OPCODE= (4u << OPCODE_SHIFT | 844u ), VSPLTISW_OPCODE= (4u << OPCODE_SHIFT | 908u ), VPERM_OPCODE = (4u << OPCODE_SHIFT | 43u ), VSEL_OPCODE = (4u << OPCODE_SHIFT | 42u ), VSL_OPCODE = (4u << OPCODE_SHIFT | 452u ), VSLDOI_OPCODE = (4u << OPCODE_SHIFT | 44u ), VSLO_OPCODE = (4u << OPCODE_SHIFT | 1036u ), VSR_OPCODE = (4u << OPCODE_SHIFT | 708u ), VSRO_OPCODE = (4u << OPCODE_SHIFT | 1100u ), // Vector Integer VADDCUW_OPCODE = (4u << OPCODE_SHIFT | 384u ), VADDSHS_OPCODE = (4u << OPCODE_SHIFT | 832u ), VADDSBS_OPCODE = (4u << OPCODE_SHIFT | 768u ), VADDSWS_OPCODE = (4u << OPCODE_SHIFT | 896u ), VADDUBM_OPCODE = (4u << OPCODE_SHIFT | 0u ), VADDUWM_OPCODE = (4u << OPCODE_SHIFT | 128u ), VADDUHM_OPCODE = (4u << OPCODE_SHIFT | 64u ), VADDUBS_OPCODE = (4u << OPCODE_SHIFT | 512u ), VADDUWS_OPCODE = (4u << OPCODE_SHIFT | 640u ), VADDUHS_OPCODE = (4u << OPCODE_SHIFT | 576u ), VSUBCUW_OPCODE = (4u << OPCODE_SHIFT | 1408u ), VSUBSHS_OPCODE = (4u << OPCODE_SHIFT | 1856u ), VSUBSBS_OPCODE = (4u << OPCODE_SHIFT | 1792u ), VSUBSWS_OPCODE = (4u << OPCODE_SHIFT | 1920u ), VSUBUBM_OPCODE = (4u << OPCODE_SHIFT | 1024u ), VSUBUWM_OPCODE = (4u << OPCODE_SHIFT | 1152u ), VSUBUHM_OPCODE = (4u << OPCODE_SHIFT | 1088u ), VSUBUBS_OPCODE = (4u << OPCODE_SHIFT | 1536u ), VSUBUWS_OPCODE = (4u << OPCODE_SHIFT | 1664u ), VSUBUHS_OPCODE = (4u << OPCODE_SHIFT | 1600u ), VMULESB_OPCODE = (4u << OPCODE_SHIFT | 776u ), VMULEUB_OPCODE = (4u << OPCODE_SHIFT | 520u ), VMULESH_OPCODE = (4u << OPCODE_SHIFT | 840u ), VMULEUH_OPCODE = (4u << OPCODE_SHIFT | 584u ), VMULOSB_OPCODE = (4u << OPCODE_SHIFT | 264u ), VMULOUB_OPCODE = (4u << OPCODE_SHIFT | 8u ), VMULOSH_OPCODE = (4u << OPCODE_SHIFT | 328u ), VMULOUH_OPCODE = (4u << OPCODE_SHIFT | 72u ), VMHADDSHS_OPCODE=(4u << OPCODE_SHIFT | 32u ), VMHRADDSHS_OPCODE=(4u << OPCODE_SHIFT | 33u ), VMLADDUHM_OPCODE=(4u << OPCODE_SHIFT | 34u ), VMSUBUHM_OPCODE= (4u << OPCODE_SHIFT | 36u ), VMSUMMBM_OPCODE= (4u << OPCODE_SHIFT | 37u ), VMSUMSHM_OPCODE= (4u << OPCODE_SHIFT | 40u ), VMSUMSHS_OPCODE= (4u << OPCODE_SHIFT | 41u ), VMSUMUHM_OPCODE= (4u << OPCODE_SHIFT | 38u ), VMSUMUHS_OPCODE= (4u << OPCODE_SHIFT | 39u ), VSUMSWS_OPCODE = (4u << OPCODE_SHIFT | 1928u ), VSUM2SWS_OPCODE= (4u << OPCODE_SHIFT | 1672u ), VSUM4SBS_OPCODE= (4u << OPCODE_SHIFT | 1800u ), VSUM4UBS_OPCODE= (4u << OPCODE_SHIFT | 1544u ), VSUM4SHS_OPCODE= (4u << OPCODE_SHIFT | 1608u ), VAVGSB_OPCODE = (4u << OPCODE_SHIFT | 1282u ), VAVGSW_OPCODE = (4u << OPCODE_SHIFT | 1410u ), VAVGSH_OPCODE = (4u << OPCODE_SHIFT | 1346u ), VAVGUB_OPCODE = (4u << OPCODE_SHIFT | 1026u ), VAVGUW_OPCODE = (4u << OPCODE_SHIFT | 1154u ), VAVGUH_OPCODE = (4u << OPCODE_SHIFT | 1090u ), VMAXSB_OPCODE = (4u << OPCODE_SHIFT | 258u ), VMAXSW_OPCODE = (4u << OPCODE_SHIFT | 386u ), VMAXSH_OPCODE = (4u << OPCODE_SHIFT | 322u ), VMAXUB_OPCODE = (4u << OPCODE_SHIFT | 2u ), VMAXUW_OPCODE = (4u << OPCODE_SHIFT | 130u ), VMAXUH_OPCODE = (4u << OPCODE_SHIFT | 66u ), VMINSB_OPCODE = (4u << OPCODE_SHIFT | 770u ), VMINSW_OPCODE = (4u << OPCODE_SHIFT | 898u ), VMINSH_OPCODE = (4u << OPCODE_SHIFT | 834u ), VMINUB_OPCODE = (4u << OPCODE_SHIFT | 514u ), VMINUW_OPCODE = (4u << OPCODE_SHIFT | 642u ), VMINUH_OPCODE = (4u << OPCODE_SHIFT | 578u ), VCMPEQUB_OPCODE= (4u << OPCODE_SHIFT | 6u ), VCMPEQUH_OPCODE= (4u << OPCODE_SHIFT | 70u ), VCMPEQUW_OPCODE= (4u << OPCODE_SHIFT | 134u ), VCMPGTSH_OPCODE= (4u << OPCODE_SHIFT | 838u ), VCMPGTSB_OPCODE= (4u << OPCODE_SHIFT | 774u ), VCMPGTSW_OPCODE= (4u << OPCODE_SHIFT | 902u ), VCMPGTUB_OPCODE= (4u << OPCODE_SHIFT | 518u ), VCMPGTUH_OPCODE= (4u << OPCODE_SHIFT | 582u ), VCMPGTUW_OPCODE= (4u << OPCODE_SHIFT | 646u ), VAND_OPCODE = (4u << OPCODE_SHIFT | 1028u ), VANDC_OPCODE = (4u << OPCODE_SHIFT | 1092u ), VNOR_OPCODE = (4u << OPCODE_SHIFT | 1284u ), VOR_OPCODE = (4u << OPCODE_SHIFT | 1156u ), VXOR_OPCODE = (4u << OPCODE_SHIFT | 1220u ), VRLD_OPCODE = (4u << OPCODE_SHIFT | 196u ), VRLB_OPCODE = (4u << OPCODE_SHIFT | 4u ), VRLW_OPCODE = (4u << OPCODE_SHIFT | 132u ), VRLH_OPCODE = (4u << OPCODE_SHIFT | 68u ), VSLB_OPCODE = (4u << OPCODE_SHIFT | 260u ), VSKW_OPCODE = (4u << OPCODE_SHIFT | 388u ), VSLH_OPCODE = (4u << OPCODE_SHIFT | 324u ), VSRB_OPCODE = (4u << OPCODE_SHIFT | 516u ), VSRW_OPCODE = (4u << OPCODE_SHIFT | 644u ), VSRH_OPCODE = (4u << OPCODE_SHIFT | 580u ), VSRAB_OPCODE = (4u << OPCODE_SHIFT | 772u ), VSRAW_OPCODE = (4u << OPCODE_SHIFT | 900u ), VSRAH_OPCODE = (4u << OPCODE_SHIFT | 836u ), // Vector Floating-Point // not implemented yet // Vector Status and Control MTVSCR_OPCODE = (4u << OPCODE_SHIFT | 1604u ), MFVSCR_OPCODE = (4u << OPCODE_SHIFT | 1540u ), // AES (introduced with Power 8) VCIPHER_OPCODE = (4u << OPCODE_SHIFT | 1288u), VCIPHERLAST_OPCODE = (4u << OPCODE_SHIFT | 1289u), VNCIPHER_OPCODE = (4u << OPCODE_SHIFT | 1352u), VNCIPHERLAST_OPCODE = (4u << OPCODE_SHIFT | 1353u), VSBOX_OPCODE = (4u << OPCODE_SHIFT | 1480u), // SHA (introduced with Power 8) VSHASIGMAD_OPCODE = (4u << OPCODE_SHIFT | 1730u), VSHASIGMAW_OPCODE = (4u << OPCODE_SHIFT | 1666u), // Vector Binary Polynomial Multiplication (introduced with Power 8) VPMSUMB_OPCODE = (4u << OPCODE_SHIFT | 1032u), VPMSUMD_OPCODE = (4u << OPCODE_SHIFT | 1224u), VPMSUMH_OPCODE = (4u << OPCODE_SHIFT | 1096u), VPMSUMW_OPCODE = (4u << OPCODE_SHIFT | 1160u), // Vector Permute and Xor (introduced with Power 8) VPERMXOR_OPCODE = (4u << OPCODE_SHIFT | 45u), // Transactional Memory instructions (introduced with Power 8) TBEGIN_OPCODE = (31u << OPCODE_SHIFT | 654u << 1), TEND_OPCODE = (31u << OPCODE_SHIFT | 686u << 1), TABORT_OPCODE = (31u << OPCODE_SHIFT | 910u << 1), TABORTWC_OPCODE = (31u << OPCODE_SHIFT | 782u << 1), TABORTWCI_OPCODE = (31u << OPCODE_SHIFT | 846u << 1), TABORTDC_OPCODE = (31u << OPCODE_SHIFT | 814u << 1), TABORTDCI_OPCODE = (31u << OPCODE_SHIFT | 878u << 1), TSR_OPCODE = (31u << OPCODE_SHIFT | 750u << 1), TCHECK_OPCODE = (31u << OPCODE_SHIFT | 718u << 1), // Icache and dcache related instructions DCBA_OPCODE = (31u << OPCODE_SHIFT | 758u << 1), DCBZ_OPCODE = (31u << OPCODE_SHIFT | 1014u << 1), DCBST_OPCODE = (31u << OPCODE_SHIFT | 54u << 1), DCBF_OPCODE = (31u << OPCODE_SHIFT | 86u << 1), DCBT_OPCODE = (31u << OPCODE_SHIFT | 278u << 1), DCBTST_OPCODE = (31u << OPCODE_SHIFT | 246u << 1), ICBI_OPCODE = (31u << OPCODE_SHIFT | 982u << 1), // Instruction synchronization ISYNC_OPCODE = (19u << OPCODE_SHIFT | 150u << 1), // Memory barriers SYNC_OPCODE = (31u << OPCODE_SHIFT | 598u << 1), EIEIO_OPCODE = (31u << OPCODE_SHIFT | 854u << 1), // Trap instructions TDI_OPCODE = (2u << OPCODE_SHIFT), TWI_OPCODE = (3u << OPCODE_SHIFT), TD_OPCODE = (31u << OPCODE_SHIFT | 68u << 1), TW_OPCODE = (31u << OPCODE_SHIFT | 4u << 1), // Atomics. LWARX_OPCODE = (31u << OPCODE_SHIFT | 20u << 1), LDARX_OPCODE = (31u << OPCODE_SHIFT | 84u << 1), LQARX_OPCODE = (31u << OPCODE_SHIFT | 276u << 1), STWCX_OPCODE = (31u << OPCODE_SHIFT | 150u << 1), STDCX_OPCODE = (31u << OPCODE_SHIFT | 214u << 1), STQCX_OPCODE = (31u << OPCODE_SHIFT | 182u << 1) }; // Trap instructions TO bits enum trap_to_bits { // single bits traptoLessThanSigned = 1 << 4, // 0, left end traptoGreaterThanSigned = 1 << 3, traptoEqual = 1 << 2, traptoLessThanUnsigned = 1 << 1, traptoGreaterThanUnsigned = 1 << 0, // 4, right end // compound ones traptoUnconditional = (traptoLessThanSigned | traptoGreaterThanSigned | traptoEqual | traptoLessThanUnsigned | traptoGreaterThanUnsigned) }; // Branch hints BH field enum branch_hint_bh { // bclr cases: bhintbhBCLRisReturn = 0, bhintbhBCLRisNotReturnButSame = 1, bhintbhBCLRisNotPredictable = 3, // bcctr cases: bhintbhBCCTRisNotReturnButSame = 0, bhintbhBCCTRisNotPredictable = 3 }; // Branch prediction hints AT field enum branch_hint_at { bhintatNoHint = 0, // at=00 bhintatIsNotTaken = 2, // at=10 bhintatIsTaken = 3 // at=11 }; // Branch prediction hints enum branch_hint_concept { // Use the same encoding as branch_hint_at to simply code. bhintNoHint = bhintatNoHint, bhintIsNotTaken = bhintatIsNotTaken, bhintIsTaken = bhintatIsTaken }; // Used in BO field of branch instruction. enum branch_condition { bcondCRbiIs0 = 4, // bo=001at bcondCRbiIs1 = 12, // bo=011at bcondAlways = 20 // bo=10100 }; // Branch condition with combined prediction hints. enum branch_condition_with_hint { bcondCRbiIs0_bhintNoHint = bcondCRbiIs0 | bhintatNoHint, bcondCRbiIs0_bhintIsNotTaken = bcondCRbiIs0 | bhintatIsNotTaken, bcondCRbiIs0_bhintIsTaken = bcondCRbiIs0 | bhintatIsTaken, bcondCRbiIs1_bhintNoHint = bcondCRbiIs1 | bhintatNoHint, bcondCRbiIs1_bhintIsNotTaken = bcondCRbiIs1 | bhintatIsNotTaken, bcondCRbiIs1_bhintIsTaken = bcondCRbiIs1 | bhintatIsTaken, }; // Elemental Memory Barriers (>=Power 8) enum Elemental_Membar_mask_bits { StoreStore = 1 << 0, StoreLoad = 1 << 