/* * Copyright (c) 2005, 2012, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "ci/ciArrayKlass.hpp" #include "ci/ciEnv.hpp" #include "ci/ciKlass.hpp" #include "ci/ciMethod.hpp" #include "code/dependencies.hpp" #include "compiler/compileLog.hpp" #include "oops/oop.inline.hpp" #include "runtime/handles.hpp" #include "runtime/handles.inline.hpp" #include "utilities/copy.hpp" #ifdef ASSERT static bool must_be_in_vm() { Thread* thread = Thread::current(); if (thread->is_Java_thread()) return ((JavaThread*)thread)->thread_state() == _thread_in_vm; else return true; //something like this: thread->is_VM_thread(); } #endif //ASSERT void Dependencies::initialize(ciEnv* env) { Arena* arena = env->arena(); _oop_recorder = env->oop_recorder(); _log = env->log(); _dep_seen = new(arena) GrowableArray(arena, 500, 0, 0); DEBUG_ONLY(_deps[end_marker] = NULL); for (int i = (int)FIRST_TYPE; i < (int)TYPE_LIMIT; i++) { _deps[i] = new(arena) GrowableArray(arena, 10, 0, 0); } _content_bytes = NULL; _size_in_bytes = (size_t)-1; assert(TYPE_LIMIT <= (1<is_array_klass()) { // As a special case, support this assertion on an array type, // which reduces to an assertion on its element type. // Note that this cannot be done with assertions that // relate to concreteness or abstractness. ciType* elemt = ctxk->as_array_klass()->base_element_type(); if (!elemt->is_instance_klass()) return; // Ex: int[][] ctxk = elemt->as_instance_klass(); //if (ctxk->is_final()) return; // Ex: String[][] } check_ctxk(ctxk); assert_common_1(leaf_type, ctxk); } void Dependencies::assert_abstract_with_unique_concrete_subtype(ciKlass* ctxk, ciKlass* conck) { check_ctxk_abstract(ctxk); assert_common_2(abstract_with_unique_concrete_subtype, ctxk, conck); } void Dependencies::assert_abstract_with_no_concrete_subtype(ciKlass* ctxk) { check_ctxk_abstract(ctxk); assert_common_1(abstract_with_no_concrete_subtype, ctxk); } void Dependencies::assert_concrete_with_no_concrete_subtype(ciKlass* ctxk) { check_ctxk_concrete(ctxk); assert_common_1(concrete_with_no_concrete_subtype, ctxk); } void Dependencies::assert_unique_concrete_method(ciKlass* ctxk, ciMethod* uniqm) { check_ctxk(ctxk); assert_common_2(unique_concrete_method, ctxk, uniqm); } void Dependencies::assert_abstract_with_exclusive_concrete_subtypes(ciKlass* ctxk, ciKlass* k1, ciKlass* k2) { check_ctxk(ctxk); assert_common_3(abstract_with_exclusive_concrete_subtypes_2, ctxk, k1, k2); } void Dependencies::assert_exclusive_concrete_methods(ciKlass* ctxk, ciMethod* m1, ciMethod* m2) { check_ctxk(ctxk); assert_common_3(exclusive_concrete_methods_2, ctxk, m1, m2); } void Dependencies::assert_has_no_finalizable_subclasses(ciKlass* ctxk) { check_ctxk(ctxk); assert_common_1(no_finalizable_subclasses, ctxk); } void Dependencies::assert_call_site_target_value(ciCallSite* call_site, ciMethodHandle* method_handle) { check_ctxk(call_site->klass()); assert_common_2(call_site_target_value, call_site, method_handle); } // Helper function. If we are adding a new dep. under ctxk2, // try to find an old dep. under a broader* ctxk1. If there is // bool Dependencies::maybe_merge_ctxk(GrowableArray* deps, int ctxk_i, ciKlass* ctxk2) { ciKlass* ctxk1 = deps->at(ctxk_i)->as_metadata()->as_klass(); if (ctxk2->is_subtype_of(ctxk1)) { return true; // success, and no need to change } else if (ctxk1->is_subtype_of(ctxk2)) { // new context class fully subsumes previous one deps->at_put(ctxk_i, ctxk2); return true; } else { return false; } } void Dependencies::assert_common_1(DepType dept, ciBaseObject* x) { assert(dep_args(dept) == 1, "sanity"); log_dependency(dept, x); GrowableArray* deps = _deps[dept]; // see if the same (or a similar) dep is already recorded if (note_dep_seen(dept, x)) { assert(deps->find(x) >= 0, "sanity"); } else { deps->append(x); } } void Dependencies::assert_common_2(DepType dept, ciBaseObject* x0, ciBaseObject* x1) { assert(dep_args(dept) == 2, "sanity"); log_dependency(dept, x0, x1); GrowableArray* deps = _deps[dept]; // see if the same (or a similar) dep is already recorded bool has_ctxk = has_explicit_context_arg(dept); if (has_ctxk) { assert(dep_context_arg(dept) == 0, "sanity"); if (note_dep_seen(dept, x1)) { // look in this bucket for redundant assertions const int stride = 2; for (int i = deps->length(); (i -= stride) >= 0; ) { ciBaseObject* y1 = deps->at(i+1); if (x1 == y1) { // same subject; check the context if (maybe_merge_ctxk(deps, i+0, x0->as_metadata()->as_klass())) { return; } } } } } else { assert(dep_implicit_context_arg(dept) == 0, "sanity"); if (note_dep_seen(dept, x0) && note_dep_seen(dept, x1)) { // look in this bucket for redundant assertions const int stride = 2; for (int i = deps->length(); (i -= stride) >= 0; ) { ciBaseObject* y0 = deps->at(i+0); ciBaseObject* y1 = deps->at(i+1); if (x0 == y0 && x1 == y1) { return; } } } } // append the assertion in the correct bucket: deps->append(x0); deps->append(x1); } void Dependencies::assert_common_3(DepType dept, ciKlass* ctxk, ciBaseObject* x, ciBaseObject* x2) { assert(dep_context_arg(dept) == 0, "sanity"); assert(dep_args(dept) == 3, "sanity"); log_dependency(dept, ctxk, x, x2); GrowableArray* deps = _deps[dept]; // try to normalize an unordered pair: bool swap = false; switch (dept) { case abstract_with_exclusive_concrete_subtypes_2: swap = (x->ident() > x2->ident() && x->as_metadata()->as_klass() != ctxk); break; case exclusive_concrete_methods_2: swap = (x->ident() > x2->ident() && x->as_metadata()->as_method()->holder() != ctxk); break; } if (swap) { ciBaseObject* t = x; x = x2; x2 = t; } // see if the same (or a similar) dep is already recorded if (note_dep_seen(dept, x) && note_dep_seen(dept, x2)) { // look in this bucket for redundant assertions const int stride = 3; for (int i = deps->length(); (i -= stride) >= 0; ) { ciBaseObject* y = deps->at(i+1); ciBaseObject* y2 = deps->at(i+2); if (x == y && x2 == y2) { // same subjects; check the context if (maybe_merge_ctxk(deps, i+0, ctxk)) { return; } } } } // append the assertion in the correct bucket: deps->append(ctxk); deps->append(x); deps->append(x2); } /// Support for encoding dependencies into an nmethod: void Dependencies::copy_to(nmethod* nm) { address beg = nm->dependencies_begin(); address end = nm->dependencies_end(); guarantee(end - beg >= (ptrdiff_t) size_in_bytes(), "bad sizing"); Copy::disjoint_words((HeapWord*) content_bytes(), (HeapWord*) beg, size_in_bytes() / sizeof(HeapWord)); assert(size_in_bytes() % sizeof(HeapWord) == 0, "copy by