/* * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "compiler/compileLog.hpp" #include "interpreter/linkResolver.hpp" #include "oops/method.hpp" #include "opto/addnode.hpp" #include "opto/idealGraphPrinter.hpp" #include "opto/locknode.hpp" #include "opto/memnode.hpp" #include "opto/parse.hpp" #include "opto/rootnode.hpp" #include "opto/runtime.hpp" #include "runtime/arguments.hpp" #include "runtime/handles.inline.hpp" #include "runtime/sharedRuntime.hpp" #include "utilities/copy.hpp" // Static array so we can figure out which bytecodes stop us from compiling // the most. Some of the non-static variables are needed in bytecodeInfo.cpp // and eventually should be encapsulated in a proper class (gri 8/18/98). int nodes_created = 0; int methods_parsed = 0; int methods_seen = 0; int blocks_parsed = 0; int blocks_seen = 0; int explicit_null_checks_inserted = 0; int explicit_null_checks_elided = 0; int all_null_checks_found = 0, implicit_null_checks = 0; int implicit_null_throws = 0; int reclaim_idx = 0; int reclaim_in = 0; int reclaim_node = 0; #ifndef PRODUCT bool Parse::BytecodeParseHistogram::_initialized = false; uint Parse::BytecodeParseHistogram::_bytecodes_parsed [Bytecodes::number_of_codes]; uint Parse::BytecodeParseHistogram::_nodes_constructed[Bytecodes::number_of_codes]; uint Parse::BytecodeParseHistogram::_nodes_transformed[Bytecodes::number_of_codes]; uint Parse::BytecodeParseHistogram::_new_values [Bytecodes::number_of_codes]; #endif //------------------------------print_statistics------------------------------- #ifndef PRODUCT void Parse::print_statistics() { tty->print_cr("--- Compiler Statistics ---"); tty->print("Methods seen: %d Methods parsed: %d", methods_seen, methods_parsed); tty->print(" Nodes created: %d", nodes_created); tty->cr(); if (methods_seen != methods_parsed) tty->print_cr("Reasons for parse failures (NOT cumulative):"); tty->print_cr("Blocks parsed: %d Blocks seen: %d", blocks_parsed, blocks_seen); if( explicit_null_checks_inserted ) tty->print_cr("%d original NULL checks - %d elided (%2d%%); optimizer leaves %d,", explicit_null_checks_inserted, explicit_null_checks_elided, (100*explicit_null_checks_elided)/explicit_null_checks_inserted, all_null_checks_found); if( all_null_checks_found ) tty->print_cr("%d made implicit (%2d%%)", implicit_null_checks, (100*implicit_null_checks)/all_null_checks_found); if( implicit_null_throws ) tty->print_cr("%d implicit null exceptions at runtime", implicit_null_throws); if( PrintParseStatistics && BytecodeParseHistogram::initialized() ) { BytecodeParseHistogram::print(); } } #endif //------------------------------ON STACK REPLACEMENT--------------------------- // Construct a node which can be used to get incoming state for // on stack replacement. Node *Parse::fetch_interpreter_state(int index, BasicType bt, Node *local_addrs, Node *local_addrs_base) { Node *mem = memory(Compile::AliasIdxRaw); Node *adr = basic_plus_adr( local_addrs_base, local_addrs, -index*wordSize ); Node *ctl = control(); // Very similar to LoadNode::make, except we handle un-aligned longs and // doubles on Sparc. Intel can handle them just fine directly. Node *l; switch (bt) { // Signature is flattened case T_INT: l = new (C) LoadINode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInt::INT, MemNode::unordered); break; case T_FLOAT: l = new (C) LoadFNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::FLOAT, MemNode::unordered); break; case T_ADDRESS: l = new (C) LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, MemNode::unordered); break; case T_OBJECT: l = new (C) LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInstPtr::BOTTOM, MemNode::unordered); break; case T_LONG: case T_DOUBLE: { // Since arguments are in reverse order, the argument address 'adr' // refers to the back half of the long/double. Recompute adr. adr = basic_plus_adr(local_addrs_base, local_addrs, -(index+1)*wordSize); if (Matcher::misaligned_doubles_ok) { l = (bt == T_DOUBLE) ? (Node*)new (C) LoadDNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::DOUBLE, MemNode::unordered) : (Node*)new (C) LoadLNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeLong::LONG, MemNode::unordered); } else { l = (bt == T_DOUBLE) ? (Node*)new (C) LoadD_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered) : (Node*)new (C) LoadL_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered); } break; } default: ShouldNotReachHere(); } return _gvn.transform(l); } // Helper routine to prevent the interpreter from handing // unexpected typestate to an OSR method. // The Node l is a value newly dug out of the interpreter frame. // The type is the type predicted by ciTypeFlow. Note that it is // not a general type, but can only come from Type::get_typeflow_type. // The safepoint is a map which will feed an uncommon trap. Node* Parse::check_interpreter_type(Node* l, const Type* type, SafePointNode* &bad_type_exit) { const TypeOopPtr* tp = type->isa_oopptr(); // TypeFlow may assert null-ness if a type appears unloaded. if (type == TypePtr::NULL_PTR || (tp != NULL && !tp->klass()->is_loaded())) { // Value must be null, not a real oop. Node* chk = _gvn.transform( new (C) CmpPNode(l, null()) ); Node* tst = _gvn.transform( new (C) BoolNode(chk, BoolTest::eq) ); IfNode* iff = create_and_map_if(control(), tst, PROB_MAX, COUNT_UNKNOWN); set_control(_gvn.transform( new (C) IfTrueNode(iff) )); Node* bad_type = _gvn.transform( new (C) IfFalseNode(iff) ); bad_type_exit->control()->add_req(bad_type); l = null(); } // Typeflow can also cut off paths from the CFG, based on // types which appear unloaded, or call sites which appear unlinked. // When paths are cut off, values at later merge points can rise // toward more specific classes. Make sure these specific classes // are still in effect. if (tp != NULL && tp->klass() != C->env()->Object_klass()) { // TypeFlow asserted a specific object type. Value must have that type. Node* bad_type_ctrl = NULL; l = gen_checkcast(l, makecon(TypeKlassPtr::make(tp->klass())), &bad_type_ctrl); bad_type_exit->control()->add_req(bad_type_ctrl); } BasicType bt_l = _gvn.type(l)->basic_type(); BasicType bt_t = type->basic_type(); assert(_gvn.type(l)->higher_equal(type), "must constrain OSR typestate"); return l; } // Helper routine which sets up elements of the initial parser map when // performing a parse for on stack replacement. Add values into map. // The only parameter contains the address of a interpreter arguments. void Parse::load_interpreter_state(Node* osr_buf) { int index; int max_locals = jvms()->loc_size(); int max_stack = jvms()->stk_size(); // Mismatch between method and jvms can occur since map