1, LoadStore = 1 << 2, LoadLoad = 1 << 3 }; // Branch prediction hints. inline static int add_bhint_to_boint(const int bhint, const int boint) { switch (boint) { case bcondCRbiIs0: case bcondCRbiIs1: // branch_hint and branch_hint_at have same encodings assert( (int)bhintNoHint == (int)bhintatNoHint && (int)bhintIsNotTaken == (int)bhintatIsNotTaken && (int)bhintIsTaken == (int)bhintatIsTaken, "wrong encodings"); assert((bhint & 0x03) == bhint, "wrong encodings"); return (boint & ~0x03) | bhint; case bcondAlways: // no branch_hint return boint; default: ShouldNotReachHere(); return 0; } } // Extract bcond from boint. inline static int inv_boint_bcond(const int boint) { int r_bcond = boint & ~0x03; assert(r_bcond == bcondCRbiIs0 || r_bcond == bcondCRbiIs1 || r_bcond == bcondAlways, "bad branch condition"); return r_bcond; } // Extract bhint from boint. inline static int inv_boint_bhint(const int boint) { int r_bhint = boint & 0x03; assert(r_bhint == bhintatNoHint || r_bhint == bhintatIsNotTaken || r_bhint == bhintatIsTaken, "bad branch hint"); return r_bhint; } // Calculate opposite of given bcond. inline static int opposite_bcond(const int bcond) { switch (bcond) { case bcondCRbiIs0: return bcondCRbiIs1; case bcondCRbiIs1: return bcondCRbiIs0; default: ShouldNotReachHere(); return 0; } } // Calculate opposite of given bhint. inline static int opposite_bhint(const int bhint) { switch (bhint) { case bhintatNoHint: return bhintatNoHint; case bhintatIsNotTaken: return bhintatIsTaken; case bhintatIsTaken: return bhintatIsNotTaken; default: ShouldNotReachHere(); return 0; } } // PPC branch instructions enum ppcops { b_op = 18, bc_op = 16, bcr_op = 19 }; enum Condition { negative = 0, less = 0, positive = 1, greater = 1, zero = 2, equal = 2, summary_overflow = 3, }; public: // Helper functions for groups of instructions enum Predict { pt = 1, pn = 0 }; // pt = predict taken // instruction must start at passed address static int instr_len(unsigned char *instr) { return BytesPerInstWord; } // instruction must be left-justified in argument static int instr_len(unsigned long instr) { return BytesPerInstWord; } // longest instructions static int instr_maxlen() { return BytesPerInstWord; } // Test if x is within signed immediate range for nbits. static bool is_simm(int x, unsigned int nbits) { assert(0 < nbits && nbits < 32, "out of bounds"); const int min = -( ((int)1) << nbits-1 ); const int maxplus1 = ( ((int)1) << nbits-1 ); return min <= x && x < maxplus1; } static bool is_simm(jlong x, unsigned int nbits) { assert(0 < nbits && nbits < 64, "out of bounds"); const jlong min = -( ((jlong)1) << nbits-1 ); const jlong maxplus1 = ( ((jlong)1) << nbits-1 ); return min <= x && x < maxplus1; } // Test if x is within unsigned immediate range for nbits static bool is_uimm(int x, unsigned int nbits) { assert(0 < nbits && nbits < 32, "out of bounds"); const int maxplus1 = ( ((int)1) << nbits ); return 0 <= x && x < maxplus1; } static bool is_uimm(jlong x, unsigned int nbits) { assert(0 < nbits && nbits < 64, "out of bounds"); const jlong maxplus1 = ( ((jlong)1) << nbits ); return 0 <= x && x < maxplus1; } protected: // helpers // X is supposed to fit in a field "nbits" wide // and be sign-extended. Check the range. static void assert_signed_range(intptr_t x, int nbits) { assert(nbits == 32 || (-(1 << nbits-1) <= x && x < (1 << nbits-1)), "value out of range"); } static void assert_signed_word_disp_range(intptr_t x, int nbits) { assert((x & 3) == 0, "not word aligned"); assert_signed_range(x, nbits + 2); } static void assert_unsigned_const(int x, int nbits) { assert(juint(x) < juint(1 << nbits), "unsigned constant out of range"); } static int fmask(juint hi_bit, juint lo_bit) { assert(hi_bit >= lo_bit && hi_bit < 32, "bad bits"); return (1 << ( hi_bit-lo_bit + 1 )) - 1; } // inverse of u_field static int inv_u_field(int x, int hi_bit, int lo_bit) { juint r = juint(x) >> lo_bit; r &= fmask(hi_bit, lo_bit); return int(r); } // signed version: extract from field and sign-extend static int inv_s_field_ppc(int x, int hi_bit, int lo_bit) { x = x << (31-hi_bit); x = x >> (31-hi_bit+lo_bit); return x; } static int u_field(int x, int hi_bit, int lo_bit) { assert((x & ~fmask(hi_bit, lo_bit)) == 0, "value out of range"); int r = x << lo_bit; assert(inv_u_field(r, hi_bit, lo_bit) == x, "just checking"); return r; } // Same as u_field for signed values static int s_field(int x, int hi_bit, int lo_bit) { int nbits = hi_bit - lo_bit + 1; assert(nbits == 32 || (-(1 << nbits-1) <= x && x < (1 << nbits-1)), "value out of range"); x &= fmask(hi_bit, lo_bit); int r = x << lo_bit; return r; } // inv_op for ppc instructions static int inv_op_ppc(int x) { return inv_u_field(x, 31, 26); } // Determine target address from li, bd field of branch instruction. static intptr_t inv_li_field(int x) { intptr_t r = inv_s_field_ppc(x, 25, 2); r = (r << 2); return r; } static intptr_t inv_bd_field(int x, intptr_t pos) { intptr_t r = inv_s_field_ppc(x, 15, 2); r = (r << 2) + pos; return r; } #define inv_opp_u_field(x, hi_bit, lo_bit) inv_u_field(x, 31-(lo_bit), 31-(hi_bit)) #define inv_opp_s_field(x, hi_bit, lo_bit) inv_s_field_ppc(x, 31-(lo_bit), 31-(hi_bit)) // Extract instruction fields from instruction words. public: static int inv_ra_field(int x) { return inv_opp_u_field(x, 15, 11); } static int inv_rb_field(int x) { return inv_opp_u_field(x, 20, 16); } static int inv_rt_field(int x) { return inv_opp_u_field(x, 10, 6); } static int inv_rta_field(int x) { return inv_opp_u_field(x, 15, 11); } static int inv_rs_field(int x) { return inv_opp_u_field(x, 10, 6); } // Ds uses opp_s_field(x, 31, 16), but lowest 2 bits must be 0. // Inv_ds_field uses range (x, 29, 16) but shifts by 2 to ensure that lowest bits are 0. static int inv_ds_field(int x) { return inv_opp_s_field(x, 29, 16) << 2; } static int inv_d1_field(int x) { return inv_opp_s_field(x, 31, 16); } static int inv_si_field(int x) { return inv_opp_s_field(x, 31, 16); } static int inv_to_field(int x) { return inv_opp_u_field(x, 10, 6); } static int inv_lk_field(int x) { return inv_opp_u_field(x, 31, 31); } static int inv_bo_field(int x) { return inv_opp_u_field(x, 10, 6); } static int inv_bi_field(int x) { return inv_opp_u_field(x, 15, 11); } #define opp_u_field(x, hi_bit, lo_bit) u_field(x, 31-(lo_bit), 31-(hi_bit)) #define opp_s_field(x, hi_bit, lo_bit) s_field(x, 31-(lo_bit), 31-(hi_bit)) // instruction fields static int aa( int x) { return opp_u_field(x, 30, 30); } static int ba( int x) { return opp_u_field(x, 15, 11); } static int bb( int x) { return opp_u_field(x, 20, 16); } static int bc( int x) { return opp_u_field(x, 25, 21); } static int bd( int x) { return opp_s_field(x, 29, 16); } static int bf( ConditionRegister cr) { return bf(cr->encoding()); } static int bf( int x) { return opp_u_field(x, 8, 6); } static int bfa(ConditionRegister cr) { return bfa(cr->encoding()); } static int bfa( int x) { return opp_u_field(x, 13, 11); } static int bh( int x) { return opp_u_field(x, 20, 19); } static int bi( int x) { return opp_u_field(x, 15, 11); } static int bi0(ConditionRegister cr, Condition c) { return (cr->encoding() << 2) | c; } static int bo( int x) { return opp_u_field(x, 10, 6); } static int bt( int x) { return opp_u_field(x, 10, 6); } static int d1( int x) { return opp_s_field(x, 31, 16); } static int ds( int x) { assert((x & 0x3) == 0, "unaligned offset"); return opp_s_field(x, 31, 16); } static int eh( int x) { return opp_u_field(x, 31, 31); } static int flm( int x) { return opp_u_field(x, 14, 7); } static int fra( FloatRegister r) { return fra(r->encoding());} static int frb( FloatRegister r) { return frb(r->encoding());} static int frc( FloatRegister r) { return frc(r->encoding());} static int frs( FloatRegister r) { return frs(r->encoding());} static int frt( FloatRegister r) { return frt(r->encoding());} static int fra( int x) { return opp_u_field(x, 15, 11); } static int frb( int x) { return opp_u_field(x, 20, 16); } static int frc( int x) { return opp_u_field(x, 25, 21); } static int frs( int x) { return opp_u_field(x, 10, 6); } static int frt( int x) { return opp_u_field(x, 10, 6); } static int fxm( int x) { return opp_u_field(x, 19, 12); } static int l10( int x) { return opp_u_field(x, 10, 10); } static int l15( int x) { return opp_u_field(x, 15, 15); } static int l910( int x) { return opp_u_field(x, 10, 9); } static int e1215( int x) { return opp_u_field(x, 15, 12); } static int lev( int x) { return opp_u_field(x, 26, 20); } static int li( int x) { return opp_s_field(x, 29, 6); } static int lk( int x) { return opp_u_field(x, 31, 31); } static int mb2125( int x) { return opp_u_field(x, 25, 21); } static int me2630( int x) { return