words"); } static int sort_dep(ciBaseObject** p1, ciBaseObject** p2, int narg) { for (int i = 0; i < narg; i++) { int diff = p1[i]->ident() - p2[i]->ident(); if (diff != 0) return diff; } return 0; } static int sort_dep_arg_1(ciBaseObject** p1, ciBaseObject** p2) { return sort_dep(p1, p2, 1); } static int sort_dep_arg_2(ciBaseObject** p1, ciBaseObject** p2) { return sort_dep(p1, p2, 2); } static int sort_dep_arg_3(ciBaseObject** p1, ciBaseObject** p2) { return sort_dep(p1, p2, 3); } void Dependencies::sort_all_deps() { for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) { DepType dept = (DepType)deptv; GrowableArray* deps = _deps[dept]; if (deps->length() <= 1) continue; switch (dep_args(dept)) { case 1: deps->sort(sort_dep_arg_1, 1); break; case 2: deps->sort(sort_dep_arg_2, 2); break; case 3: deps->sort(sort_dep_arg_3, 3); break; default: ShouldNotReachHere(); } } } size_t Dependencies::estimate_size_in_bytes() { size_t est_size = 100; for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) { DepType dept = (DepType)deptv; GrowableArray* deps = _deps[dept]; est_size += deps->length()*2; // tags and argument(s) } return est_size; } ciKlass* Dependencies::ctxk_encoded_as_null(DepType dept, ciBaseObject* x) { switch (dept) { case abstract_with_exclusive_concrete_subtypes_2: return x->as_metadata()->as_klass(); case unique_concrete_method: case exclusive_concrete_methods_2: return x->as_metadata()->as_method()->holder(); } return NULL; // let NULL be NULL } Klass* Dependencies::ctxk_encoded_as_null(DepType dept, Metadata* x) { assert(must_be_in_vm(), "raw oops here"); switch (dept) { case abstract_with_exclusive_concrete_subtypes_2: assert(x->is_klass(), "sanity"); return (Klass*) x; case unique_concrete_method: case exclusive_concrete_methods_2: assert(x->is_method(), "sanity"); return ((Method*)x)->method_holder(); } return NULL; // let NULL be NULL } void Dependencies::encode_content_bytes() { sort_all_deps(); // cast is safe, no deps can overflow INT_MAX CompressedWriteStream bytes((int)estimate_size_in_bytes()); for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) { DepType dept = (DepType)deptv; GrowableArray* deps = _deps[dept]; if (deps->length() == 0) continue; int stride = dep_args(dept); int ctxkj = dep_context_arg(dept); // -1 if no context arg assert(stride > 0, "sanity"); for (int i = 0; i < deps->length(); i += stride) { jbyte code_byte = (jbyte)dept; int skipj = -1; if (ctxkj >= 0 && ctxkj+1 < stride) { ciKlass* ctxk = deps->at(i+ctxkj+0)->as_metadata()->as_klass(); ciBaseObject* x = deps->at(i+ctxkj+1); // following argument if (ctxk == ctxk_encoded_as_null(dept, x)) { skipj = ctxkj; // we win: maybe one less oop to keep track of code_byte |= default_context_type_bit; } } bytes.write_byte(code_byte); for (int j = 0; j < stride; j++) { if (j == skipj) continue; ciBaseObject* v = deps->at(i+j); int idx; if (v->is_object()) { idx = _oop_recorder->find_index(v->as_object()->constant_encoding()); } else { ciMetadata* meta = v->as_metadata(); idx = _oop_recorder->find_index(meta->constant_encoding()); } bytes.write_int(idx); } } } // write a sentinel byte to mark the end bytes.write_byte(end_marker); // round it out to a word boundary while (bytes.position() % sizeof(HeapWord) != 0) { bytes.write_byte(end_marker); } // check whether the dept byte encoding really works assert((jbyte)default_context_type_bit != 0, "byte overflow"); _content_bytes = bytes.buffer(); _size_in_bytes = bytes.position(); } const char* Dependencies::_dep_name[TYPE_LIMIT] = { "end_marker", "evol_method", "leaf_type", "abstract_with_unique_concrete_subtype", "abstract_with_no_concrete_subtype", "concrete_with_no_concrete_subtype", "unique_concrete_method", "abstract_with_exclusive_concrete_subtypes_2", "exclusive_concrete_methods_2", "no_finalizable_subclasses", "call_site_target_value" }; int Dependencies::_dep_args[TYPE_LIMIT] = { -1,// end_marker 1, // evol_method m 1, // leaf_type ctxk 2, // abstract_with_unique_concrete_subtype ctxk, k 1, // abstract_with_no_concrete_subtype ctxk 1, // concrete_with_no_concrete_subtype ctxk 2, // unique_concrete_method ctxk, m 3, // unique_concrete_subtypes_2 ctxk, k1, k2 3, // unique_concrete_methods_2 ctxk, m1, m2 1, // no_finalizable_subclasses ctxk 2 // call_site_target_value call_site, method_handle }; const char* Dependencies::dep_name(Dependencies::DepType dept) { if (!dept_in_mask(dept, all_types)) return "?bad-dep?"; return _dep_name[dept]; } int Dependencies::dep_args(Dependencies::DepType dept) { if (!dept_in_mask(dept, all_types)) return -1; return _dep_args[dept]; } void Dependencies::check_valid_dependency_type(DepType dept) { guarantee(FIRST_TYPE <= dept && dept < TYPE_LIMIT, err_msg("invalid dependency type: %d", (int) dept)); } // for the sake of the compiler log, print out current dependencies: void Dependencies::log_all_dependencies() { if (log() == NULL) return; ciBaseObject* args[max_arg_count]; for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) { DepType dept = (DepType)deptv; GrowableArray* deps = _deps[dept]; if (deps->length() == 0) continue; int stride = dep_args(dept); for (int i = 0; i < deps->length(); i += stride) { for (int j = 0; j < stride; j++) { // flush out the identities before printing args[j] = deps->at(i+j); } write_dependency_to(log(), dept, stride, args); } } } void Dependencies::write_dependency_to(CompileLog* log, DepType dept, int nargs, DepArgument args[], Klass* witness) { if (log == NULL) { return; } ciEnv* env = ciEnv::current(); ciBaseObject* ciargs[max_arg_count]; assert(nargs <= max_arg_count, "oob"); for (int j = 0; j < nargs; j++) { if (args[j].is_oop()) { ciargs[j] = env->get_object(args[j].oop_value()); } else { ciargs[j] = env->get_metadata(args[j].metadata_value()); } } Dependencies::write_dependency_to(log, dept, nargs, ciargs, witness); } void Dependencies::write_dependency_to(CompileLog* log, DepType dept, int nargs, ciBaseObject* args[], Klass* witness) { if (log == NULL) return; assert(nargs <= max_arg_count, "oob"); int argids[max_arg_count]; int ctxkj = dep_context_arg(dept); // -1 if no context arg int j; for (j = 0; j < nargs; j++) { if (args[j]->is_object()) { argids[j] = log->identify(args[j]->as_object()); } else { argids[j] = log->identify(args[j]->as_metadata()); } } if (witness != NULL) { log->begin_elem("dependency_failed"); } else { log->begin_elem("dependency"); } log->print(" type='%s'", dep_name(dept)); if (ctxkj >= 0) { log->print(" ctxk='%d'", argids[ctxkj]); } // write