/* * Copyright (c) 1998, 2012, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "asm/assembler.hpp" #include "code/relocInfo.hpp" #include "nativeInst_sparc.hpp" #include "oops/oop.inline.hpp" #include "runtime/safepoint.hpp" void Relocation::pd_set_data_value(address x, intptr_t o, bool verify_only) { NativeInstruction* ip = nativeInstruction_at(addr()); jint inst = ip->long_at(0); assert(inst != NativeInstruction::illegal_instruction(), "no breakpoint"); switch (Assembler::inv_op(inst)) { case Assembler::ldst_op: #ifdef ASSERT switch (Assembler::inv_op3(inst)) { case Assembler::lduw_op3: case Assembler::ldub_op3: case Assembler::lduh_op3: case Assembler::ldd_op3: case Assembler::ldsw_op3: case Assembler::ldsb_op3: case Assembler::ldsh_op3: case Assembler::ldx_op3: case Assembler::ldf_op3: case Assembler::lddf_op3: case Assembler::stw_op3: case Assembler::stb_op3: case Assembler::sth_op3: case Assembler::std_op3: case Assembler::stx_op3: case Assembler::stf_op3: case Assembler::stdf_op3: case Assembler::casa_op3: case Assembler::casxa_op3: break; default: ShouldNotReachHere(); } goto do_non_sethi; #endif case Assembler::arith_op: #ifdef ASSERT switch (Assembler::inv_op3(inst)) { case Assembler::or_op3: case Assembler::add_op3: case Assembler::jmpl_op3: break; default: ShouldNotReachHere(); } do_non_sethi:; #endif { guarantee(Assembler::inv_immed(inst), "must have a simm13 field"); int simm13 = Assembler::low10((intptr_t)x) + o; guarantee(Assembler::is_simm13(simm13), "offset can't overflow simm13"); inst &= ~Assembler::simm( -1, 13); inst |= Assembler::simm(simm13, 13); if (verify_only) { assert(ip->long_at(0) == inst, "instructions must match"); } else { ip->set_long_at(0, inst); } } break; case Assembler::branch_op: { #ifdef _LP64 jint inst2; guarantee(Assembler::inv_op2(inst)==Assembler::sethi_op2, "must be sethi"); if (format() != 0) { assert(type() == relocInfo::oop_type || type() == relocInfo::metadata_type, "only narrow oops or klasses case"); jint np = type() == relocInfo::oop_type ? oopDesc::encode_heap_oop((oop)x) : oopDesc::encode_klass((Klass*)x); inst &= ~Assembler::hi22(-1); inst |= Assembler::hi22((intptr_t)np); if (verify_only) { assert(ip->long_at(0) == inst, "instructions must match"); } else { ip->set_long_at(0, inst); } inst2 = ip->long_at( NativeInstruction::nop_instruction_size ); guarantee(Assembler::inv_op(inst2)==Assembler::arith_op, "arith op"); if (verify_only) { assert(ip->long_at(NativeInstruction::nop_instruction_size) == NativeInstruction::set_data32_simm13( inst2, (intptr_t)np), "instructions must match"); } else { ip->set_long_at(NativeInstruction::nop_instruction_size, NativeInstruction::set_data32_simm13( inst2, (intptr_t)np)); } break; } if (verify_only) { ip->verify_data64_sethi( ip->addr_at(0), (intptr_t)x ); } else { ip->set_data64_sethi( ip->addr_at(0), (intptr_t)x ); } #else guarantee(Assembler::inv_op2(inst)==Assembler::sethi_op2, "must be sethi"); inst &= ~Assembler::hi22( -1); inst |= Assembler::hi22((intptr_t)x); // (ignore offset; it doesn't play into the sethi) if (verify_only) { assert(ip->long_at(0) == inst, "instructions must match"); } else { ip->set_long_at(0, inst); } #endif } break; default: guarantee(false, "instruction must perform arithmetic or memory access"); } } address Relocation::pd_call_destination(address orig_addr) { intptr_t adj = 0; if (orig_addr != NULL) { // We just moved this call instruction from orig_addr to addr(). // This means its target will appear to have grown by addr() - orig_addr. adj = -( addr() - orig_addr ); } if (NativeCall::is_call_at(addr())) { NativeCall* call = nativeCall_at(addr()); return call->destination() + adj; } if (NativeFarCall::is_call_at(addr())) { NativeFarCall* call = nativeFarCall_at(addr()); return call->destination() + adj; } // Special case: Patchable branch local to the code cache. // This will break badly if the code cache grows larger than a few Mb. NativeGeneralJump* br = nativeGeneralJump_at(addr()); return br->jump_destination() + adj; } void Relocation::pd_set_call_destination(address x) { if (NativeCall::is_call_at(addr())) { NativeCall* call = nativeCall_at(addr()); call->set_destination(x); return; } if (NativeFarCall::is_call_at(addr())) { NativeFarCall* call = nativeFarCall_at(addr()); call->set_destination(x); return; } // Special case: Patchable branch local to the code cache. // This will break badly if the code cache grows larger than a few Mb. NativeGeneralJump* br = nativeGeneralJump_at(addr()); br->set_jump_destination(x); } address* Relocation::pd_address_in_code() { // SPARC never embeds addresses in code, at present. //assert(type() == relocInfo::oop_type, "only oops are inlined at present"); return (address*)addr(); } address Relocation::pd_get_address_from_code() { // SPARC never embeds addresses in code, at present. //assert(type() == relocInfo::oop_type, "only oops are inlined at present"); return *(address*)addr(); } int Relocation::pd_breakpoint_size() { // minimum breakpoint size, in short words return NativeIllegalInstruction::instruction_size / sizeof(short); } void Relocation::pd_swap_in_breakpoint(address x, short* instrs, int instrlen) { Untested("pd_swap_in_breakpoint"); // %%% probably do not need a general instrlen; just use the trap size if (instrs != NULL) { assert(instrlen * sizeof(short) == NativeIllegalInstruction::instruction_size, "enough instrlen in reloc. data"); for (int i = 0; i < instrlen; i++) { instrs[i] = ((short*)x)[i]; } } NativeIllegalInstruction::insert(x); } void Relocation::pd_swap_out_breakpoint(address x, short* instrs, int instrlen) { Untested("pd_swap_out_breakpoint"); assert(instrlen * sizeof(short) == sizeof(int), "enough buf"); union { int l; short s[1]; } u; for (int i = 0; i < instrlen; i++) { u.s[i] = instrs[i]; } NativeInstruction* ni = nativeInstruction_at(x); ni->set_long_at(0, u.l); } void poll_Relocation::fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) { } void poll_return_Relocation::fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) { } void metadata_Relocation::pd_fix_value(address x) { }