opp_u_field(x, 30, 26); } static int mb2126( int x) { return opp_u_field(((x & 0x1f) << 1) | ((x & 0x20) >> 5), 26, 21); } static int me2126( int x) { return mb2126(x); } static int nb( int x) { return opp_u_field(x, 20, 16); } //static int opcd( int x) { return opp_u_field(x, 5, 0); } // is contained in our opcodes static int oe( int x) { return opp_u_field(x, 21, 21); } static int ra( Register r) { return ra(r->encoding()); } static int ra( int x) { return opp_u_field(x, 15, 11); } static int rb( Register r) { return rb(r->encoding()); } static int rb( int x) { return opp_u_field(x, 20, 16); } static int rc( int x) { return opp_u_field(x, 31, 31); } static int rs( Register r) { return rs(r->encoding()); } static int rs( int x) { return opp_u_field(x, 10, 6); } // we don't want to use R0 in memory accesses, because it has value `0' then static int ra0mem( Register r) { assert(r != R0, "cannot use register R0 in memory access"); return ra(r); } static int ra0mem( int x) { assert(x != 0, "cannot use register 0 in memory access"); return ra(x); } // register r is target static int rt( Register r) { return rs(r); } static int rt( int x) { return rs(x); } static int rta( Register r) { return ra(r); } static int rta0mem( Register r) { rta(r); return ra0mem(r); } static int sh1620( int x) { return opp_u_field(x, 20, 16); } static int sh30( int x) { return opp_u_field(x, 30, 30); } static int sh162030( int x) { return sh1620(x & 0x1f) | sh30((x & 0x20) >> 5); } static int si( int x) { return opp_s_field(x, 31, 16); } static int spr( int x) { return opp_u_field(x, 20, 11); } static int sr( int x) { return opp_u_field(x, 15, 12); } static int tbr( int x) { return opp_u_field(x, 20, 11); } static int th( int x) { return opp_u_field(x, 10, 7); } static int thct( int x) { assert((x&8) == 0, "must be valid cache specification"); return th(x); } static int thds( int x) { assert((x&8) == 8, "must be valid stream specification"); return th(x); } static int to( int x) { return opp_u_field(x, 10, 6); } static int u( int x) { return opp_u_field(x, 19, 16); } static int ui( int x) { return opp_u_field(x, 31, 16); } // Support vector instructions for >= Power6. static int vra( int x) { return opp_u_field(x, 15, 11); } static int vrb( int x) { return opp_u_field(x, 20, 16); } static int vrc( int x) { return opp_u_field(x, 25, 21); } static int vrs( int x) { return opp_u_field(x, 10, 6); } static int vrt( int x) { return opp_u_field(x, 10, 6); } static int vra( VectorRegister r) { return vra(r->encoding());} static int vrb( VectorRegister r) { return vrb(r->encoding());} static int vrc( VectorRegister r) { return vrc(r->encoding());} static int vrs( VectorRegister r) { return vrs(r->encoding());} static int vrt( VectorRegister r) { return vrt(r->encoding());} // Support Vector-Scalar (VSX) instructions. static int vsra( int x) { return opp_u_field(x, 15, 11); } static int vsrb( int x) { return opp_u_field(x, 20, 16); } static int vsrc( int x) { return opp_u_field(x, 25, 21); } static int vsrs( int x) { return opp_u_field(x, 10, 6); } static int vsrt( int x) { return opp_u_field(x, 10, 6); } static int vsra( VectorSRegister r) { return vsra(r->encoding());} static int vsrb( VectorSRegister r) { return vsrb(r->encoding());} static int vsrc( VectorSRegister r) { return vsrc(r->encoding());} static int vsrs( VectorSRegister r) { return vsrs(r->encoding());} static int vsrt( VectorSRegister r) { return vsrt(r->encoding());} static int vsplt_uim( int x) { return opp_u_field(x, 15, 12); } // for vsplt* instructions static int vsplti_sim(int x) { return opp_u_field(x, 15, 11); } // for vsplti* instructions static int vsldoi_shb(int x) { return opp_u_field(x, 25, 22); } // for vsldoi instruction static int vcmp_rc( int x) { return opp_u_field(x, 21, 21); } // for vcmp* instructions //static int xo1( int x) { return opp_u_field(x, 29, 21); }// is contained in our opcodes //static int xo2( int x) { return opp_u_field(x, 30, 21); }// is contained in our opcodes //static int xo3( int x) { return opp_u_field(x, 30, 22); }// is contained in our opcodes //static int xo4( int x) { return opp_u_field(x, 30, 26); }// is contained in our opcodes //static int xo5( int x) { return opp_u_field(x, 29, 27); }// is contained in our opcodes //static int xo6( int x) { return opp_u_field(x, 30, 27); }// is contained in our opcodes //static int xo7( int x) { return opp_u_field(x, 31, 30); }// is contained in our opcodes protected: // Compute relative address for branch. static intptr_t disp(intptr_t x, intptr_t off) { int xx = x - off; xx = xx >> 2; return xx; } public: // signed immediate, in low bits, nbits long static int simm(int x, int nbits) { assert_signed_range(x, nbits); return x & ((1 << nbits) - 1); } // unsigned immediate, in low bits, nbits long static int uimm(int x, int nbits) { assert_unsigned_const(x, nbits); return x & ((1 << nbits) - 1); } static void set_imm(int* instr, short s) { // imm is always in the lower 16 bits of the instruction, // so this is endian-neutral. Same for the get_imm below. uint32_t w = *(uint32_t *)instr; *instr = (int)((w & ~0x0000FFFF) | (s & 0x0000FFFF)); } static int get_imm(address a, int instruction_number) { return (short)((int *)a)[instruction_number]; } static inline int hi16_signed( int x) { return (int)(int16_t)(x >> 16); } static inline int lo16_unsigned(int x) { return x & 0xffff; } protected: // Extract the top 32 bits in a 64 bit word. static int32_t hi32(int64_t x) { int32_t r = int32_t((uint64_t)x >> 32); return r; } public: static inline unsigned int align_addr(unsigned int addr, unsigned int a) { return ((addr + (a - 1)) & ~(a - 1)); } static inline bool is_aligned(unsigned int addr, unsigned int a) { return (0 == addr % a); } void flush() { AbstractAssembler::flush(); } inline void emit_int32(int); // shadows AbstractAssembler::emit_int32 inline void emit_data(int); inline void emit_data(int, RelocationHolder const&); inline void emit_data(int, relocInfo::relocType rtype); // Emit an address. inline address emit_addr(const address addr = NULL); #if !defined(ABI_ELFv2) // Emit a function descriptor with the specified entry point, TOC, // and ENV. If the entry point is NULL, the descriptor will point // just past the descriptor. // Use values from friend functions as defaults. inline address emit_fd(address entry = NULL, address toc = (address) FunctionDescriptor::friend_toc, address env = (address) FunctionDescriptor::friend_env); #endif ///////////////////////////////////////////////////////////////////////////////////// // PPC instructions ///////////////////////////////////////////////////////////////////////////////////// // Memory instructions use r0 as hard coded 0, e.g. to simulate loading // immediates. The normal instruction encoders enforce that r0 is not // passed to them. Use either extended mnemonics encoders or the special ra0 // versions. // Issue an illegal instruction. inline void illtrap(); static inline bool is_illtrap(int x); // PPC 1, section 3.3.8, Fixed-Point Arithmetic Instructions inline void addi( Register d, Register a, int si16); inline void addis(Register d, Register a, int si16); private: inline void addi_r0ok( Register d, Register a, int si16); inline void addis_r0ok(Register d, Register a, int si16); public: inline void addic_( Register d, Register a, int si16); inline void subfic( Register d, Register a, int si16); inline void add( Register d, Register a, Register b); inline void add_( Register d, Register a, Register b); inline void subf( Register d, Register a, Register b); // d = b - a "Sub_from", as in ppc spec. inline void sub( Register d, Register a, Register b); // d = a - b Swap operands of subf for readability. inline void subf_( Register d, Register a, Register b); inline void addc( Register d, Register a, Register b); inline void addc_( Register d, Register a, Register b); inline void subfc( Register d, Register a, Register b); inline void subfc_( Register d, Register a, Register b); inline void adde( Register d, Register a, Register b); inline void adde_( Register d, Register a, Register b); inline void subfe( Register d, Register a, Register b); inline void subfe_( Register d, Register a, Register b); inline void neg( Register d, Register a); inline void neg_( Register d, Register a); inline void mulli( Register d, Register a, int si16); inline void mulld( Register d, Register a, Register b); inline void mulld_( Register d, Register a, Register b); inline void mullw( Register d, Register a, Register b); inline void mullw_( Register d, Register a, Register b); inline void mulhw( Register d, Register a, Register b); inline void mulhw_( Register d, Register a, Register b); inline void mulhwu( Register d, Register