remaining arguments, if any. for (j = 0; j < nargs; j++) { if (j == ctxkj) continue; // already logged if (j == 1) { log->print( " x='%d'", argids[j]); } else { log->print(" x%d='%d'", j, argids[j]); } } if (witness != NULL) { log->object("witness", witness); log->stamp(); } log->end_elem(); } void Dependencies::write_dependency_to(xmlStream* xtty, DepType dept, int nargs, DepArgument args[], Klass* witness) { if (xtty == NULL) return; ttyLocker ttyl; int ctxkj = dep_context_arg(dept); // -1 if no context arg if (witness != NULL) { xtty->begin_elem("dependency_failed"); } else { xtty->begin_elem("dependency"); } xtty->print(" type='%s'", dep_name(dept)); if (ctxkj >= 0) { xtty->object("ctxk", args[ctxkj].metadata_value()); } // write remaining arguments, if any. for (int j = 0; j < nargs; j++) { if (j == ctxkj) continue; // already logged if (j == 1) { if (args[j].is_oop()) { xtty->object("x", args[j].oop_value()); } else { xtty->object("x", args[j].metadata_value()); } } else { char xn[10]; sprintf(xn, "x%d", j); if (args[j].is_oop()) { xtty->object(xn, args[j].oop_value()); } else { xtty->object(xn, args[j].metadata_value()); } } } if (witness != NULL) { xtty->object("witness", witness); xtty->stamp(); } xtty->end_elem(); } void Dependencies::print_dependency(DepType dept, int nargs, DepArgument args[], Klass* witness) { ResourceMark rm; ttyLocker ttyl; // keep the following output all in one block tty->print_cr("%s of type %s", (witness == NULL)? "Dependency": "Failed dependency", dep_name(dept)); // print arguments int ctxkj = dep_context_arg(dept); // -1 if no context arg for (int j = 0; j < nargs; j++) { DepArgument arg = args[j]; bool put_star = false; if (arg.is_null()) continue; const char* what; if (j == ctxkj) { assert(arg.is_metadata(), "must be"); what = "context"; put_star = !Dependencies::is_concrete_klass((Klass*)arg.metadata_value()); } else if (arg.is_method()) { what = "method "; put_star = !Dependencies::is_concrete_method((Method*)arg.metadata_value()); } else if (arg.is_klass()) { what = "class "; } else { what = "object "; } tty->print(" %s = %s", what, (put_star? "*": "")); if (arg.is_klass()) tty->print("%s", Klass::cast((Klass*)arg.metadata_value())->external_name()); else if (arg.is_method()) ((Method*)arg.metadata_value())->print_value(); else ShouldNotReachHere(); // Provide impl for this type. tty->cr(); } if (witness != NULL) { bool put_star = !Dependencies::is_concrete_klass(witness); tty->print_cr(" witness = %s%s", (put_star? "*": ""), Klass::cast(witness)->external_name()); } } void Dependencies::DepStream::log_dependency(Klass* witness) { if (_deps == NULL && xtty == NULL) return; // fast cutout for runtime int nargs = argument_count(); DepArgument args[max_arg_count]; for (int j = 0; j < nargs; j++) { if (type() == call_site_target_value) { args[j] = argument_oop(j); } else { args[j] = argument(j); } } if (_deps != NULL && _deps->log() != NULL) { Dependencies::write_dependency_to(_deps->log(), type(), nargs, args, witness); } else { Dependencies::write_dependency_to(xtty, type(), nargs, args, witness); } } void Dependencies::DepStream::print_dependency(Klass* witness, bool verbose) { int nargs = argument_count(); DepArgument args[max_arg_count]; for (int j = 0; j < nargs; j++) { args[j] = argument(j); } Dependencies::print_dependency(type(), nargs, args, witness); if (verbose) { if (_code != NULL) { tty->print(" code: "); _code->print_value_on(tty); tty->cr(); } } } /// Dependency stream support (decodes dependencies from an nmethod): #ifdef ASSERT void Dependencies::DepStream::initial_asserts(size_t byte_limit) { assert(must_be_in_vm(), "raw oops here"); _byte_limit = byte_limit; _type = (DepType)(end_marker-1); // defeat "already at end" assert assert((_code!=NULL) + (_deps!=NULL) == 1, "one or t'other"); } #endif //ASSERT bool Dependencies::DepStream::next() { assert(_type != end_marker, "already at end"); if (_bytes.position() == 0 && _code != NULL && _code->dependencies_size() == 0) { // Method has no dependencies at all. return false; } int code_byte = (_bytes.read_byte() & 0xFF); if (code_byte == end_marker) { DEBUG_ONLY(_type = end_marker); return false; } else { int ctxk_bit = (code_byte & Dependencies::default_context_type_bit); code_byte -= ctxk_bit; DepType dept = (DepType)code_byte; _type = dept; Dependencies::check_valid_dependency_type(dept); int stride = _dep_args[dept]; assert(stride == dep_args(dept), "sanity"); int skipj = -1; if (ctxk_bit != 0) { skipj = 0; // currently the only context argument is at zero assert(skipj == dep_context_arg(dept), "zero arg always ctxk"); } for (int j = 0; j < stride; j++) { _xi[j] = (j == skipj)? 0: _bytes.read_int(); } DEBUG_ONLY(_xi[stride] = -1); // help detect overruns return true; } } inline Metadata* Dependencies::DepStream::recorded_metadata_at(int i) { Metadata* o = NULL; if (_code != NULL) { o = _code->metadata_at(i); } else { o = _deps->oop_recorder()->metadata_at(i); } assert(o == NULL || o->is_metadata(), err_msg("Should be perm " PTR_FORMAT, o)); return o; } inline oop Dependencies::DepStream::recorded_oop_at(int i) { return (_code != NULL) ? _code->oop_at(i) : JNIHandles::resolve(_deps->oop_recorder()->oop_at(i)); } Metadata* Dependencies::DepStream::argument(int i) { Metadata* result = recorded_metadata_at(argument_index(i)); if (result == NULL) { // Explicit context argument can be compressed int ctxkj = dep_context_arg(type()); // -1 if no explicit context arg if (ctxkj >= 0 && i == ctxkj && ctxkj+1 < argument_count()) { result = ctxk_encoded_as_null(type(), argument(ctxkj+1)); } } assert(result == NULL || result->is_klass() || result->is_method(), "must be"); return result; } oop Dependencies::DepStream::argument_oop(int i) { oop result = recorded_oop_at(argument_index(i)); assert(result == NULL || result->is_oop(), "must be"); return result; } Klass* Dependencies::DepStream::context_type() { assert(must_be_in_vm(), "raw oops here"); // Most dependencies have an explicit context type argument. { int ctxkj = dep_context_arg(type()); // -1 if no explicit context arg if (ctxkj >= 0) { Metadata* k = argument(ctxkj); assert(k != NULL && k->is_klass(), "type check"); return (Klass*)k; } } // Some dependencies are using the klass of the first object // argument as implicit context type (e.g. call_site_target_value). { int ctxkj = dep_implicit_context_arg(type()); if (ctxkj >= 0) { Klass* k = argument_oop(ctxkj)->klass(); assert(k != NULL && k->is_klass(), "type