a, Register b); inline void mulhwu_(Register d, Register a, Register b); inline void mulhd( Register d, Register a, Register b); inline void mulhd_( Register d, Register a, Register b); inline void mulhdu( Register d, Register a, Register b); inline void mulhdu_(Register d, Register a, Register b); inline void divd( Register d, Register a, Register b); inline void divd_( Register d, Register a, Register b); inline void divw( Register d, Register a, Register b); inline void divw_( Register d, Register a, Register b); // extended mnemonics inline void li( Register d, int si16); inline void lis( Register d, int si16); inline void addir(Register d, int si16, Register a); static bool is_addi(int x) { return ADDI_OPCODE == (x & ADDI_OPCODE_MASK); } static bool is_addis(int x) { return ADDIS_OPCODE == (x & ADDIS_OPCODE_MASK); } static bool is_bxx(int x) { return BXX_OPCODE == (x & BXX_OPCODE_MASK); } static bool is_b(int x) { return BXX_OPCODE == (x & BXX_OPCODE_MASK) && inv_lk_field(x) == 0; } static bool is_bl(int x) { return BXX_OPCODE == (x & BXX_OPCODE_MASK) && inv_lk_field(x) == 1; } static bool is_bcxx(int x) { return BCXX_OPCODE == (x & BCXX_OPCODE_MASK); } static bool is_bxx_or_bcxx(int x) { return is_bxx(x) || is_bcxx(x); } static bool is_bctrl(int x) { return x == 0x4e800421; } static bool is_bctr(int x) { return x == 0x4e800420; } static bool is_bclr(int x) { return BCLR_OPCODE == (x & XL_FORM_OPCODE_MASK); } static bool is_li(int x) { return is_addi(x) && inv_ra_field(x)==0; } static bool is_lis(int x) { return is_addis(x) && inv_ra_field(x)==0; } static bool is_mtctr(int x) { return MTCTR_OPCODE == (x & MTCTR_OPCODE_MASK); } static bool is_ld(int x) { return LD_OPCODE == (x & LD_OPCODE_MASK); } static bool is_std(int x) { return STD_OPCODE == (x & STD_OPCODE_MASK); } static bool is_stdu(int x) { return STDU_OPCODE == (x & STDU_OPCODE_MASK); } static bool is_stdx(int x) { return STDX_OPCODE == (x & STDX_OPCODE_MASK); } static bool is_stdux(int x) { return STDUX_OPCODE == (x & STDUX_OPCODE_MASK); } static bool is_stwx(int x) { return STWX_OPCODE == (x & STWX_OPCODE_MASK); } static bool is_stwux(int x) { return STWUX_OPCODE == (x & STWUX_OPCODE_MASK); } static bool is_stw(int x) { return STW_OPCODE == (x & STW_OPCODE_MASK); } static bool is_stwu(int x) { return STWU_OPCODE == (x & STWU_OPCODE_MASK); } static bool is_ori(int x) { return ORI_OPCODE == (x & ORI_OPCODE_MASK); }; static bool is_oris(int x) { return ORIS_OPCODE == (x & ORIS_OPCODE_MASK); }; static bool is_rldicr(int x) { return (RLDICR_OPCODE == (x & RLDICR_OPCODE_MASK)); }; static bool is_nop(int x) { return x == 0x60000000; } // endgroup opcode for Power6 static bool is_endgroup(int x) { return is_ori(x) && inv_ra_field(x) == 1 && inv_rs_field(x) == 1 && inv_d1_field(x) == 0; } private: // PPC 1, section 3.3.9, Fixed-Point Compare Instructions inline void cmpi( ConditionRegister bf, int l, Register a, int si16); inline void cmp( ConditionRegister bf, int l, Register a, Register b); inline void cmpli(ConditionRegister bf, int l, Register a, int ui16); inline void cmpl( ConditionRegister bf, int l, Register a, Register b); public: // extended mnemonics of Compare Instructions inline void cmpwi( ConditionRegister crx, Register a, int si16); inline void cmpdi( ConditionRegister crx, Register a, int si16); inline void cmpw( ConditionRegister crx, Register a, Register b); inline void cmpd( ConditionRegister crx, Register a, Register b); inline void cmplwi(ConditionRegister crx, Register a, int ui16); inline void cmpldi(ConditionRegister crx, Register a, int ui16); inline void cmplw( ConditionRegister crx, Register a, Register b); inline void cmpld( ConditionRegister crx, Register a, Register b); inline void isel( Register d, Register a, Register b, int bc); // Convenient version which takes: Condition register, Condition code and invert flag. Omit b to keep old value. inline void isel( Register d, ConditionRegister cr, Condition cc, bool inv, Register a, Register b = noreg); // Set d = 0 if (cr.cc) equals 1, otherwise b. inline void isel_0( Register d, ConditionRegister cr, Condition cc, Register b = noreg); // PPC 1, section 3.3.11, Fixed-Point Logical Instructions void andi( Register a, Register s, int ui16); // optimized version inline void andi_( Register a, Register s, int ui16); inline void andis_( Register a, Register s, int ui16); inline void ori( Register a, Register s, int ui16); inline void oris( Register a, Register s, int ui16); inline void xori( Register a, Register s, int ui16); inline void xoris( Register a, Register s, int ui16); inline void andr( Register a, Register s, Register b); // suffixed by 'r' as 'and' is C++ keyword inline void and_( Register a, Register s, Register b); // Turn or0(rx,rx,rx) into a nop and avoid that we accidently emit a // SMT-priority change instruction (see SMT instructions below). inline void or_unchecked(Register a, Register s, Register b); inline void orr( Register a, Register s, Register b); // suffixed by 'r' as 'or' is C++ keyword inline void or_( Register a, Register s, Register b); inline void xorr( Register a, Register s, Register b); // suffixed by 'r' as 'xor' is C++ keyword inline void xor_( Register a, Register s, Register b); inline void nand( Register a, Register s, Register b); inline void nand_( Register a, Register s, Register b); inline void nor( Register a, Register s, Register b); inline void nor_( Register a, Register s, Register b); inline void andc( Register a, Register s, Register b); inline void andc_( Register a, Register s, Register b); inline void orc( Register a, Register s, Register b); inline void orc_( Register a, Register s, Register b); inline void extsb( Register a, Register s); inline void extsh( Register a, Register s); inline void extsw( Register a, Register s); // extended mnemonics inline void nop(); // NOP for FP and BR units (different versions to allow them to be in one group) inline void fpnop0(); inline void fpnop1(); inline void brnop0(); inline void brnop1(); inline void brnop2(); inline void mr( Register d, Register s); inline void ori_opt( Register d, int ui16); inline void oris_opt(Register d, int ui16); // endgroup opcode for Power6 inline void endgroup(); // count instructions inline void cntlzw( Register a, Register s); inline void cntlzw_( Register a, Register s); inline void cntlzd( Register a, Register s); inline void cntlzd_( Register a, Register s); // PPC 1, section 3.3.12, Fixed-Point Rotate and Shift Instructions inline void sld( Register a, Register s, Register b); inline void sld_( Register a, Register s, Register b); inline void slw( Register a, Register s, Register b); inline void slw_( Register a, Register s, Register b); inline void srd( Register a, Register s, Register b); inline void srd_( Register a, Register s, Register b); inline void srw( Register a, Register s, Register b); inline void srw_( Register a, Register s, Register b); inline void srad( Register a, Register s, Register b); inline void srad_( Register a, Register s, Register b); inline void sraw( Register a, Register s, Register b); inline void sraw_( Register a, Register s, Register b); inline void sradi( Register a, Register s, int sh6); inline void sradi_( Register a, Register s, int sh6); inline void srawi( Register a, Register s, int sh5); inline void srawi_( Register a, Register s, int sh5); // extended mnemonics for Shift Instructions inline void sldi( Register a, Register s, int sh6); inline void sldi_( Register a, Register s, int sh6); inline void slwi( Register a, Register s, int sh5); inline void slwi_( Register a, Register s, int sh5); inline void srdi( Register a, Register s, int sh6); inline void srdi_( Register a, Register s, int sh6); inline void srwi( Register a, Register s, int sh5); inline void srwi_( Register a, Register s, int sh5); inline void clrrdi( Register a, Register s, int ui6); inline void clrrdi_( Register a, Register s, int ui6); inline void clrldi( Register a, Register s, int ui6); inline void clrldi_( Register a, Register s, int ui6); inline void clrlsldi(Register a, Register s, int clrl6, int shl6); inline void clrlsldi_(Register a, Register s, int clrl6, int shl6); inline void extrdi( Register a, Register s, int n, int b); // testbit with condition register inline void testbitdi(ConditionRegister cr, Register a, Register s, int ui6); // rotate instructions inline void rotldi( Register a, Register s, int n); inline void rotrdi( Register a, Register s, int n); inline void rotlwi( Register a, Register s, int n); inline void rotrwi( Register a, Register s, int n); // Rotate Instructions inline void rldic( Register a, Register s, int sh6, int mb6); inline void rldic_( Register a, Register s, int sh6, int mb6); inline void rldicr( Register a, Register s, int sh6, int mb6); inline void rldicr_( Register a, Register s, int sh6, int mb6); inline void rldicl( Register a, Register s, int sh6, int mb6); inline void rldicl_( Register a, Register s, int sh6, int mb6); inline void rlwinm( Register a, Register s, int sh5, int mb5, int me5); inline void rlwinm_( Register a, Register s, int sh5, int mb5, int me5); inline void rldimi( Register a, Register s, int sh6, int mb6); inline void rldimi_( Register a, Register s, int sh6, int mb6); inline void rlwimi( Register a, Register s, int sh5, int mb5, int me5); inline void insrdi( Register a, Register s, int n, int b); inline void insrwi( Register a, Register s, int n, int b); // PPC 1, section 3.3.2 Fixed-Point Load Instructions // 4 bytes inline void lwzx( Register d, Register s1, Register s2); inline void lwz( Register d, int si16, Register s1); inline void lwzu( Register d, int si16, Register s1); // 4 bytes inline void lwax( Register d, Register s1, Register s2); inline void lwa( Register d, int si16, Register s1); // 4 bytes reversed inline void lwbrx( Register d, Register s1, Register s2); // 2 bytes inline void lhzx( Register d, Register s1, Register s2); inline void lhz( Register d, int si16, Register s1); inline void lhzu( Register d, int si16, Register s1); // 2 bytes reversed inline void lhbrx( Register d, Register s1, Register s2); // 2 bytes inline void lhax( Register d, Register s1, Register s2); inline void lha( Register d, int si16, Register s1); inline void lhau( Register d, int si16, Register s1); // 1 byte inline void lbzx( Register d, Register s1, Register s2); inline void lbz( Register d, int si16, Register s1); inline void lbzu( Register d, int si16, Register s1); // 8 bytes inline void ldx( Register d, Register s1, Register s2); inline void ld( Register d, int si16, Register s1); inline void ldu( Register d, int si16, Register s1); // PPC 1, section 3.3.3 Fixed-Point Store Instructions inline void stwx( Register d, Register s1, Register s2); inline void stw( Register d, int si16, Register s1); inline void stwu( Register d, int si16, Register s1); inline void sthx( Register d, Register s1, Register s2); inline void sth( Register d, int si16, Register s1); inline void sthu( Register d, int si16, Register s1); inline void stbx( Register d, Register s1, Register s2); inline void stb( Register d, int si16, Register s1); inline void stbu( Register d, int si16, Register s1); inline void stdx( Register d, Register s1, Register s2); inline void std( Register d, int si16, Register s1); inline void stdu( Register d, int si16, Register s1); inline void stdux(Register s, Register a, Register b); // PPC 1, section 3.3.13 Move To/From System Register Instructions inline void mtlr( Register s1); inline void mflr( Register d); inline void mtctr(Register s1); inline void mfctr(Register d); inline void mtcrf(int fxm, Register s); inline void mfcr( Register d); inline void mcrf( ConditionRegister crd, ConditionRegister cra); inline void mtcr( Register s); // Special purpose registers // Exception Register inline void mtxer(Register s1); inline void mfxer(Register d); // Vector Register Save Register inline void mtvrsave(Register s1); inline void mfvrsave(Register d); // Timebase inline void mftb(Register d); // Introduced with Power 8: // Data Stream Control Register inline void mtdscr(Register s1); inline void mfdscr(Register d ); // Transactional Memory Registers inline void mftfhar(Register d); inline void mftfiar(Register d); inline void mftexasr(Register d); inline void mftexasru(Register d); // PPC 1, section 2.4.1 Branch Instructions inline void b( address a, relocInfo::relocType rt = relocInfo::none); inline void b( Label& L); inline void bl( address a, relocInfo::relocType rt = relocInfo::none); inline void bl( Label& L); inline void bc( int boint, int biint, address a, relocInfo::relocType rt = relocInfo::none); inline void bc( int boint, int biint, Label& L); inline void bcl(int boint, int biint, address a, relocInfo::relocType rt = relocInfo::none); inline void bcl(int boint, int biint, Label& L); inline void bclr( int boint, int biint, int bhint, relocInfo::relocType rt = relocInfo::none); inline void bclrl( int boint, int biint, int bhint, relocInfo::relocType rt = relocInfo::none); inline void bcctr( int boint, int biint, int bhint = bhintbhBCCTRisNotReturnButSame, relocInfo::relocType rt = relocInfo::none); inline void bcctrl(int boint, int biint, int bhint = bhintbhBCLRisReturn, relocInfo::relocType rt = relocInfo::none); // helper function for b, bcxx inline bool is_within_range_of_b(address a, address pc); inline bool is_within_range_of_bcxx(address a, address pc); // get the destination of a bxx branch (b, bl, ba, bla) static inline address bxx_destination(address baddr); static inline address bxx_destination(int instr, address pc); static inline intptr_t bxx_destination_offset(int instr, intptr_t bxx_pos); // extended mnemonics for branch instructions inline void blt(ConditionRegister crx, Label& L); inline void bgt(ConditionRegister crx, Label& L); inline void beq(ConditionRegister crx, Label& L); inline void bso(ConditionRegister crx, Label& L); inline void bge(ConditionRegister crx, Label& L); inline void ble(ConditionRegister crx, Label& L); inline void bne(ConditionRegister crx, Label& L); inline void bns(ConditionRegister crx, Label& L); // Branch instructions with static prediction hints. inline void blt_predict_taken( ConditionRegister crx, Label& L); inline void bgt_predict_taken( ConditionRegister crx, Label& L); inline void beq_predict_taken( ConditionRegister crx, Label& L); inline void bso_predict_taken( ConditionRegister crx, Label& L); inline void bge_predict_taken( ConditionRegister crx, Label& L); inline void ble_predict_taken( ConditionRegister crx, Label& L); inline void bne_predict_taken( ConditionRegister crx, Label& L); inline void bns_predict_taken( ConditionRegister crx, Label& L); inline void blt_predict_not_taken(ConditionRegister crx, Label& L); inline void bgt_predict_not_taken(ConditionRegister crx, Label& L); inline void beq_predict_not_taken(ConditionRegister crx, Label& L); inline void bso_predict_not_taken(ConditionRegister crx, Label& L); inline void bge_predict_not_taken(ConditionRegister crx, Label& L); inline void ble_predict_not_taken(ConditionRegister crx, Label& L); inline void bne_predict_not_taken(ConditionRegister crx, Label& L); inline void bns_predict_not_taken(ConditionRegister crx, Label& L); // for use in conjunction with testbitdi: inline void btrue( ConditionRegister crx, Label& L); inline void bfalse(ConditionRegister crx, Label& L); inline void bltl(ConditionRegister crx, Label& L); inline void bgtl(ConditionRegister crx, Label& L); inline void beql(ConditionRegister crx, Label& L); inline void bsol(ConditionRegister crx, Label& L); inline void bgel(ConditionRegister crx, Label& L); inline void blel(ConditionRegister crx, Label& L); inline void bnel(ConditionRegister crx, Label& L); inline void bnsl(ConditionRegister crx, Label& L); // extended mnemonics for Branch Instructions via LR // We use `blr' for returns. inline void blr(relocInfo::relocType rt = relocInfo::none); // extended mnemonics for Branch Instructions with CTR // bdnz means `decrement CTR and jump to L if CTR is not zero' inline void bdnz(Label& L); // Decrement and branch if result is zero. inline void bdz(Label& L); // we use `bctr[l]' for jumps/calls in function descriptor glue // code, e.g. calls to runtime functions inline void bctr( relocInfo::relocType rt = relocInfo::none); inline void bctrl(relocInfo::relocType rt = relocInfo::none); // conditional jumps/branches via CTR inline void beqctr( ConditionRegister crx, relocInfo::relocType rt = relocInfo::none); inline void beqctrl(ConditionRegister crx, relocInfo::relocType rt = relocInfo::none); inline void bnectr( ConditionRegister crx, relocInfo::relocType rt = relocInfo::none); inline void bnectrl(ConditionRegister crx, relocInfo::relocType rt = relocInfo::none); // condition register logic instructions inline void crand( int d, int s1, int s2); inline void crnand(int d, int s1, int s2); inline void cror( int d, int s1, int s2); inline void crxor( int d, int s1, int s2); inline void crnor( int d, int s1, int s2); inline void creqv( int d, int s1, int s2); inline void crandc(int d, int s1, int s2); inline void crorc( int d, int s1, int s2); // icache and dcache related instructions inline void icbi( Register s1, Register s2); //inline void dcba(Register s1, Register s2); // Instruction for embedded processor only. inline void dcbz( Register s1, Register s2); inline void dcbst( Register