check"); return (Klass*) k; } } // And some dependencies don't have a context type at all, // e.g. evol_method. return NULL; } /// Checking dependencies: // This hierarchy walker inspects subtypes of a given type, // trying to find a "bad" class which breaks a dependency. // Such a class is called a "witness" to the broken dependency. // While searching around, we ignore "participants", which // are already known to the dependency. class ClassHierarchyWalker { public: enum { PARTICIPANT_LIMIT = 3 }; private: // optional method descriptor to check for: Symbol* _name; Symbol* _signature; // special classes which are not allowed to be witnesses: Klass* _participants[PARTICIPANT_LIMIT+1]; int _num_participants; // cache of method lookups Method* _found_methods[PARTICIPANT_LIMIT+1]; // if non-zero, tells how many witnesses to convert to participants int _record_witnesses; void initialize(Klass* participant) { _record_witnesses = 0; _participants[0] = participant; _found_methods[0] = NULL; _num_participants = 0; if (participant != NULL) { // Terminating NULL. _participants[1] = NULL; _found_methods[1] = NULL; _num_participants = 1; } } void initialize_from_method(Method* m) { assert(m != NULL && m->is_method(), "sanity"); _name = m->name(); _signature = m->signature(); } public: // The walker is initialized to recognize certain methods and/or types // as friendly participants. ClassHierarchyWalker(Klass* participant, Method* m) { initialize_from_method(m); initialize(participant); } ClassHierarchyWalker(Method* m) { initialize_from_method(m); initialize(NULL); } ClassHierarchyWalker(Klass* participant = NULL) { _name = NULL; _signature = NULL; initialize(participant); } // This is common code for two searches: One for concrete subtypes, // the other for concrete method implementations and overrides. bool doing_subtype_search() { return _name == NULL; } int num_participants() { return _num_participants; } Klass* participant(int n) { assert((uint)n <= (uint)_num_participants, "oob"); return _participants[n]; } // Note: If n==num_participants, returns NULL. Method* found_method(int n) { assert((uint)n <= (uint)_num_participants, "oob"); Method* fm = _found_methods[n]; assert(n == _num_participants || fm != NULL, "proper usage"); assert(fm == NULL || fm->method_holder() == _participants[n], "sanity"); return fm; } #ifdef ASSERT // Assert that m is inherited into ctxk, without intervening overrides. // (May return true even if this is not true, in corner cases where we punt.) bool check_method_context(Klass* ctxk, Method* m) { if (m->method_holder() == ctxk) return true; // Quick win. if (m->is_private()) return false; // Quick lose. Should not happen. if (!(m->is_public() || m->is_protected())) // The override story is complex when packages get involved. return true; // Must punt the assertion to true. Klass* k = Klass::cast(ctxk); Method* lm = k->lookup_method(m->name(), m->signature()); if (lm == NULL && k->oop_is_instance()) { // It might be an abstract interface method, devoid of mirandas. lm = ((InstanceKlass*)k)->lookup_method_in_all_interfaces(m->name(), m->signature()); } if (lm == m) // Method m is inherited into ctxk. return true; if (lm != NULL) { if (!(lm->is_public() || lm->is_protected())) { // Method is [package-]private, so the override story is complex. return true; // Must punt the assertion to true. } if (lm->is_static()) { // Static methods don't override non-static so punt return true; } if ( !Dependencies::is_concrete_method(lm) && !Dependencies::is_concrete_method(m) && Klass::cast(lm->method_holder())->is_subtype_of(m->method_holder())) // Method m is overridden by lm, but both are non-concrete. return true; } ResourceMark rm; tty->print_cr("Dependency method not found in the associated context:"); tty->print_cr(" context = %s", Klass::cast(ctxk)->external_name()); tty->print( " method = "); m->print_short_name(tty); tty->cr(); if (lm != NULL) { tty->print( " found = "); lm->print_short_name(tty); tty->cr(); } return false; } #endif void add_participant(Klass* participant) { assert(_num_participants + _record_witnesses < PARTICIPANT_LIMIT, "oob"); int np = _num_participants++; _participants[np] = participant; _participants[np+1] = NULL; _found_methods[np+1] = NULL; } void record_witnesses(int add) { if (add > PARTICIPANT_LIMIT) add = PARTICIPANT_LIMIT; assert(_num_participants + add < PARTICIPANT_LIMIT, "oob"); _record_witnesses = add; } bool is_witness(Klass* k) { if (doing_subtype_search()) { return Dependencies::is_concrete_klass(k); } else { Method* m = InstanceKlass::cast(k)->find_method(_name, _signature); if (m == NULL || !Dependencies::is_concrete_method(m)) return false; _found_methods[_num_participants] = m; // Note: If add_participant(k) is called, // the method m will already be memoized for it. return true; } } bool is_participant(Klass* k) { if (k == _participants[0]) { return true; } else if (_num_participants <= 1) { return false; } else { return in_list(k, &_participants[1]); } } bool ignore_witness(Klass* witness) { if (_record_witnesses == 0) { return false; } else { --_record_witnesses; add_participant(witness); return true; } } static bool in_list(Klass* x, Klass** list) { for (int i = 0; ; i++) { Klass* y = list[i]; if (y == NULL) break; if (y == x) return true; } return false; // not in list } private: // the actual search method: Klass* find_witness_anywhere(Klass* context_type, bool participants_hide_witnesses, bool top_level_call = true); // the spot-checking version: Klass* find_witness_in(KlassDepChange& changes, Klass* context_type, bool participants_hide_witnesses); public: Klass* find_witness_subtype(Klass* context_type, KlassDepChange* changes = NULL) { assert(doing_subtype_search(), "must set up a subtype search"); // When looking for unexpected concrete types, // do not look beneath expected ones. const bool participants_hide_witnesses = true; // CX > CC > C' is OK, even if C' is new. // CX > { CC, C' } is not OK if C' is new, and C' is the witness. if (changes != NULL) { return find_witness_in(*changes, context_type, participants_hide_witnesses); } else { return find_witness_anywhere(context_type, participants_hide_witnesses); } } Klass* find_witness_definer(Klass* context_type, KlassDepChange* changes = NULL) { assert(!doing_subtype_search(), "must set up a method definer search"); // When looking for unexpected concrete methods, // look beneath expected ones, to see if there are overrides. const bool participants_hide_witnesses = true; // CX.m > CC.m > C'.m is not OK, if C'.m is new, and C' is the witness. if (changes != NULL) { return find_witness_in(*changes, context_type, !participants_hide_witnesses); } else { return find_witness_anywhere(context_type, !participants_hide_witnesses); } } }; #ifndef PRODUCT static int deps_find_witness_calls = 0; static int deps_find_witness_steps = 0; static int deps_find_witness_recursions = 0; static int deps_find_witness_singles = 0; static int deps_find_witness_print = 0; // set to -1 to force a final print static bool count_find_witness_calls() { if (TraceDependencies || LogCompilation) { int pcount = deps_find_witness_print + 1; bool final_stats = (pcount == 0); bool initial_call = (pcount == 1); bool occasional_print = ((pcount & ((1<<10) - 1)) == 0); if (pcount < 0) pcount = 1; // crude overflow protection deps_find_witness_print = pcount; if (VerifyDependencies && initial_call) { tty->print_cr("Warning: TraceDependencies results may be inflated by VerifyDependencies"); } if (occasional_print || final_stats) { // Every now and then dump a little info about dependency searching. if (xtty != NULL) { ttyLocker ttyl; xtty->elem("deps_find_witness calls='%d' steps='%d' recursions='%d' singles='%d'", deps_find_witness_calls, deps_find_witness_steps, deps_find_witness_recursions, deps_find_witness_singles); } if (final_stats || (TraceDependencies && WizardMode)) { ttyLocker ttyl; tty->print_cr("Dependency check (find_witness) " "calls=%d, steps=%d (avg=%.1f), recursions=%d, singles=%d", deps_find_witness_calls, deps_find_witness_steps, (double)deps_find_witness_steps / deps_find_witness_calls, deps_find_witness_recursions, deps_find_witness_singles); } } return true; } return false; } #else #define count_find_witness_calls() (0) #endif //PRODUCT Klass* ClassHierarchyWalker::find_witness_in(KlassDepChange& changes, Klass* context_type, bool participants_hide_witnesses) { assert(changes.involves_context(context_type), "irrelevant dependency"); Klass* new_type = changes.new_type(); count_find_witness_calls(); NOT_PRODUCT(deps_find_witness_singles++); // Current thread must be in VM (not native mode, as in CI): assert(must_be_in_vm(), "raw oops here"); // Must not move the class hierarchy during this check: assert_locked_or_safepoint(Compile_lock); int nof_impls = InstanceKlass::cast(context_type)->nof_implementors(); if (nof_impls > 1) { // Avoid this case: *I.m > { A.m, C }; B.m > C // %%% Until this is fixed more systematically, bail out. // See corresponding comment in find_witness_anywhere. return context_type; } assert(!is_participant(new_type), "only old classes are participants"); if (participants_hide_witnesses) { // If the new type is a subtype of a participant, we are done. for (int i = 0; i < num_participants(); i++) { Klass* part = participant(i); if (part == NULL) continue; assert(changes.involves_context(part) == Klass::cast(new_type)->is_subtype_of(part), "correct marking of participants, b/c new_type is unique"); if (changes.involves_context(part)) { // new guy is protected from this check by previous participant return NULL; } } } if (is_witness(new_type) && !ignore_witness(new_type)) { return new_type; } return NULL; } // Walk hierarchy under a context type, looking for unexpected types. // Do not report participant types, and recursively walk beneath // them only if participants_hide_witnesses is false. // If top_level_call is false, skip testing the context type, // because the caller has already considered it. Klass* ClassHierarchyWalker::find_witness_anywhere(Klass* context_type, bool participants_hide_witnesses, bool top_level_call) { // Current thread must be in VM (not native mode, as in CI): assert(must_be_in_vm(), "raw oops here"); // Must not move the class hierarchy during this check: assert_locked_or_safepoint(Compile_lock); bool do_counts = count_find_witness_calls(); // Check the root of the sub-hierarchy first. if (top_level_call) { if (do_counts) { NOT_PRODUCT(deps_find_witness_calls++); NOT_PRODUCT(deps_find_witness_steps++); } if (is_participant(context_type)) { if (participants_hide_witnesses) return NULL; // else fall through to search loop... } else if (is_witness(context_type) && !ignore_witness(context_type)) { // The context is an abstract class or interface, to start with. return context_type; } } // Now we must check each implementor and each subclass. // Use a short worklist to avoid blowing the stack. // Each worklist entry is a *chain* of subklass siblings to process. const int CHAINMAX = 100; // >= 1 + InstanceKlass::implementors_limit Klass* chains[CHAINMAX]; int chaini = 0; // index into worklist Klass* chain; // scratch variable #define ADD_SUBCLASS_CHAIN(k) { \ assert(chaini < CHAINMAX, "oob"); \ chain = InstanceKlass::cast(k)->subklass(); \ if (chain != NULL) chains[chaini++] = chain; } // Look for non-abstract subclasses. // (Note: Interfaces do not have subclasses.) ADD_SUBCLASS_CHAIN(context_type); // If it is an interface, search its direct implementors. // (Their subclasses are additional indirect implementors. // See InstanceKlass::add_implementor.) // (Note: nof_implementors is always zero for non-interfaces.) int nof_impls = InstanceKlass::cast(context_type)->nof_implementors(); if (nof_impls > 1) { // Avoid this case: *I.m > { A.m, C }; B.m > C // Here, I.m has 2 concrete implementations, but m appears unique // as A.m, because the search misses B.m when checking C. // The inherited method B.m was getting missed by the walker // when interface 'I' was the starting point. // %%% Until this is fixed more systematically, bail out. // (Old CHA had the same limitation.) return context_type; } if (nof_impls > 0) { Klass* impl = InstanceKlass::cast(context_type)->implementor(); assert(impl != NULL, "just checking"); // If impl is the same as the context_type, then more than one // implementor has seen. No exact info in this case. if (impl == context_type) { return context_type; // report an inexact witness to this sad affair } if (do_counts) { NOT_PRODUCT(deps_find_witness_steps++); } if (is_participant(impl)) { if (!participants_hide_witnesses) { ADD_SUBCLASS_CHAIN(impl); } } else if (is_witness(impl) && !ignore_witness(impl)) { return impl; } else { ADD_SUBCLASS_CHAIN(impl); } } // Recursively process each non-trivial sibling chain. while (chaini > 0) { Klass* chain = chains[--chaini]; for (Klass* sub = chain; sub != NULL; sub = sub->next_sibling()) { if (do_counts) { NOT_PRODUCT(deps_find_witness_steps++); } if (is_participant(sub)) { if (participants_hide_witnesses) continue; // else fall through to process this guy's subclasses } else if (is_witness(sub) && !ignore_witness(sub)) { return sub; } if (chaini < (VerifyDependencies? 