s1, Register s2); inline void dcbf( Register s1, Register s2); enum ct_cache_specification { ct_primary_cache = 0, ct_secondary_cache = 2 }; // dcache read hint inline void dcbt( Register s1, Register s2); inline void dcbtct( Register s1, Register s2, int ct); inline void dcbtds( Register s1, Register s2, int ds); // dcache write hint inline void dcbtst( Register s1, Register s2); inline void dcbtstct(Register s1, Register s2, int ct); // machine barrier instructions: // // - sync two-way memory barrier, aka fence // - lwsync orders Store|Store, // Load|Store, // Load|Load, // but not Store|Load // - eieio orders memory accesses for device memory (only) // - isync invalidates speculatively executed instructions // From the Power ISA 2.06 documentation: // "[...] an isync instruction prevents the execution of // instructions following the isync until instructions // preceding the isync have completed, [...]" // From IBM's AIX assembler reference: // "The isync [...] instructions causes the processor to // refetch any instructions that might have been fetched // prior to the isync instruction. The instruction isync // causes the processor to wait for all previous instructions // to complete. Then any instructions already fetched are // discarded and instruction processing continues in the // environment established by the previous instructions." // // semantic barrier instructions: // (as defined in orderAccess.hpp) // // - release orders Store|Store, (maps to lwsync) // Load|Store // - acquire orders Load|Store, (maps to lwsync) // Load|Load // - fence orders Store|Store, (maps to sync) // Load|Store, // Load|Load, // Store|Load // private: inline void sync(int l); public: inline void sync(); inline void lwsync(); inline void ptesync(); inline void eieio(); inline void isync(); inline void elemental_membar(int e); // Elemental Memory Barriers (>=Power 8) // atomics inline void lwarx_unchecked(Register d, Register a, Register b, int eh1 = 0); inline void ldarx_unchecked(Register d, Register a, Register b, int eh1 = 0); inline void lqarx_unchecked(Register d, Register a, Register b, int eh1 = 0); inline bool lxarx_hint_exclusive_access(); inline void lwarx( Register d, Register a, Register b, bool hint_exclusive_access = false); inline void ldarx( Register d, Register a, Register b, bool hint_exclusive_access = false); inline void lqarx( Register d, Register a, Register b, bool hint_exclusive_access = false); inline void stwcx_( Register s, Register a, Register b); inline void stdcx_( Register s, Register a, Register b); inline void stqcx_( Register s, Register a, Register b); // Instructions for adjusting thread priority for simultaneous // multithreading (SMT) on Power5. private: inline void smt_prio_very_low(); inline void smt_prio_medium_high(); inline void smt_prio_high(); public: inline void smt_prio_low(); inline void smt_prio_medium_low(); inline void smt_prio_medium(); // trap instructions inline void twi_0(Register a); // for load with acquire semantics use load+twi_0+isync (trap can't occur) // NOT FOR DIRECT USE!! protected: inline void tdi_unchecked(int tobits, Register a, int si16); inline void twi_unchecked(int tobits, Register a, int si16); inline void tdi( int tobits, Register a, int si16); // asserts UseSIGTRAP inline void twi( int tobits, Register a, int si16); // asserts UseSIGTRAP inline void td( int tobits, Register a, Register b); // asserts UseSIGTRAP inline void tw( int tobits, Register a, Register b); // asserts UseSIGTRAP static bool is_tdi(int x, int tobits, int ra, int si16) { return (TDI_OPCODE == (x & TDI_OPCODE_MASK)) && (tobits == inv_to_field(x)) && (ra == -1/*any reg*/ || ra == inv_ra_field(x)) && (si16 == inv_si_field(x)); } static bool is_twi(int x, int tobits, int ra, int si16) { return (TWI_OPCODE == (x & TWI_OPCODE_MASK)) && (tobits == inv_to_field(x)) && (ra == -1/*any reg*/ || ra == inv_ra_field(x)) && (si16 == inv_si_field(x)); } static bool is_twi(int x, int tobits, int ra) { return (TWI_OPCODE == (x & TWI_OPCODE_MASK)) && (tobits == inv_to_field(x)) && (ra == -1/*any reg*/ || ra == inv_ra_field(x)); } static bool is_td(int x, int tobits, int ra, int rb) { return (TD_OPCODE == (x & TD_OPCODE_MASK)) && (tobits == inv_to_field(x)) && (ra == -1/*any reg*/ || ra == inv_ra_field(x)) && (rb == -1/*any reg*/ || rb == inv_rb_field(x)); } static bool is_tw(int x, int tobits, int ra, int rb) { return (TW_OPCODE == (x & TW_OPCODE_MASK)) && (tobits == inv_to_field(x)) && (ra == -1/*any reg*/ || ra == inv_ra_field(x)) && (rb == -1/*any reg*/ || rb == inv_rb_field(x)); } public: // PPC floating point instructions // PPC 1, section 4.6.2 Floating-Point Load Instructions inline void lfs( FloatRegister d, int si16, Register a); inline void lfsu( FloatRegister d, int si16, Register a); inline void lfsx( FloatRegister d, Register a, Register b); inline void lfd( FloatRegister d, int si16, Register a); inline void lfdu( FloatRegister d, int si16, Register a); inline void lfdx( FloatRegister d, Register a, Register b); // PPC 1, section 4.6.3 Floating-Point Store Instructions inline void stfs( FloatRegister s, int si16, Register a); inline void stfsu( FloatRegister s, int si16, Register a); inline void stfsx( FloatRegister s, Register a, Register b); inline void stfd( FloatRegister s, int si16, Register a); inline void stfdu( FloatRegister s, int si16, Register a); inline void stfdx( FloatRegister s, Register a, Register b); // PPC 1, section 4.6.4 Floating-Point Move Instructions inline void fmr( FloatRegister d, FloatRegister b); inline void fmr_( FloatRegister d, FloatRegister b); // inline void mffgpr( FloatRegister d, Register b); // inline void mftgpr( Register d, FloatRegister b); inline void cmpb( Register a, Register s, Register b); inline void popcntb(Register a, Register s); inline void popcntw(Register a, Register s); inline void popcntd(Register a, Register s); inline void fneg( FloatRegister d, FloatRegister b); inline void fneg_( FloatRegister d, FloatRegister b); inline void fabs( FloatRegister d, FloatRegister b); inline void fabs_( FloatRegister d, FloatRegister b); inline void fnabs( FloatRegister d, FloatRegister b); inline void fnabs_(FloatRegister d, FloatRegister b); // PPC 1, section 4.6.5.1 Floating-Point Elementary Arithmetic Instructions inline void fadd( FloatRegister d, FloatRegister a, FloatRegister b); inline void fadd_( FloatRegister d, FloatRegister a, FloatRegister b); inline void fadds( FloatRegister d, FloatRegister a, FloatRegister b); inline void fadds_(FloatRegister d, FloatRegister a, FloatRegister b); inline void fsub( FloatRegister d, FloatRegister a, FloatRegister b); inline void fsub_( FloatRegister d, FloatRegister a, FloatRegister b); inline void fsubs( FloatRegister d, FloatRegister a, FloatRegister b); inline void fsubs_(FloatRegister d, FloatRegister a, FloatRegister b); inline void fmul( FloatRegister d, FloatRegister a, FloatRegister c); inline void fmul_( FloatRegister d, FloatRegister a, FloatRegister c); inline void fmuls( FloatRegister d, FloatRegister a, FloatRegister c); inline void fmuls_(FloatRegister d, FloatRegister a, FloatRegister c); inline void fdiv( FloatRegister d, FloatRegister a, FloatRegister b); inline void fdiv_( FloatRegister d, FloatRegister a, FloatRegister b); inline void fdivs( FloatRegister d, FloatRegister a, FloatRegister b); inline void fdivs_(FloatRegister d, FloatRegister a, FloatRegister b); // PPC 1, section 4.6.6 Floating-Point Rounding and Conversion Instructions inline void frsp( FloatRegister d, FloatRegister b); inline void fctid( FloatRegister d, FloatRegister b); inline void fctidz(FloatRegister d, FloatRegister b); inline void fctiw( FloatRegister d, FloatRegister b); inline void fctiwz(FloatRegister d, FloatRegister b); inline void fcfid( FloatRegister d, FloatRegister b); inline void fcfids(FloatRegister d, FloatRegister b); // PPC 1, section 4.6.7 Floating-Point Compare Instructions inline void fcmpu( ConditionRegister crx, FloatRegister a, FloatRegister b); inline void fsqrt( FloatRegister d, FloatRegister b); inline void fsqrts(FloatRegister d, FloatRegister b); // Vector instructions for >= Power6. inline void lvebx( VectorRegister d, Register s1, Register s2); inline void lvehx( VectorRegister d, Register s1, Register s2); inline void lvewx( VectorRegister d, Register s1, Register s2); inline void lvx( VectorRegister d, Register s1, Register s2); inline void lvxl( VectorRegister d, Register s1, Register s2); inline void stvebx( VectorRegister d, Register s1, Register s2); inline void stvehx( VectorRegister d, Register s1, Register s2); inline void stvewx( VectorRegister d, Register s1, Register s2); inline void stvx( VectorRegister d, Register s1, Register s2); inline void stvxl( VectorRegister d, Register s1, Register s2); inline void lvsl( VectorRegister d, Register s1, Register s2); inline void lvsr( VectorRegister d, Register s1, Register s2); inline void vpkpx( VectorRegister d, VectorRegister a, VectorRegister b); inline void vpkshss( VectorRegister d, VectorRegister a, VectorRegister b); inline void vpkswss( VectorRegister d, VectorRegister a, VectorRegister b); inline void vpkshus( VectorRegister d, VectorRegister a, VectorRegister b); inline void vpkswus( VectorRegister d, VectorRegister a, VectorRegister b); inline void vpkuhum( VectorRegister d, VectorRegister a, VectorRegister b); inline void vpkuwum( VectorRegister d, VectorRegister a, VectorRegister b); inline void vpkuhus( VectorRegister d, VectorRegister a, VectorRegister b); inline void vpkuwus( VectorRegister d, VectorRegister a, VectorRegister b); inline void vupkhpx( VectorRegister d, VectorRegister b); inline void vupkhsb( VectorRegister d, VectorRegister b); inline void vupkhsh( VectorRegister d, VectorRegister b); inline void vupklpx( VectorRegister d, VectorRegister b); inline void vupklsb( VectorRegister d, VectorRegister b); inline void vupklsh( VectorRegister d, VectorRegister b); inline void vmrghb( VectorRegister d, VectorRegister a, VectorRegister b); inline void vmrghw( VectorRegister d, VectorRegister a, VectorRegister b); inline void vmrghh( VectorRegister d, VectorRegister a, VectorRegister b); inline void vmrglb( VectorRegister d, VectorRegister a, VectorRegister b); inline void vmrglw( VectorRegister d, VectorRegister a, VectorRegister b); inline void vmrglh( VectorRegister d, VectorRegister a, VectorRegister b); inline void vsplt( VectorRegister d, int ui4, VectorRegister b); inline void vsplth( VectorRegister d, int ui3, VectorRegister b); inline void vspltw( VectorRegister d, int ui2, VectorRegister b); inline void vspltisb( VectorRegister d, int si5); inline void vspltish( VectorRegister d, int si5); inline void vspltisw( VectorRegister d, int si5); inline void vperm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c); inline void vsel( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c); inline void vsl( VectorRegister d, VectorRegister a, VectorRegister b); inline void vsldoi( VectorRegister d, VectorRegister a, VectorRegister b, int ui4); inline void vslo( VectorRegister d, VectorRegister a, VectorRegister b); inline void vsr( VectorRegister d, VectorRegister a, VectorRegister b); inline void vsro( VectorRegister d, VectorRegister a, VectorRegister b); inline void vaddcuw( VectorRegister d, VectorRegister a, VectorRegister b); inline void vaddshs( VectorRegister d, VectorRegister a, VectorRegister b); inline void vaddsbs( VectorRegister d, VectorRegister a, VectorRegister b); inline void vaddsws( VectorRegister d, VectorRegister a, VectorRegister b); inline void vaddubm( VectorRegister d, VectorRegister a, VectorRegister b); inline void vadduwm( VectorRegister d, VectorRegister a, VectorRegister b); inline void vadduhm( VectorRegister d, VectorRegister a, VectorRegister b); inline void vaddubs( VectorRegister d, VectorRegister a, VectorRegister b); inline void vadduws( VectorRegister d, VectorRegister a, VectorRegister b); inline void vadduhs( VectorRegister d, VectorRegister a, VectorRegister b); inline void vsubcuw( VectorRegister d, VectorRegister a, VectorRegister b); inline void vsubshs( VectorRegister d, VectorRegister a, VectorRegister b); inline void vsubsbs( VectorRegister d, VectorRegister a, VectorRegister b); inline void vsubsws( VectorRegister d, VectorRegister a, VectorRegister b); inline void vsububm( VectorRegister d, VectorRegister a, VectorRegister b); inline void vsubuwm( VectorRegister d, VectorRegister a, VectorRegister b); inline void vsubuhm( VectorRegister d, VectorRegister a, VectorRegister b); inline void vsububs( VectorRegister d, VectorRegister a, VectorRegister b); inline void vsubuws( VectorRegister d, VectorRegister a, VectorRegister b); inline void vsubuhs( VectorRegister d, VectorRegister a, VectorRegister b); inline void vmulesb( VectorRegister d, VectorRegister a, VectorRegister b); inline void vmuleub( VectorRegister d, VectorRegister a, VectorRegister b); inline void vmulesh( VectorRegister d, VectorRegister a, VectorRegister b); inline void vmuleuh( VectorRegister d, VectorRegister a, VectorRegister b); inline void vmulosb( VectorRegister d, VectorRegister a, VectorRegister b); inline void vmuloub( VectorRegister d, VectorRegister a, VectorRegister b); inline void vmulosh( VectorRegister d, VectorRegister a, VectorRegister b); inline void vmulouh( VectorRegister d, VectorRegister a, VectorRegister b); inline void vmhaddshs(VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c); inline void vmhraddshs(VectorRegister d,VectorRegister a, VectorRegister b, VectorRegister c); inline void vmladduhm(VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c); inline void vmsubuhm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c); inline void vmsummbm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c); inline void vmsumshm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c); inline void vmsumshs( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c); inline void vmsumuhm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c); inline void vmsumuhs( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c); inline void vsumsws( VectorRegister d, VectorRegister a, VectorRegister b); inline void vsum2sws( VectorRegister d, VectorRegister a, VectorRegister b); inline void vsum4sbs( VectorRegister d, VectorRegister a, VectorRegister b); inline void vsum4ubs( VectorRegister d, VectorRegister a, VectorRegister b); inline void vsum4shs( VectorRegister d, VectorRegister a, VectorRegister b); inline void vavgsb( VectorRegister d, VectorRegister a, VectorRegister b); inline void vavgsw( VectorRegister d, VectorRegister a, VectorRegister b); inline void vavgsh( VectorRegister d, VectorRegister a, VectorRegister b); inline void vavgub( VectorRegister d, VectorRegister a, VectorRegister b); inline void vavguw( VectorRegister d, VectorRegister a, VectorRegister b); inline void vavguh( VectorRegister d, VectorRegister a, VectorRegister b); inline void vmaxsb( VectorRegister d, VectorRegister a, VectorRegister b); inline void vmaxsw( VectorRegister d, VectorRegister a, VectorRegister b); inline void vmaxsh( VectorRegister d, VectorRegister a, VectorRegister b); inline void vmaxub( VectorRegister d, VectorRegister a, VectorRegister b); inline void vmaxuw( VectorRegister d, VectorRegister a, VectorRegister b); inline void vmaxuh( VectorRegister d, VectorRegister a, VectorRegister b); inline void vminsb( VectorRegister d, VectorRegister a, VectorRegister b); inline void vminsw( VectorRegister d, VectorRegister a, VectorRegister b); inline void vminsh( VectorRegister d, VectorRegister a, VectorRegister b); inline void vminub( VectorRegister d, VectorRegister a, VectorRegister b); inline void vminuw( VectorRegister d, VectorRegister a, VectorRegister b); inline void vminuh( VectorRegister d, VectorRegister a, VectorRegister b); inline void vcmpequb( VectorRegister d, VectorRegister a, VectorRegister b); inline void vcmpequh( VectorRegister d, VectorRegister a, VectorRegister b); inline void vcmpequw( VectorRegister d, VectorRegister a, VectorRegister b); inline void vcmpgtsh( VectorRegister d, VectorRegister a, VectorRegister b); inline void vcmpgtsb( VectorRegister d, VectorRegister a, VectorRegister b); inline void vcmpgtsw( VectorRegister d, VectorRegister a, VectorRegister b); inline void vcmpgtub( VectorRegister d, VectorRegister a, VectorRegister b); inline void vcmpgtuh( VectorRegister d, VectorRegister a, VectorRegister b); inline void vcmpgtuw( VectorRegister d, VectorRegister a, VectorRegister b); inline void vcmpequb_(VectorRegister d, VectorRegister a, VectorRegister b); inline void vcmpequh_(VectorRegister d, VectorRegister a, VectorRegister b); inline void vcmpequw_(VectorRegister d, VectorRegister a, VectorRegister b); inline void vcmpgtsh_(VectorRegister d, VectorRegister a, VectorRegister b); inline void vcmpgtsb_(VectorRegister d, VectorRegister a, VectorRegister b); inline void vcmpgtsw_(VectorRegister d, VectorRegister a, VectorRegister b); inline void vcmpgtub_(VectorRegister d, VectorRegister a, VectorRegister b); inline void vcmpgtuh_(VectorRegister d, VectorRegister a, VectorRegister b); inline void vcmpgtuw_(VectorRegister d, VectorRegister a, VectorRegister b); inline void vand( VectorRegister d, VectorRegister a, VectorRegister b); inline void vandc( VectorRegister d, VectorRegister a, VectorRegister b); inline void vnor( VectorRegister