2: CHAINMAX)) { // Fast path. (Partially disabled if VerifyDependencies.) ADD_SUBCLASS_CHAIN(sub); } else { // Worklist overflow. Do a recursive call. Should be rare. // The recursive call will have its own worklist, of course. // (Note that sub has already been tested, so that there is // no need for the recursive call to re-test. That's handy, // since the recursive call sees sub as the context_type.) if (do_counts) { NOT_PRODUCT(deps_find_witness_recursions++); } Klass* witness = find_witness_anywhere(sub, participants_hide_witnesses, /*top_level_call=*/ false); if (witness != NULL) return witness; } } } // No witness found. The dependency remains unbroken. return NULL; #undef ADD_SUBCLASS_CHAIN } bool Dependencies::is_concrete_klass(Klass* k) { if (Klass::cast(k)->is_abstract()) return false; // %%% We could treat classes which are concrete but // have not yet been instantiated as virtually abstract. // This would require a deoptimization barrier on first instantiation. //if (k->is_not_instantiated()) return false; return true; } bool Dependencies::is_concrete_method(Method* m) { // Statics are irrelevant to virtual call sites. if (m->is_static()) return false; // We could also return false if m does not yet appear to be // executed, if the VM version supports this distinction also. return !m->is_abstract() && !InstanceKlass::cast(m->method_holder())->is_interface(); // TODO: investigate whether default methods should be // considered as "concrete" in this situation. For now they // are not. } Klass* Dependencies::find_finalizable_subclass(Klass* k) { if (k->is_interface()) return NULL; if (k->has_finalizer()) return k; k = k->subklass(); while (k != NULL) { Klass* result = find_finalizable_subclass(k); if (result != NULL) return result; k = k->next_sibling(); } return NULL; } bool Dependencies::is_concrete_klass(ciInstanceKlass* k) { if (k->is_abstract()) return false; // We could also return false if k does not yet appear to be // instantiated, if the VM version supports this distinction also. //if (k->is_not_instantiated()) return false; return true; } bool Dependencies::is_concrete_method(ciMethod* m) { // Statics are irrelevant to virtual call sites. if (m->is_static()) return false; // We could also return false if m does not yet appear to be // executed, if the VM version supports this distinction also. return !m->is_abstract(); } bool Dependencies::has_finalizable_subclass(ciInstanceKlass* k) { return k->has_finalizable_subclass(); } // Any use of the contents (bytecodes) of a method must be // marked by an "evol_method" dependency, if those contents // can change. (Note: A method is always dependent on itself.) Klass* Dependencies::check_evol_method(Method* m) { assert(must_be_in_vm(), "raw oops here"); // Did somebody do a JVMTI RedefineClasses while our backs were turned? // Or is there a now a breakpoint? // (Assumes compiled code cannot handle bkpts; change if UseFastBreakpoints.) if (m->is_old() || m->number_of_breakpoints() > 0) { return m->method_holder(); } else { return NULL; } } // This is a strong assertion: It is that the given type // has no subtypes whatever. It is most useful for // optimizing checks on reflected types or on array types. // (Checks on types which are derived from real instances // can be optimized more strongly than this, because we // know that the checked type comes from a concrete type, // and therefore we can disregard abstract types.) Klass* Dependencies::check_leaf_type(Klass* ctxk) { assert(must_be_in_vm(), "raw oops here"); assert_locked_or_safepoint(Compile_lock); InstanceKlass* ctx = InstanceKlass::cast(ctxk); Klass* sub = ctx->subklass(); if (sub != NULL) { return sub; } else if (ctx->nof_implementors() != 0) { // if it is an interface, it must be unimplemented // (if it is not an interface, nof_implementors is always zero) Klass* impl = ctx->implementor(); assert(impl != NULL, "must be set"); return impl; } else { return NULL; } } // Test the assertion that conck is the only concrete subtype* of ctxk. // The type conck itself is allowed to have have further concrete subtypes. // This allows the compiler to narrow occurrences of ctxk by conck, // when dealing with the types of actual instances. Klass* Dependencies::check_abstract_with_unique_concrete_subtype(Klass* ctxk, Klass* conck, KlassDepChange* changes) { ClassHierarchyWalker wf(conck); return wf.find_witness_subtype(ctxk, changes); } // If a non-concrete class has no concrete subtypes, it is not (yet) // instantiatable. This can allow the compiler to make some paths go // dead, if they are gated by a test of the type. Klass* Dependencies::check_abstract_with_no_concrete_subtype(Klass* ctxk, KlassDepChange* changes) { // Find any concrete subtype, with no participants: ClassHierarchyWalker wf; return wf.find_witness_subtype(ctxk, changes); } // If a concrete class has no concrete subtypes, it can always be // exactly typed. This allows the use of a cheaper type test. Klass* Dependencies::check_concrete_with_no_concrete_subtype(Klass* ctxk, KlassDepChange* changes) { // Find any concrete subtype, with only the ctxk as participant: ClassHierarchyWalker wf(ctxk); return wf.find_witness_subtype(ctxk, changes); } // Find the unique concrete proper subtype of ctxk, or NULL if there // is more than one concrete proper subtype. If there are no concrete // proper subtypes, return ctxk itself, whether it is concrete or not. // The returned subtype is allowed to have have further concrete subtypes. // That is, return CC1 for CX > CC1 > CC2, but NULL for CX > { CC1, CC2 }. Klass* Dependencies::find_unique_concrete_subtype(Klass* ctxk) { ClassHierarchyWalker wf(ctxk); // Ignore ctxk when walking. wf.record_witnesses(1); // Record one other witness when walking. Klass* wit = wf.find_witness_subtype(ctxk); if (wit != NULL) return NULL; // Too many witnesses. Klass* conck = wf.participant(0); if (conck == NULL) { #ifndef PRODUCT // Make sure the dependency mechanism will pass this discovery: if (VerifyDependencies) { // Turn off dependency tracing while actually testing deps. FlagSetting fs(TraceDependencies, false); if (!Dependencies::is_concrete_klass(ctxk)) { guarantee(NULL == (void *)check_abstract_with_no_concrete_subtype(ctxk), "verify dep."); } else { guarantee(NULL == (void *)check_concrete_with_no_concrete_subtype(ctxk), "verify dep."); } } #endif //PRODUCT return ctxk; // Return ctxk as a flag for "no subtypes". } else { #ifndef PRODUCT // Make sure the dependency mechanism will pass this discovery: if (VerifyDependencies) { // Turn off dependency tracing while actually testing deps. FlagSetting fs(TraceDependencies, false); if (!Dependencies::is_concrete_klass(ctxk)) { guarantee(NULL == (void *) check_abstract_with_unique_concrete_subtype(ctxk, conck), "verify dep."); } } #endif //PRODUCT return conck; } } // Test the assertion that the k[12] are the only concrete subtypes of ctxk, // except possibly for further subtypes of k[12] themselves. // The context type must be abstract. The types k1 and k2 are themselves // allowed to have further concrete subtypes. Klass* Dependencies::check_abstract_with_exclusive_concrete_subtypes( Klass* ctxk, Klass* k1, Klass* k2, KlassDepChange* changes) { ClassHierarchyWalker wf; wf.add_participant(k1); wf.add_participant(k2); return wf.find_witness_subtype(ctxk, changes); } // Search ctxk for concrete implementations. If there are klen or fewer, // pack them into the given array and return the number. // Otherwise, return -1, meaning the given array would overflow. // (Note that a return of 0 means there are exactly no concrete subtypes.) // In this search, if ctxk is concrete, it will be reported alone. // For any type CC reported, no proper subtypes of CC will be reported. int Dependencies::find_exclusive_concrete_subtypes(Klass* ctxk, int klen, Klass* karray[]) { ClassHierarchyWalker wf; wf.record_witnesses(klen); Klass* wit = wf.find_witness_subtype(ctxk); if (wit != NULL) return -1; // Too many witnesses. int num = wf.num_participants(); assert(num <= klen, "oob"); // Pack the result array with the good news. for (int i = 0; i < num; i++) karray[i] = wf.participant(i); #ifndef PRODUCT // Make sure the dependency mechanism will pass this discovery: if (VerifyDependencies) { // Turn off dependency tracing while actually testing deps. FlagSetting fs(TraceDependencies, false); switch (Dependencies::is_concrete_klass(ctxk)? -1: num) { case -1: // ctxk was itself concrete guarantee(num == 1 && karray[0] == ctxk, "verify dep."); break; case 0: guarantee(NULL == (void *)check_abstract_with_no_concrete_subtype(ctxk), "verify dep."); break; case 1: guarantee(NULL == (void *) check_abstract_with_unique_concrete_subtype(ctxk, karray[0]), "verify dep."); break; case 2: guarantee(NULL == (void *) check_abstract_with_exclusive_concrete_subtypes(ctxk, karray[0], karray[1]), "verify dep."); break; default: ShouldNotReachHere(); // klen > 2 yet supported } } #endif //PRODUCT return num; } // If a class (or interface) has a unique concrete method uniqm, return NULL. // Otherwise, return a class that contains an interfering method. Klass* Dependencies::check_unique_concrete_method(Klass* ctxk, Method* uniqm, KlassDepChange* changes) { // Here is a missing optimization: If uniqm->is_final(), // we don't really need to search beneath it for overrides. // This is probably not important, since we don't use dependencies // to track final methods. (They can't be "definalized".) ClassHierarchyWalker wf(uniqm->method_holder(), uniqm); return wf.find_witness_definer(ctxk, changes); } // Find the set of all non-abstract methods under ctxk that match m. // (The method m must be defined or inherited in ctxk.) // Include m itself in the set, unless it is abstract. // If this set has exactly one element, return that element. Method* Dependencies::find_unique_concrete_method(Klass* ctxk, Method* m) { ClassHierarchyWalker wf(m); assert(wf.check_method_context(ctxk, m), "proper context"); wf.record_witnesses(1); Klass* wit = wf.find_witness_definer(ctxk); if (wit != NULL) return NULL; // Too many witnesses. Method* fm = wf.found_method(0); // Will be NULL if num_parts == 0. if (Dependencies::is_concrete_method(m)) { if (fm == NULL) { // It turns out that m was always the only implementation. fm = m; } else if (fm != m) { // Two conflicting implementations after all. // (This can happen if m is inherited into ctxk and fm overrides it.) return NULL; } } #ifndef PRODUCT // Make sure the dependency mechanism will pass this discovery: if (VerifyDependencies && fm != NULL) { guarantee(NULL == (void *)check_unique_concrete_method(ctxk, fm), "verify dep."); } #endif //PRODUCT return fm; } Klass* Dependencies::check_exclusive_concrete_methods(Klass* ctxk, Method* m1, Method* m2, KlassDepChange* changes) { ClassHierarchyWalker wf(m1); wf.add_participant(m1->method_holder()); wf.add_participant(m2->method_holder()); return wf.find_witness_definer(ctxk, changes); } // Find the set of all non-abstract methods under ctxk that match m[0]. // (The method m[0] must be defined or inherited in ctxk.) // Include m itself in the set, unless it is abstract. // Fill the given array m[0..(mlen-1)] with this set, and return the length. // (The length may be zero if no concrete methods are found anywhere.) // If there are too many concrete methods to fit in marray, return -1. int Dependencies::find_exclusive_concrete_methods(Klass* ctxk, int mlen, Method* marray[]) { Method* m0 = marray[0]; ClassHierarchyWalker wf(m0); assert(wf.check_method_context(ctxk, m0), "proper context"); wf.record_witnesses(mlen); bool participants_hide_witnesses = true; Klass* wit = wf.find_witness_definer(ctxk); if (wit != NULL) return -1; // Too many witnesses. int num = wf.num_participants(); assert(num <= mlen, "oob"); // Keep track of whether m is also part of the result set. int mfill = 0; assert(marray[mfill] == m0, "sanity"); if (Dependencies::is_concrete_method(m0)) mfill++; // keep m0 as marray[0], the first result for (int i = 0; i < num; i++) { Method* fm = wf.found_method(i); if (fm == m0) continue; // Already put this guy in the list. if (mfill == mlen) { return -1; // Oops. Too many methods after all! } marray[mfill++] = fm; } #ifndef PRODUCT // Make sure the dependency mechanism will pass this discovery: if (VerifyDependencies) { // Turn off dependency tracing while actually testing deps. FlagSetting fs(TraceDependencies, false); switch (mfill) { case 1: guarantee(NULL == (void *)check_unique_concrete_method(ctxk, marray[0]), "verify dep."); break; case 2: guarantee(NULL == (void *) check_exclusive_concrete_methods(ctxk, marray[0], marray[1]), "verify dep."); break; default: ShouldNotReachHere(); // mlen > 2 yet supported } } #endif //PRODUCT