d, VectorRegister a, VectorRegister b); inline void vor( VectorRegister d, VectorRegister a, VectorRegister b); inline void vxor( VectorRegister d, VectorRegister a, VectorRegister b); inline void vrld( VectorRegister d, VectorRegister a, VectorRegister b); inline void vrlb( VectorRegister d, VectorRegister a, VectorRegister b); inline void vrlw( VectorRegister d, VectorRegister a, VectorRegister b); inline void vrlh( VectorRegister d, VectorRegister a, VectorRegister b); inline void vslb( VectorRegister d, VectorRegister a, VectorRegister b); inline void vskw( VectorRegister d, VectorRegister a, VectorRegister b); inline void vslh( VectorRegister d, VectorRegister a, VectorRegister b); inline void vsrb( VectorRegister d, VectorRegister a, VectorRegister b); inline void vsrw( VectorRegister d, VectorRegister a, VectorRegister b); inline void vsrh( VectorRegister d, VectorRegister a, VectorRegister b); inline void vsrab( VectorRegister d, VectorRegister a, VectorRegister b); inline void vsraw( VectorRegister d, VectorRegister a, VectorRegister b); inline void vsrah( VectorRegister d, VectorRegister a, VectorRegister b); // Vector Floating-Point not implemented yet inline void mtvscr( VectorRegister b); inline void mfvscr( VectorRegister d); // Vector-Scalar (VSX) instructions. inline void lxvd2x( VectorSRegister d, Register a, Register b); inline void stxvd2x( VectorSRegister d, Register a, Register b); inline void mtvrd( VectorRegister d, Register a); inline void mfvrd( Register a, VectorRegister d); // AES (introduced with Power 8) inline void vcipher( VectorRegister d, VectorRegister a, VectorRegister b); inline void vcipherlast( VectorRegister d, VectorRegister a, VectorRegister b); inline void vncipher( VectorRegister d, VectorRegister a, VectorRegister b); inline void vncipherlast(VectorRegister d, VectorRegister a, VectorRegister b); inline void vsbox( VectorRegister d, VectorRegister a); // SHA (introduced with Power 8) // Not yet implemented. // Vector Binary Polynomial Multiplication (introduced with Power 8) inline void vpmsumb( VectorRegister d, VectorRegister a, VectorRegister b); inline void vpmsumd( VectorRegister d, VectorRegister a, VectorRegister b); inline void vpmsumh( VectorRegister d, VectorRegister a, VectorRegister b); inline void vpmsumw( VectorRegister d, VectorRegister a, VectorRegister b); // Vector Permute and Xor (introduced with Power 8) inline void vpermxor( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c); // Transactional Memory instructions (introduced with Power 8) inline void tbegin_(); // R=0 inline void tbeginrot_(); // R=1 Rollback-Only Transaction inline void tend_(); // A=0 inline void tendall_(); // A=1 inline void tabort_(Register a); inline void tabortwc_(int t, Register a, Register b); inline void tabortwci_(int t, Register a, int si); inline void tabortdc_(int t, Register a, Register b); inline void tabortdci_(int t, Register a, int si); inline void tsuspend_(); // tsr with L=0 inline void tresume_(); // tsr with L=1 inline void tcheck(int f); // The following encoders use r0 as second operand. These instructions // read r0 as '0'. inline void lwzx( Register d, Register s2); inline void lwz( Register d, int si16); inline void lwax( Register d, Register s2); inline void lwa( Register d, int si16); inline void lwbrx(Register d, Register s2); inline void lhzx( Register d, Register s2); inline void lhz( Register d, int si16); inline void lhax( Register d, Register s2); inline void lha( Register d, int si16); inline void lhbrx(Register d, Register s2); inline void lbzx( Register d, Register s2); inline void lbz( Register d, int si16); inline void ldx( Register d, Register s2); inline void ld( Register d, int si16); inline void stwx( Register d, Register s2); inline void stw( Register d, int si16); inline void sthx( Register d, Register s2); inline void sth( Register d, int si16); inline void stbx( Register d, Register s2); inline void stb( Register d, int si16); inline void stdx( Register d, Register s2); inline void std( Register d, int si16); // PPC 2, section 3.2.1 Instruction Cache Instructions inline void icbi( Register s2); // PPC 2, section 3.2.2 Data Cache Instructions //inlinevoid dcba( Register s2); // Instruction for embedded processor only. inline void dcbz( Register s2); inline void dcbst( Register s2); inline void dcbf( Register s2); // dcache read hint inline void dcbt( Register s2); inline void dcbtct( Register s2, int ct); inline void dcbtds( Register s2, int ds); // dcache write hint inline void dcbtst( Register s2); inline void dcbtstct(Register s2, int ct); // Atomics: use ra0mem to disallow R0 as base. inline void lwarx_unchecked(Register d, Register b, int eh1); inline void ldarx_unchecked(Register d, Register b, int eh1); inline void lqarx_unchecked(Register d, Register b, int eh1); inline void lwarx( Register d, Register b, bool hint_exclusive_access); inline void ldarx( Register d, Register b, bool hint_exclusive_access); inline void lqarx( Register d, Register b, bool hint_exclusive_access); inline void stwcx_(Register s, Register b); inline void stdcx_(Register s, Register b); inline void stqcx_(Register s, Register b); inline void lfs( FloatRegister d, int si16); inline void lfsx( FloatRegister d, Register b); inline void lfd( FloatRegister d, int si16); inline void lfdx( FloatRegister d, Register b); inline void stfs( FloatRegister s, int si16); inline void stfsx( FloatRegister s, Register b); inline void stfd( FloatRegister s, int si16); inline void stfdx( FloatRegister s, Register b); inline void lvebx( VectorRegister d, Register s2); inline void lvehx( VectorRegister d, Register s2); inline void lvewx( VectorRegister d, Register s2); inline void lvx( VectorRegister d, Register s2); inline void lvxl( VectorRegister d, Register s2); inline void stvebx(VectorRegister d, Register s2); inline void stvehx(VectorRegister d, Register s2); inline void stvewx(VectorRegister d, Register s2); inline void stvx( VectorRegister d, Register s2); inline void stvxl( VectorRegister d, Register s2); inline void lvsl( VectorRegister d, Register s2); inline void lvsr( VectorRegister d, Register s2); // RegisterOrConstant versions. // These emitters choose between the versions using two registers and // those with register and immediate, depending on the content of roc. // If the constant is not encodable as immediate, instructions to // load the constant are emitted beforehand. Store instructions need a // tmp reg if the constant is not encodable as immediate. // Size unpredictable. void ld( Register d, RegisterOrConstant roc, Register s1 = noreg); void lwa( Register d, RegisterOrConstant roc, Register s1 = noreg); void lwz( Register d, RegisterOrConstant roc, Register s1 = noreg); void lha( Register d, RegisterOrConstant roc, Register s1 = noreg); void lhz( Register d, RegisterOrConstant roc, Register s1 = noreg); void lbz( Register d, RegisterOrConstant roc, Register s1 = noreg); void std( Register d, RegisterOrConstant roc, Register s1 = noreg, Register tmp = noreg); void stw( Register d, RegisterOrConstant roc, Register s1 = noreg, Register tmp = noreg); void sth( Register d, RegisterOrConstant roc, Register s1 = noreg, Register tmp = noreg); void stb( Register d, RegisterOrConstant roc, Register s1 = noreg, Register tmp = noreg); void add( Register d, RegisterOrConstant roc, Register s1); void subf(Register d, RegisterOrConstant roc, Register s1); void cmpd(ConditionRegister d, RegisterOrConstant roc, Register s1); // Emit several instructions to load a 64 bit constant. This issues a fixed // instruction pattern so that the constant can be patched later on. enum { load_const_size = 5 * BytesPerInstWord }; void load_const(Register d, long a, Register tmp = noreg); inline void load_const(Register d, void* a, Register tmp = noreg); inline void load_const(Register d, Label& L, Register tmp = noreg); inline void load_const(Register d, AddressLiteral& a, Register tmp = noreg); // Load a 64 bit constant, optimized, not identifyable. // Tmp can be used to increase ILP. Set return_simm16_rest = true to get a // 16 bit immediate offset. This is useful if the offset can be encoded in // a succeeding instruction. int load_const_optimized(Register d, long a, Register tmp = noreg, bool return_simm16_rest = false); inline int load_const_optimized(Register d, void* a, Register tmp = noreg, bool return_simm16_rest = false) { return load_const_optimized(d, (long)(unsigned long)a, tmp, return_simm16_rest); } // Creation Assembler(CodeBuffer* code) : AbstractAssembler(code) { #ifdef CHECK_DELAY delay_state = no_delay; #endif } // Testing #ifndef PRODUCT void test_asm(); #endif }; #endif // CPU_PPC_VM_ASSEMBLER_PPC_HPP