return mfill; } Klass* Dependencies::check_has_no_finalizable_subclasses(Klass* ctxk, KlassDepChange* changes) { Klass* search_at = ctxk; if (changes != NULL) search_at = changes->new_type(); // just look at the new bit return find_finalizable_subclass(search_at); } Klass* Dependencies::check_call_site_target_value(oop call_site, oop method_handle, CallSiteDepChange* changes) { assert(call_site ->is_a(SystemDictionary::CallSite_klass()), "sanity"); assert(method_handle->is_a(SystemDictionary::MethodHandle_klass()), "sanity"); if (changes == NULL) { // Validate all CallSites if (java_lang_invoke_CallSite::target(call_site) != method_handle) return call_site->klass(); // assertion failed } else { // Validate the given CallSite if (call_site == changes->call_site() && java_lang_invoke_CallSite::target(call_site) != changes->method_handle()) { assert(method_handle != changes->method_handle(), "must be"); return call_site->klass(); // assertion failed } } return NULL; // assertion still valid } void Dependencies::DepStream::trace_and_log_witness(Klass* witness) { if (witness != NULL) { if (TraceDependencies) { print_dependency(witness, /*verbose=*/ true); } // The following is a no-op unless logging is enabled: log_dependency(witness); } } Klass* Dependencies::DepStream::check_klass_dependency(KlassDepChange* changes) { assert_locked_or_safepoint(Compile_lock); Dependencies::check_valid_dependency_type(type()); Klass* witness = NULL; switch (type()) { case evol_method: witness = check_evol_method(method_argument(0)); break; case leaf_type: witness = check_leaf_type(context_type()); break; case abstract_with_unique_concrete_subtype: witness = check_abstract_with_unique_concrete_subtype(context_type(), type_argument(1), changes); break; case abstract_with_no_concrete_subtype: witness = check_abstract_with_no_concrete_subtype(context_type(), changes); break; case concrete_with_no_concrete_subtype: witness = check_concrete_with_no_concrete_subtype(context_type(), changes); break; case unique_concrete_method: witness = check_unique_concrete_method(context_type(), method_argument(1), changes); break; case abstract_with_exclusive_concrete_subtypes_2: witness = check_abstract_with_exclusive_concrete_subtypes(context_type(), type_argument(1), type_argument(2), changes); break; case exclusive_concrete_methods_2: witness = check_exclusive_concrete_methods(context_type(), method_argument(1), method_argument(2), changes); break; case no_finalizable_subclasses: witness = check_has_no_finalizable_subclasses(context_type(), changes); break; default: witness = NULL; break; } trace_and_log_witness(witness); return witness; } Klass* Dependencies::DepStream::check_call_site_dependency(CallSiteDepChange* changes) { assert_locked_or_safepoint(Compile_lock); Dependencies::check_valid_dependency_type(type()); Klass* witness = NULL; switch (type()) { case call_site_target_value: witness = check_call_site_target_value(argument_oop(0), argument_oop(1), changes); break; default: witness = NULL; break; } trace_and_log_witness(witness); return witness; } Klass* Dependencies::DepStream::spot_check_dependency_at(DepChange& changes) { // Handle klass dependency if (changes.is_klass_change() && changes.as_klass_change()->involves_context(context_type())) return check_klass_dependency(changes.as_klass_change()); // Handle CallSite dependency if (changes.is_call_site_change()) return check_call_site_dependency(changes.as_call_site_change()); // irrelevant dependency; skip it return NULL; } void DepChange::print() { int nsup = 0, nint = 0; for (ContextStream str(*this); str.next(); ) { Klass* k = str.klass(); switch (str.change_type()) { case Change_new_type: tty->print_cr(" dependee = %s", InstanceKlass::cast(k)->external_name()); break; case Change_new_sub: if (!WizardMode) { ++nsup; } else { tty->print_cr(" context super = %s", InstanceKlass::cast(k)->external_name()); } break; case Change_new_impl: if (!WizardMode) { ++nint; } else { tty->print_cr(" context interface = %s", InstanceKlass::cast(k)->external_name()); } break; } } if (nsup + nint != 0) { tty->print_cr(" context supers = %d, interfaces = %d", nsup, nint); } } void DepChange::ContextStream::start() { Klass* new_type = _changes.is_klass_change() ? _changes.as_klass_change()->new_type() : (Klass*) NULL; _change_type = (new_type == NULL ? NO_CHANGE : Start_Klass); _klass = new_type; _ti_base = NULL; _ti_index = 0; _ti_limit = 0; } bool DepChange::ContextStream::next() { switch (_change_type) { case Start_Klass: // initial state; _klass is the new type _ti_base = InstanceKlass::cast(_klass)->transitive_interfaces(); _ti_index = 0; _change_type = Change_new_type; return true; case Change_new_type: // fall through: _change_type = Change_new_sub; case Change_new_sub: // 6598190: brackets workaround Sun Studio C++ compiler bug 6629277 { _klass = InstanceKlass::cast(_klass)->super(); if (_klass != NULL) { return true; } } // else set up _ti_limit and fall through: _ti_limit = (_ti_base == NULL) ? 0 : _ti_base->length(); _change_type = Change_new_impl; case Change_new_impl: if (_ti_index < _ti_limit) { _klass = _ti_base->at(_ti_index++); return true; } // fall through: _change_type = NO_CHANGE; // iterator is exhausted case NO_CHANGE: break; default: ShouldNotReachHere(); } return false; } void KlassDepChange::initialize() { // entire transaction must be under this lock: assert_lock_strong(Compile_lock); // Mark all dependee and all its superclasses // Mark transitive interfaces for (ContextStream str(*this); str.next(); ) { Klass* d = str.klass(); assert(!InstanceKlass::cast(d)->is_marked_dependent(), "checking"); InstanceKlass::cast(d)->set_is_marked_dependent(true); } } KlassDepChange::~KlassDepChange() { // Unmark all dependee and all its superclasses // Unmark transitive interfaces for (ContextStream str(*this); str.next(); ) { Klass* d = str.klass(); InstanceKlass::cast(d)->set_is_marked_dependent(false); } } bool KlassDepChange::involves_context(Klass* k) { if (k == NULL || !Klass::cast(k)->oop_is_instance()) { return false; } InstanceKlass* ik = InstanceKlass::cast(k); bool is_contained = ik->is_marked_dependent(); assert(is_contained == Klass::cast(new_type())->is_subtype_of(k), "correct marking of potential context types"); return is_contained; } #ifndef PRODUCT void Dependencies::print_statistics() { if (deps_find_witness_print != 0) { // Call one final time, to flush out the data. deps_find_witness_print = -1; count_find_witness_calls(); } } #endif