briefly held // an OSR entry state (which takes up one RawPtr word). assert(max_locals == method()->max_locals(), "sanity"); assert(max_stack >= method()->max_stack(), "sanity"); assert((int)jvms()->endoff() == TypeFunc::Parms + max_locals + max_stack, "sanity"); assert((int)jvms()->endoff() == (int)map()->req(), "sanity"); // Find the start block. Block* osr_block = start_block(); assert(osr_block->start() == osr_bci(), "sanity"); // Set initial BCI. set_parse_bci(osr_block->start()); // Set initial stack depth. set_sp(osr_block->start_sp()); // Check bailouts. We currently do not perform on stack replacement // of loops in catch blocks or loops which branch with a non-empty stack. if (sp() != 0) { C->record_method_not_compilable("OSR starts with non-empty stack"); return; } // Do not OSR inside finally clauses: if (osr_block->has_trap_at(osr_block->start())) { C->record_method_not_compilable("OSR starts with an immediate trap"); return; } // Commute monitors from interpreter frame to compiler frame. assert(jvms()->monitor_depth() == 0, "should be no active locks at beginning of osr"); int mcnt = osr_block->flow()->monitor_count(); Node *monitors_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals+mcnt*2-1)*wordSize); for (index = 0; index < mcnt; index++) { // Make a BoxLockNode for the monitor. Node *box = _gvn.transform(new (C) BoxLockNode(next_monitor())); // Displaced headers and locked objects are interleaved in the // temp OSR buffer. We only copy the locked objects out here. // Fetch the locked object from the OSR temp buffer and copy to our fastlock node. Node *lock_object = fetch_interpreter_state(index*2, T_OBJECT, monitors_addr, osr_buf); // Try and copy the displaced header to the BoxNode Node *displaced_hdr = fetch_interpreter_state((index*2) + 1, T_ADDRESS, monitors_addr, osr_buf); store_to_memory(control(), box, displaced_hdr, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered); // Build a bogus FastLockNode (no code will be generated) and push the // monitor into our debug info. const FastLockNode *flock = _gvn.transform(new (C) FastLockNode( 0, lock_object, box ))->as_FastLock(); map()->push_monitor(flock); // If the lock is our method synchronization lock, tuck it away in // _sync_lock for return and rethrow exit paths. if (index == 0 && method()->is_synchronized()) { _synch_lock = flock; } } // Use the raw liveness computation to make sure that unexpected // values don't propagate into the OSR frame. MethodLivenessResult live_locals = method()->liveness_at_bci(osr_bci()); if (!live_locals.is_valid()) { // Degenerate or breakpointed method. C->record_method_not_compilable("OSR in empty or breakpointed method"); return; } // Extract the needed locals from the interpreter frame. Node *locals_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals-1)*wordSize); // find all the locals that the interpreter thinks contain live oops const BitMap live_oops = method()->live_local_oops_at_bci(osr_bci()); for (index = 0; index < max_locals; index++) { if (!live_locals.at(index)) { continue; } const Type *type = osr_block->local_type_at(index); if (type->isa_oopptr() != NULL) { // 6403625: Verify that the interpreter oopMap thinks that the oop is live // else we might load a stale oop if the MethodLiveness disagrees with the // result of the interpreter. If the interpreter says it is dead we agree // by making the value go to top. // if (!live_oops.at(index)) { if (C->log() != NULL) { C->log()->elem("OSR_mismatch local_index='%d'",index); } set_local(index, null()); // and ignore it for the loads continue; } } // Filter out TOP, HALF, and BOTTOM. (Cf. ensure_phi.) if (type == Type::TOP || type == Type::HALF) { continue; } // If the type falls to bottom, then this must be a local that // is mixing ints and oops or some such. Forcing it to top // makes it go dead. if (type == Type::BOTTOM) { continue; } // Construct code to access the appropriate local. BasicType bt = type->basic_type(); if (type == TypePtr::NULL_PTR) { // Ptr types are mixed together with T_ADDRESS but NULL is // really for T_OBJECT types so correct it. bt = T_OBJECT; } Node *value = fetch_interpreter_state(index, bt, locals_addr, osr_buf); set_local(index, value); } // Extract the needed stack entries from the interpreter frame. for (index = 0; index < sp(); index++) { const Type *type = osr_block->stack_type_at(index); if (type != Type::TOP) { // Currently the compiler bails out when attempting to on stack replace // at a bci with a non-empty stack. We should not reach here. ShouldNotReachHere(); } } // End the OSR migration make_runtime_call(RC_LEAF, OptoRuntime::osr_end_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end), "OSR_migration_end", TypeRawPtr::BOTTOM, osr_buf); // Now that the interpreter state is loaded, make sure it will match // at execution time what the compiler is expecting now: SafePointNode* bad_type_exit = clone_map(); bad_type_exit->set_control(new (C) RegionNode(1)); assert(osr_block->flow()->jsrs()->size() == 0, "should be no jsrs live at osr point"); for (index = 0; index < max_locals; index++) { if (stopped()) break; Node* l = local(index); if (l->is_top()) continue; // nothing here const Type *type = osr_block->local_type_at(index); if (type->isa_oopptr() != NULL) { if (!live_oops.at(index)) { // skip type check for dead oops continue; } } if (osr_block->flow()->local_type_at(index)->is_return_address()) { // In our current system it's illegal for jsr addresses to be // live into an OSR entry point because the compiler performs // inlining of jsrs. ciTypeFlow has a bailout that detect this // case and aborts the compile if addresses are live into an OSR // entry point. Because of that we can assume that any address // locals at the OSR entry point are dead. Method liveness // isn't precise enought to figure out that they are dead in all // cases so simply skip checking address locals all // together. Any type check is guaranteed to fail since the // interpreter type is the result of a load which might have any // value and the expected type is a constant. continue; } set_local(index, check_interpreter_type(l, type, bad_type_exit)); } for (index = 0; index < sp(); index++) { if (stopped()) break; Node* l = stack(index); if (l->is_top()) continue; // nothing here const Type *type = osr_block->stack_type_at(index); set_stack(index, check_interpreter_type(l, type, bad_type_exit)); } if (bad_type_exit->control()->req() > 1) { // Build an uncommon trap here, if any inputs can be unexpected. bad_type_exit->set_control(_gvn.transform( bad_type_exit->control() )); record_for_igvn(bad_type_exit->control()); SafePointNode* types_are_good = map(); set_map(bad_type_exit); // The unexpected type happens because a new edge is active // in the CFG, which typeflow had previously ignored. // E.g., Object x = coldAtFirst() && notReached()? "str": new Integer(123). // This x will be typed as Integer if notReached is not yet linked. // It could also happen due to a problem in ciTypeFlow analysis. uncommon_trap(Deoptimization::Reason_constraint, Deoptimization::Action_reinterpret); set_map(types_are_good); } } //------------------------------Parse------------------------------------------ // Main parser constructor. Parse::Parse(JVMState* caller, ciMethod* parse_method, float expected_uses, Parse* parent) : _exits(caller), _parent(parent) { // Init some variables _caller = caller; _method = parse_method; _expected_uses = expected_uses; _depth = 1 + (caller->has_method() ? caller->depth() : 0); _wrote_final = false; _wrote_volatile = false; _alloc_with_final = NULL; _entry_bci = InvocationEntryBci; _tf = NULL; _block = NULL; debug_only(_block_count = -1); debug_only(_blocks = (Block*)-1); #ifndef PRODUCT if (PrintCompilation || PrintOpto) { // Make sure I have an inline tree, so I can print messages about it. JVMState* ilt_caller = is_osr_parse() ? caller->caller() : caller; InlineTree::find_subtree_from_root(C->ilt(), ilt_caller, parse_method); } _max_switch_depth = 0; _est_switch_depth = 0; #endif _tf = TypeFunc::make(method()); _iter.reset_to_method(method()); _flow = method()->get_flow_analysis(); if (_flow->failing()) { C->record_method_not_compilable_all_tiers(_flow->failure_reason()); } #ifndef PRODUCT if (_flow->has_irreducible_entry()) { C->set_parsed_irreducible_loop(true); } #endif if (_expected_uses <= 0) { _prof_factor = 1; } else { float prof_total = parse_method->interpreter_invocation_count(); if (prof_total <= _expected_uses) { _prof_factor = 1; } else { _prof_factor = _expected_uses / prof_total; } } CompileLog* log = C->log(); if (log != NULL) { log->begin_head("parse method='%d' uses='%g'", log->identify(parse_method), expected_uses); if (depth() == 1 && C->is_osr_compilation()) { log->print(" osr_bci='%d'", C->entry_bci()); } log->stamp(); log->end_head(); } // Accumulate deoptimization counts. // (The range_check and store_check counts are checked elsewhere.) ciMethodData* md = method()->method_data(); for (uint reason = 0; reason < md->trap_reason_limit(); reason++) { uint md_count = md->trap_count(reason); if (md_count != 0) { if (md_count == md->trap_count_limit()) md_count += md->overflow_trap_count(); uint total_count = C->trap_count(reason); uint old_count = total_count; total_count += md_count; // Saturate the add if it overflows. if (total_count < old_count || total_count < md_count) total_count = (uint)-1; C->set_trap_count(reason, total_count); if (log != NULL) log->elem("observe trap='%s' count='%d' total='%d'", Deoptimization::trap_reason_name(reason), md_count, total_count); } } // Accumulate total sum of decompilations, also. C->set_decompile_count(C->decompile_count() + md->decompile_count()); _count_invocations = C->do_count_invocations(); _method_data_update = C->do_method_data_update(); if (log != NULL && method()->has_exception_handlers()) { log->elem("observe that='has_exception_handlers'"); } assert(method()->can_be_compiled(), "Can not parse this method, cutout earlier"); assert(method()->has_balanced_monitors(), "Can not parse unbalanced monitors, cutout earlier"); // Always register dependence if JVMTI is enabled, because // either breakpoint setting or hotswapping of methods may // cause deoptimization. if (C->env()->jvmti_can_hotswap_or_post_breakpoint()) { C->dependencies()->assert_evol_method(method()); } methods_seen++; // Do some special top-level things. if (depth() == 1 && C->is_osr_compilation()) { _entry_bci = C->entry_bci(); _flow = method()->get_osr_flow_analysis(osr_bci()); if (_flow->failing()) { C->record_method_not_compilable(_flow->failure_reason()); #ifndef PRODUCT if (PrintOpto && (Verbose || WizardMode)) { tty->print_cr("OSR @%d type flow bailout: %s", _entry_bci, _flow->failure_reason()); if (Verbose) { method()->print(); method()->print_codes(); _flow->print(); } } #endif } _tf = C->tf(); // the OSR entry type is different } #ifdef ASSERT if (depth() == 1) { assert(C->is_osr_compilation() == this->is_osr_parse(), "OSR in sync"); if (C->tf() != tf()) { MutexLockerEx ml(Compile_lock, Mutex::_no_safepoint_check_flag); assert(C->env()->system_dictionary_modification_counter_changed(), "Must invalidate if TypeFuncs differ"); } } else { assert(!this->is_osr_parse(), "no recursive OSR"); } #endif methods_parsed++; #ifndef PRODUCT // add method size here to guarantee that inlined methods are added too if (TimeCompiler) _total_bytes_compiled += method()->code_size(); show_parse_info(); #endif if (failing()) { if (log) log->done("parse"); return; } gvn().set_type(root(), root()->bottom_type()); gvn().transform(top()); // Import the results of the ciTypeFlow. init_blocks(); // Merge point for all normal exits build_exits(); // Setup the initial JVM state map. SafePointNode* entry_map = create_entry_map(); // Check for bailouts during map initialization if (failing() || entry_map == NULL) { if (log) log->done("parse"); return; } Node_Notes* caller_nn = C->default_node_notes(); // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls. if (DebugInlinedCalls || depth() == 1) { C->set_default_node_notes(make_node_notes(caller_nn)); } if (is_osr_parse()) { Node* osr_buf = entry_map->in(TypeFunc::Parms+0); entry_map->set_req(TypeFunc::Parms+0, top()); set_map(entry_map); load_interpreter_state(osr_buf); } else { set_map(entry_map); do_method_entry(); } // Check for bailouts during method entry. if (failing()) { if (log) log->done("parse"); C->set_default_node_notes(caller_nn); return; } entry_map = map(); // capture any changes performed by method setup code assert(jvms()->endoff() == map()->req(), "map matches JVMS layout"); // We begin parsing as if we have just encountered a jump to the // method entry. Block* entry_block = start_block(); assert(entry_block->start() == (is_osr_parse() ? osr_bci() : 0), ""); set_map_clone(entry_map); merge_common(entry_block, entry_block->next_path_num()); #ifndef PRODUCT BytecodeParseHistogram *parse_histogram_obj = new (C->env()->arena()) BytecodeParseHistogram(this, C); set_parse_histogram( parse_histogram_obj ); #endif // Parse all the basic blocks. do_all_blocks(); C->set_default_node_notes(caller_nn); // Check for bailouts during conversion to graph if (failing()) { if (log) log->done("parse"); return; } // Fix up all exiting control flow. set_map(entry_map); do_exits(); if (log) log->done("parse nodes='%d' live='%d' memory='%d'", C->unique(), C->live_nodes(), C->node_arena()->used()); } //---------------------------do_all_blocks------------------------------------- void Parse::do_all_blocks() { bool has_irreducible = flow()->has_irreducible_entry(); // Walk over all blocks in Reverse Post-Order. while (true) { bool progress = false; for (int rpo = 0; rpo < block_count(); rpo++) { Block* block = rpo_at(rpo); if (block->is_parsed()) continue; if (!block->is_merged()) { // Dead block, no state reaches this block continue; } // Prepare to parse this block. load_state_from(block); if (stopped()) { // Block is dead. continue; } blocks_parsed++; progress = true; if (block->is_loop_head() || block->is_handler() || has_irreducible && !block->is_ready()) { // Not all preds have been parsed. We must build phis everywhere. // (Note that dead locals do not get phis built, ever.) ensure_phis_everywhere(); if (block->is_SEL_head() && (UseLoopPredicate || LoopLimitCheck)) { // Add predicate to single entry (not irreducible) loop head. assert(!block->has_merged_backedge(), "only entry paths should be merged for now"); // Need correct bci for predicate. // It is fine to set it here since do_one_block() will set it anyway. set_parse_bci(block->start()); add_predicate(); // Add new region for back branches. int edges = block->pred_count() - block->preds_parsed() + 1; // +1 for original region RegionNode *r = new (C) RegionNode(edges+1); _gvn.set_type(r, Type::CONTROL); record_for_igvn(r); r->init_req(edges, control()); set_control(r); // Add new phis. ensure_phis_everywhere(); } // Leave behind an undisturbed copy of the map, for future merges. set_map(clone_map()); } if (control()->is_Region() && !block->is_loop_head() && !has_irreducible && !block->is_handler()) { // In the absence of irreducible loops, the Region and Phis // associated with a merge that doesn't involve a backedge can // be simplified now since the RPO parsing order guarantees // that any path which was supposed to reach here has already // been parsed or must be dead. Node* c = control(); Node* result = _gvn.transform_no_reclaim(control()); if (c != result && TraceOptoParse) { tty->print_cr("Block #%d replace %d with %d", block->rpo(), c->_idx, result->_idx); } if (result != top()) { record_for_igvn(result); } } // Parse the block. do_one_block(); // Check for bailouts. if (failing()) return; } // with irreducible loops multiple passes might be necessary to parse everything if (!has_irreducible || !progress) { break; } } blocks_seen += block_count(); #ifndef PRODUCT // Make sure there are no half-processed blocks remaining. // Every remaining unprocessed block is dead and may be ignored now. for (int rpo = 0; rpo < block_count(); rpo++) { Block* block = rpo_at(rpo); if (!block->is_parsed()) { if (TraceOptoParse) { tty->print_cr("Skipped dead block %d at bci:%d", rpo, block->start()); } assert(!block->is_merged(), "no half-processed blocks"); } } #endif } //-------------------------------build_exits---------------------------------- // Build normal and exceptional exit merge points. void Parse::build_exits() { // make a clone of caller to prevent sharing of side-effects _exits.set_map(_exits.clone_map()); _exits.clean_stack(_exits.sp()); _exits.sync_jvms(); RegionNode* region = new (C) RegionNode(1); record_for_igvn(region); gvn().set_type_bottom(region); _exits.set_control(region); // Note: iophi and memphi are not transformed until do_exits. Node* iophi = new (C) PhiNode(region, Type::ABIO); Node* memphi = new (C) PhiNode(region, Type::MEMORY, TypePtr::BOTTOM); gvn().set_type_bottom(iophi); gvn().set_type_bottom(memphi); _exits.set_i_o(iophi); _exits.set_all_memory(memphi); // Add a return value to the exit state. (Do not push it yet.) if (tf()->range()->cnt() > TypeFunc::Parms) { const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms); // Don't "bind" an unloaded return klass to the ret_phi. If the klass // becomes loaded during the subsequent parsing, the loaded and unloaded // types will not join when we transform and push in do_exits(). const TypeOopPtr* ret_oop_type = ret_type->isa_oopptr(); if (ret_oop_type && !ret_oop_type->klass()->is_loaded()) { ret_type = TypeOopPtr::BOTTOM; } int ret_size = type2size[ret_type->basic_type()]; Node* ret_phi = new (C) PhiNode(region, ret_type); gvn().set_type_bottom(ret_phi); _exits.ensure_stack(ret_size); assert((int)(tf()->range()->cnt() - TypeFunc::Parms) == ret_size, "good tf range"); assert(method()->return_type()->size() == ret_size, "tf agrees w/ method"); _exits.set_argument(0, ret_phi); // here is where the parser finds it // Note: ret_phi is not yet pushed, until do_exits. } } //----------------------------build_start_state------------------------------- // Construct a state which contains only the incoming arguments from an // unknown caller. The method & bci will be NULL & InvocationEntryBci. JVMState* Compile::build_start_state(StartNode* start, const TypeFunc* tf) { int arg_size = tf->domain()->cnt(); int max_size = MAX2(arg_size, (int)tf->range()->cnt()); JVMState* jvms = new (this) JVMState(max_size - TypeFunc::Parms); SafePointNode* map = new (this) SafePointNode(max_size, NULL); record_for_igvn(map); assert(arg_size == TypeFunc::Parms + (is_osr_compilation() ? 1 : method()->arg_size()), "correct arg_size"); Node_Notes* old_nn = default_node_notes(); if (old_nn != NULL && has_method()) { Node_Notes* entry_nn = old_nn->clone(this); JVMState* entry_jvms = new(this) JVMState(method(), old_nn->jvms()); entry_jvms->set_offsets(0); entry_jvms->set_bci(entry_bci()); entry_nn->set_jvms(entry_jvms); set_default_node_notes(entry_nn); } uint i; for (i = 0; i < (uint)arg_size; i++) { Node* parm = initial_gvn()->transform(new (this) ParmNode(start, i)); map->init_req(i, parm); // Record all these guys for later GVN. record_for_igvn(parm); } for (; i < map->req(); i++) { map->init_req(i, top()); } assert(jvms->argoff() == TypeFunc::Parms, "parser gets arguments here"); set_default_node_notes(old_nn); map->set_jvms(jvms); jvms->set_map(map); return jvms; } //-----------------------------make_node_notes--------------------------------- Node_Notes* Parse::make_node_notes(Node_Notes* caller_nn) { if (caller_nn == NULL) return NULL; Node_Notes* nn = caller_nn->clone(C); JVMState* caller_jvms = nn->jvms(); JVMState* jvms = new (C) JVMState(method(), caller_jvms); jvms->set_offsets(0); jvms->set_bci(_entry_bci); nn->set_jvms(jvms); return nn; } //--------------------------return_values-------------------------------------- void Compile::return_values(JVMState* jvms) { GraphKit kit(jvms); Node* ret = new (this) ReturnNode(TypeFunc::Parms, kit.control(), kit.i_o(), kit.reset_memory(), kit.frameptr(), kit.returnadr()); // Add zero or 1 return values int ret_size = tf()->range()->cnt() - TypeFunc::Parms; if (ret_size > 0) { kit.inc_sp(-ret_size); // pop the return value(s) kit.sync_jvms(); ret->add_req(kit.argument(0)); // Note: The second dummy edge is not needed by a ReturnNode. } // bind it to root root()->add_req(ret); record_for_igvn(ret); initial_gvn()->transform_no_reclaim(ret); } //------------------------rethrow_exceptions----------------------------------- // Bind all exception states in the list into a single RethrowNode. void Compile::rethrow_exceptions(JVMState* jvms) { GraphKit kit(jvms); if (!kit.has_exceptions()) return; // nothing to generate // Load my combined exception state into the kit, with all phis transformed: SafePointNode* ex_map = kit.combine_and_pop_all_exception_states(); Node* ex_oop = kit.use_exception_state(ex_map); RethrowNode* exit = new (this) RethrowNode(kit.control(), kit.i_o(), kit.reset_memory(), kit.frameptr(), kit.returnadr(), // like a return but with exception input ex_oop); // bind to root root()->add_req(exit); record_for_igvn(exit); initial_gvn()->transform_no_reclaim(exit); } //---------------------------do_exceptions------------------------------------- // Process exceptions arising from the current bytecode. // Send caught exceptions to the proper handler within this method. // Unhandled exceptions feed into _exit. void Parse::do_exceptions() { if (!has_exceptions()) return; if (failing()) { // Pop them all off and throw them away. while (pop_exception_state() != NULL) ; return; } PreserveJVMState pjvms(this, false); SafePointNode* ex_map; while ((ex_map = pop_exception_state()) != NULL) { if (!method()->has_exception_handlers()) { // Common case: Transfer control outward. // Doing it this early allows the exceptions to common up // even between adjacent method calls. throw_to_exit(ex_map); } else { // Have to look at the exception first. assert(stopped(), "catch_inline_exceptions trashes the map"); catch_inline_exceptions(ex_map); stop_and_kill_map(); // we used up this exception state; kill it } } // We now return to our regularly scheduled program: } //---------------------------throw_to_exit------------------------------------- // Merge the given map into an exception exit from this method. // The exception exit will handle any unlocking of receiver. // The ex_oop must be saved within the ex_map, unlike merge_exception. void Parse::throw_to_exit(SafePointNode* ex_map) { // Pop the JVMS to (a copy of) the caller. GraphKit caller; caller.set_map_clone(_caller->map()); caller.set_bci(_caller->bci()); caller.set_sp(_caller->sp()); // Copy out the standard machine state: for (uint i = 0; i < TypeFunc::Parms; i++) { caller.map()->set_req(i, ex_map->in(i)); } // ...and the exception: Node* ex_oop = saved_ex_oop(ex_map); SafePointNode* caller_ex_map = caller.make_exception_state(ex_oop); // Finally, collect the new exception state in my exits: _exits.add_exception_state(caller_ex_map); } //------------------------------do_exits--------------------------------------- void Parse::do_exits() { set_parse_bci(InvocationEntryBci); // Now peephole on the return bits Node* region = _exits.control(); _exits.set_control(gvn().transform(region)); Node* iophi = _exits.i_o(); _exits.set_i_o(gvn().transform(iophi)); // On PPC64, also add MemBarRelease for constructors which write // volatile fields. As support_IRIW_for_not_multiple_copy_atomic_cpu // is set on PPC64, no sync instruction is issued after volatile // stores. We want to quarantee the same behaviour as on platforms // with total store order, although this is not required by the Java // memory model. So as with finals, we add a barrier here. if (wrote_final() PPC64_ONLY(|| (wrote_volatile() && method()->is_initializer()))) { // This method (which must be a constructor by the rules of Java) // wrote a final. The effects of all initializations must be // committed to memory before any code after the constructor // publishes the reference to the newly constructor object. // Rather than wait for the publication, we simply block the // writes here. Rather than put a barrier on only those writes // which are required to complete, we force all writes to complete. // // "All bets are off" unless the first publication occurs after a // normal return from the constructor. We do not attempt to detect // such unusual early publications. But no barrier is needed on // exceptional returns, since they cannot publish normally. // _exits.insert_mem_bar(Op_MemBarRelease, alloc_with_final()); #ifndef PRODUCT if (PrintOpto && (Verbose || WizardMode)) { method()->print_name(); tty->print_cr(" writes finals and needs a memory barrier"); } #endif } for (MergeMemStream mms(_exits.merged_memory()); mms.next_non_empty(); ) { // transform each slice of the original memphi: mms.set_memory(_gvn.transform(mms.memory())); } if (tf()->range()->cnt() > TypeFunc::Parms) { const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms); Node* ret_phi = _gvn.transform( _exits.argument(0) ); assert(_exits.control()->is_top() || !_gvn.type(ret_phi)->empty(), "return value must be well defined"); _exits.push_node(ret_type->basic_type(), ret_phi); } // Note: Logic for creating and optimizing the ReturnNode is in Compile. // Unlock along the exceptional paths. // This is done late so that we can common up equivalent exceptions // (e.g., null checks) arising from multiple points within this method. // See GraphKit::add_exception_state, which performs the commoning. bool do_synch = method()->is_synchronized() && GenerateSynchronizationCode; // record exit from a method if compiled while Dtrace is turned on. if (do_synch || C->env()->dtrace_method_probes()) { // First move the exception list out of _exits: GraphKit kit(_exits.transfer_exceptions_into_jvms()); SafePointNode* normal_map = kit.map(); // keep this guy safe // Now re-collect the exceptions into _exits: SafePointNode* ex_map; while ((ex_map = kit.pop_exception_state()) != NULL) { Node* ex_oop = kit.use_exception_state(ex_map); // Force the exiting JVM state to have this method at InvocationEntryBci. // The exiting JVM state is otherwise a copy of the calling JVMS. JVMState* caller = kit.jvms(); JVMState* ex_jvms = caller->clone_shallow(C); ex_jvms->set_map(kit.clone_map()); ex_jvms->map()->set_jvms(ex_jvms); ex_jvms->set_bci( InvocationEntryBci); kit.set_jvms(ex_jvms); if (do_synch) { // Add on the synchronized-method box/object combo kit.map()->push_monitor(_synch_lock); // Unlock! kit.shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node()); } if (C->env()->dtrace_method_probes()) { kit.make_dtrace_method_exit(method()); } // Done with exception-path processing. ex_map = kit.make_exception_state(ex_oop); assert(ex_jvms->same_calls_as(ex_map->jvms()), "sanity"); // Pop the last vestige of this method: ex_map->set_jvms(caller->clone_shallow(C)); ex_map->jvms()->set_map(ex_map); _exits.push_exception_state(ex_map); } assert(_exits.map() == normal_map, "keep the same return state"); } { // Capture very early exceptions (receiver null checks) from caller JVMS GraphKit caller(_caller); SafePointNode* ex_map; while ((ex_map = caller.pop_exception_state()) != NULL) { _exits.add_exception_state(ex_map); } } } //-----------------------------create_entry_map------------------------------- // Initialize our parser map to contain the types at method entry. // For OSR, the map contains a single RawPtr parameter. // Initial monitor locking for sync. methods is performed by do_method_entry. SafePointNode* Parse::create_entry_map() { // Check for really stupid bail-out cases. uint len = TypeFunc::Parms + method()->max_locals() + method()->max_stack(); if (len >= 32760) { C->record_method_not_compilable_all_tiers("too many local variables"); return NULL; } // If this is an inlined method, we may have to do a receiver null check. if (_caller->has_method() && is_normal_parse() && !method()->is_static()) { GraphKit kit(_caller); kit.null_check_receiver_before_call(method()); _caller = kit.transfer_exceptions_into_jvms(); if (kit.stopped()) { _exits.add_exception_states_from(_caller); _exits.set_jvms(_caller); return NULL; } } assert(method() != NULL, "parser must have a method"); // Create an initial safepoint to hold JVM state during parsing JVMState* jvms = new (C) JVMState(method(), _caller->has_method() ? _caller : NULL); set_map(new (C) SafePointNode(len, jvms)); jvms->set_map(map()); record_for_igvn(map()); assert(jvms->endoff() == len, "correct jvms sizing"); SafePointNode* inmap = _caller->map(); assert(inmap != NULL, "must have inmap"); uint i; // Pass thru the predefined input parameters. for (i = 0; i < TypeFunc::Parms; i++) { map()->init_req(i, inmap->in(i)); } if (depth() == 1) { assert(map()->memory()->Opcode() == Op_Parm, ""); // Insert the memory aliasing node set_all_memory(reset_memory()); } assert(merged_memory(), ""); // Now add the locals which are initially bound to arguments: uint arg_size = tf()->domain()->cnt(); ensure_stack(arg_size - TypeFunc::Parms); // OSR methods have funny args for (i = TypeFunc::Parms; i < arg_size; i++) { map()->init_req(i, inmap->argument(_caller, i - TypeFunc::Parms)); } // Clear out the rest of the map (locals and stack) for (i = arg_size; i < len; i++) { map()->init_req(i, top()); } SafePointNode* entry_map = stop(); return entry_map; } //-----------------------------do_method_entry-------------------------------- // Emit any code needed in the pseudo-block before BCI zero. // The main thing to do is lock the receiver of a synchronized method. void Parse::do_method_entry() { set_parse_bci(InvocationEntryBci); // Pseudo-BCP set_sp(0); // Java Stack Pointer NOT_PRODUCT( count_compiled_calls(true/*at_method_entry*/, false/*is_inline*/); ) if (C->env()->dtrace_method_probes()) { make_dtrace_method_entry(method()); } // If the method is synchronized, we need to construct a lock node, attach // it to the Start node, and pin it there. if (method()->is_synchronized()) { // Insert a FastLockNode right after the Start which takes as arguments // the current thread pointer, the "this" pointer & the address of the // stack slot pair used for the lock. The "this" pointer is a projection // off the start node, but the locking spot has to be constructed by // creating a ConLNode of 0, and boxing it with a BoxLockNode. The BoxLockNode // becomes the second argument to the FastLockNode call. The // FastLockNode becomes the new control parent to pin it to the start. // Setup Object Pointer Node *lock_obj = NULL; if(method()->is_static()) { ciInstance* mirror = _method->holder()->java_mirror(); const TypeInstPtr *t_lock = TypeInstPtr::make(mirror); lock_obj = makecon(t_lock); } else { // Else pass the "this" pointer, lock_obj = local(0); // which is Parm0 from StartNode } // Clear out dead values from the debug info. kill_dead_locals(); // Build the FastLockNode _synch_lock = shared_lock(lock_obj); } // Feed profiling data for parameters to the type system so it can // propagate it as speculative types record_profiled_parameters_for_speculation(); if (depth() == 1) { increment_and_test_invocation_counter(Tier2CompileThreshold); } } //------------------------------init_blocks------------------------------------ // Initialize our parser map to contain the types/monitors at method entry. void Parse::init_blocks() { // Create the blocks. _block_count = flow()->block_count(); _blocks = NEW_RESOURCE_ARRAY(Block, _block_count); Copy::zero_to_bytes(_blocks, sizeof(Block)*_block_count); int rpo; // Initialize the structs. for (rpo = 0; rpo < block_count(); rpo++) { Block* block = rpo_at(rpo); block->init_node(this, rpo); } // Collect predecessor and successor information. for (rpo = 0; rpo < block_count(); rpo++) { Block* block = rpo_at(rpo); block->init_graph(this); } } //-------------------------------init_node------------------------------------- void Parse::Block::init_node(Parse* outer, int rpo) { _flow = outer->flow()->rpo_at(rpo); _pred_count = 0; _preds_parsed = 0; _count = 0; assert(pred_count() == 0 && preds_parsed() == 0, "sanity"); assert(!(is_merged() || is_parsed() || is_handler() || has_merged_backedge()), "sanity"); assert(_live_locals.size() == 0, "sanity"); // entry point has additional predecessor if (flow()->is_start()) _pred_count++; assert(flow()->is_start() == (this == outer->start_block()), ""); } //-------------------------------init_graph------------------------------------ void Parse::Block::init_graph(Parse* outer) { // Create the successor list for this parser block. GrowableArray* tfs = flow()->successors(); GrowableArray* tfe = flow()->exceptions(); int ns = tfs->length(); int ne = tfe->length(); _num_successors = ns; _all_successors = ns+ne; _successors = (ns+ne == 0) ? NULL : NEW_RESOURCE_ARRAY(Block*, ns+ne); int p = 0; for (int i = 0; i < ns+ne; i++) { ciTypeFlow::Block* tf2 = (i < ns) ? tfs->at(i) : tfe->at(i-ns); Block* block2 = outer->rpo_at(tf2->rpo()); _successors[i] = block2; // Accumulate pred info for the other block, too. if (i < ns) { block2->_pred_count++; } else { block2->_is_handler = true; } #ifdef ASSERT // A block's successors must be distinguishable by BCI. // That is, no bytecode is allowed to branch to two different // clones of the same code location. for (int j = 0; j < i; j++) { Block* block1 = _successors[j]; if (block1 == block2) continue; // duplicates are OK assert(block1->start() != block2->start(), "successors have unique bcis"); } #endif } // Note: We never call next_path_num along exception paths, so they // never get processed as "ready". Also, the input phis of exception // handlers get specially processed, so that } //---------------------------successor_for_bci--------------------------------- Parse::Block* Parse::Block::successor_for_bci(int bci) { for (int i = 0; i < all_successors(); i++) { Block* block2 = successor_at(i); if (block2->start() == bci) return block2; } // We can actually reach here if ciTypeFlow traps out a block // due to an unloaded class, and concurrently with compilation the // class is then loaded, so that a later phase of the parser is // able to see more of the bytecode CFG. Or, the flow pass and // the parser can have a minor difference of opinion about executability // of bytecodes. For example, "obj.field = null" is executable even // if the field's type is an unloaded class; the flow pass used to // make a trap for such code. return NULL; } //-----------------------------stack_type_at----------------------------------- const Type* Parse::Block::stack_type_at(int i) const { return get_type(flow()->stack_type_at(i)); } //-----------------------------local_type_at----------------------------------- const Type* Parse::Block::local_type_at(int i) const { // Make dead locals fall to bottom. if (_live_locals.size() == 0) { MethodLivenessResult live_locals = flow()->outer()->method()->liveness_at_bci(start()); // This bitmap can be zero length if we saw a breakpoint. // In such cases, pretend they are all live. ((Block*)this)->_live_locals = live_locals; } if (_live_locals.size() > 0 && !_live_locals.at(i)) return Type::BOTTOM; return get_type(flow()->local_type_at(i)); } #ifndef PRODUCT //----------------------------name_for_bc-------------------------------------- // helper method for BytecodeParseHistogram static const char* name_for_bc(int i) { return Bytecodes::is_defined(i) ? Bytecodes::name(Bytecodes::cast(i)) : "xxxunusedxxx"; } //----------------------------BytecodeParseHistogram------------------------------------ Parse::BytecodeParseHistogram::BytecodeParseHistogram(Parse *p, Compile *c) { _parser = p; _compiler = c; if( ! _initialized ) { _initialized = true; reset(); } } //----------------------------current_count------------------------------------ int Parse::BytecodeParseHistogram::current_count(BPHType bph_type) { switch( bph_type ) { case BPH_transforms: { return _parser->gvn().made_progress(); } case BPH_values: { return _parser->gvn().made_new_values(); } default: { ShouldNotReachHere(); return 0; } } } //----------------------------initialized-------------------------------------- bool Parse::BytecodeParseHistogram::initialized() { return _initialized; } //----------------------------reset-------------------------------------------- void Parse::BytecodeParseHistogram::reset() { int i = Bytecodes::number_of_codes; while (i-- > 0) { _bytecodes_parsed[i] = 0; _nodes_constructed[i] = 0; _nodes_transformed[i] = 0; _new_values[i] = 0; } } //----------------------------set_initial_state-------------------------------- // Record info when starting to parse one bytecode void Parse::BytecodeParseHistogram::set_initial_state( Bytecodes::Code bc ) { if( PrintParseStatistics && !_parser->is_osr_parse() ) { _initial_bytecode = bc; _initial_node_count = _compiler->unique(); _initial_transforms = current_count(BPH_transforms); _initial_values = current_count(BPH_values); } } //----------------------------record_change-------------------------------- // Record results of parsing one bytecode void Parse::BytecodeParseHistogram::record_change() { if( PrintParseStatistics && !_parser->is_osr_parse() ) { ++_bytecodes_parsed[_initial_bytecode]; _nodes_constructed [_initial_bytecode] += (_compiler->unique() - _initial_node_count); _nodes_transformed [_initial_bytecode] += (current_count(BPH_transforms) - _initial_transforms); _new_values [_initial_bytecode] += (current_count(BPH_values) - _initial_values); } } //----------------------------print-------------------------------------------- void Parse::BytecodeParseHistogram::print(float cutoff) { ResourceMark rm; // print profile int total = 0; int i = 0; for( i = 0; i < Bytecodes::number_of_codes; ++i ) { total += _bytecodes_parsed[i]; } int abs_sum = 0; tty->cr(); //0123456789012345678901234567890123456789012345678901234567890123456789 tty->print_cr("Histogram of %d parsed bytecodes:", total); if( total == 0 ) { return; } tty->cr(); tty->print_cr("absolute: count of compiled bytecodes of this type"); tty->print_cr("relative: percentage contribution to compiled nodes"); tty->print_cr("nodes : Average number of nodes constructed per bytecode"); tty->print_cr("rnodes : Significance towards total nodes constructed, (nodes*relative)"); tty->print_cr("transforms: Average amount of tranform progress per bytecode compiled"); tty->print_cr("values : Average number of node values improved per bytecode"); tty->print_cr("name : Bytecode name"); tty->cr(); tty->print_cr(" absolute relative nodes rnodes transforms values name"); tty->print_cr("----------------------------------------------------------------------"); while (--i > 0) { int abs = _bytecodes_parsed[i]; float rel = abs * 100.0F / total; float nodes = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_constructed[i])/_bytecodes_parsed[i]; float rnodes = _bytecodes_parsed[i] == 0 ? 0 : rel * nodes; float xforms = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_transformed[i])/_bytecodes_parsed[i]; float values = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _new_values [i])/_bytecodes_parsed[i]; if (cutoff <= rel) { tty->print_cr("%10d %7.2f%% %6.1f %6.2f %6.1f %6.1f %s", abs, rel, nodes, rnodes, xforms, values, name_for_bc(i)); abs_sum += abs; } } tty->print_cr("----------------------------------------------------------------------"); float rel_sum = abs_sum * 100.0F / total; tty->print_cr("%10d %7.2f%% (cutoff = %.2f%%)", abs_sum, rel_sum, cutoff); tty->print_cr("----------------------------------------------------------------------"); tty->cr(); } #endif //----------------------------load_state_from---------------------------------- // Load block/map/sp. But not do not touch iter/bci. void Parse::load_state_from(Block* block) { set_block(block); // load the block's JVM state: set_map(block->start_map()); set_sp( block->start_sp()); } //-----------------------------record_state------------------------------------ void Parse::Block::record_state(Parse* p) { assert(!is_merged(), "can only record state once, on 1st inflow"); assert(start_sp() == p->sp(), "stack pointer must agree with ciTypeFlow"); set_start_map(p->stop()); } //------------------------------do_one_block----------------------------------- void Parse::do_one_block() { if (TraceOptoParse) { Block *b = block(); int ns = b->num_successors(); int nt = b->all_successors(); tty->print("Parsing block #%d at bci [%d,%d), successors: ", block()->rpo(), block()->start(), block()->limit()); for (int i = 0; i < nt; i++) { tty->print((( i < ns) ? " %d" : " %d(e)"), b->successor_at(i)->rpo()); } if (b->is_loop_head()) tty->print(" lphd"); tty->print_cr(""); } assert(block()->is_merged(), "must be merged before being parsed"); block()->mark_parsed(); ++_blocks_parsed; // Set iterator to start of block. iter().reset_to_bci(block()->start()); CompileLog* log = C->log(); // Parse bytecodes while (!stopped() && !failing()) { iter().next(); // Learn the current bci from the iterator: set_parse_bci(iter().cur_bci()); if (bci() == block()->limit()) { // Do not walk into the next block until directed by do_all_blocks. merge(bci()); break; } assert(bci() < block()->limit(), "bci still in block"); if (log != NULL) { // Output an optional context marker, to help place actions // that occur during parsing of this BC. If there is no log // output until the next context string, this context string // will be silently ignored. log->set_context("bc code='%d' bci='%d'", (int)bc(), bci()); } if (block()->has_trap_at(bci())) { // We must respect the flow pass's traps, because it will refuse // to produce successors for trapping blocks. int trap_index = block()->flow()->trap_index(); assert(trap_index != 0, "trap index must be valid"); uncommon_trap(trap_index); break; } NOT_PRODUCT( parse_histogram()->set_initial_state(bc()); ); #ifdef ASSERT int pre_bc_sp = sp(); int inputs, depth; bool have_se = !stopped() && compute_stack_effects(inputs, depth); assert(!have_se || pre_bc_sp >= inputs, err_msg_res("have enough stack to execute this BC: pre_bc_sp=%d, inputs=%d", pre_bc_sp, inputs)); #endif //ASSERT do_one_bytecode(); assert(!have_se || stopped() || failing() || (sp() - pre_bc_sp) == depth, err_msg_res("incorrect depth prediction: sp=%d, pre_bc_sp=%d, depth=%d", sp(), pre_bc_sp, depth)); do_exceptions(); NOT_PRODUCT( parse_histogram()->record_change(); ); if (log != NULL) log->clear_context(); // skip marker if nothing was printed // Fall into next bytecode. Each bytecode normally has 1 sequential // successor which is typically made ready by visiting this bytecode. // If the successor has several predecessors, then it is a merge // point, starts a new basic block, and is handled like other basic blocks. } } //------------------------------merge------------------------------------------ void Parse::set_parse_bci(int bci) { set_bci(bci); Node_Notes* nn = C->default_node_notes(); if (nn == NULL) return; // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls. if (!DebugInlinedCalls && depth() > 1) { return; } // Update the JVMS annotation, if present. JVMState* jvms = nn->jvms(); if (jvms != NULL && jvms->bci() != bci) { // Update the JVMS. jvms = jvms->clone_shallow(C); jvms->set_bci(bci); nn->set_jvms(jvms); } } //------------------------------merge------------------------------------------ // Merge the current mapping into the basic block starting at bci void Parse::merge(int target_bci) { Block* target = successor_for_bci(target_bci); if (target == NULL) { handle_missing_successor(target_bci); return; } assert(!target->is_ready(), "our arrival must be expected"); int pnum = target->next_path_num(); merge_common(target, pnum); } //-------------------------merge_new_path-------------------------------------- // Merge the current mapping into the basic block, using a new path void Parse::merge_new_path(int target_bci) { Block* target = successor_for_bci(target_bci); if (target == NULL) { handle_missing_successor(target_bci); return; } assert(!target->is_ready(), "new path into frozen graph"); int pnum = target->add_new_path(); merge_common(target, pnum); } //-------------------------merge_exception------------------------------------- // Merge the current mapping into the basic block starting at bci // The ex_oop must be pushed on the stack, unlike throw_to_exit. void Parse::merge_exception(int target_bci) { assert(sp() == 1, "must have only the throw exception on the stack"); Block* target = successor_for_bci(target_bci); if (target == NULL) { handle_missing_successor(target_bci); return; } assert(target->is_handler(), "exceptions are handled by special blocks"); int pnum = target->add_new_path(); merge_common(target, pnum); } //--------------------handle_missing_successor--------------------------------- void Parse::handle_missing_successor(int target_bci) { #ifndef PRODUCT Block* b = block(); int trap_bci = b->flow()->has_trap()? b->flow()->trap_bci(): -1; tty->print_cr("### Missing successor at bci:%d for block #%d (trap_bci:%d)", target_bci, b->rpo(), trap_bci); #endif ShouldNotReachHere(); } //--------------------------merge_common--------------------------------------- void Parse::merge_common(Parse::Block* target, int pnum) { if (TraceOptoParse) { tty->print("Merging state at block #%d bci:%d", target->rpo(), target->start()); } // Zap extra stack slots to top assert(sp() == target->start_sp(), ""); clean_stack(sp()); if (!target->is_merged()) { // No prior mapping at this bci if (TraceOptoParse) { tty->print(" with empty state"); } // If this path is dead, do not bother capturing it as a merge. // It is "as if" we had 1 fewer predecessors from the beginning. if (stopped()) { if (TraceOptoParse) tty->print_cr(", but path is dead and doesn't count"); return; } // Record that a new block has been merged. ++_blocks_merged; // Make a region if we know there are multiple or unpredictable inputs. // (Also, if this is a plain fall-through, we might see another region, // which must not be allowed into this block's map.) if (pnum > PhiNode::Input // Known multiple inputs. || target->is_handler() // These have unpredictable inputs. || target->is_loop_head() // Known multiple inputs || control()->is_Region()) { // We must hide this guy. int current_bci = bci(); set_parse_bci(target->start()); // Set target bci if (target->is_SEL_head()) { DEBUG_ONLY( target->mark_merged_backedge(block()); ) if (target->start() == 0) { // Add loop predicate for the special case when // there are backbranches to the method entry. add_predicate(); } } // Add a Region to start the new basic block. Phis will be added // later lazily. int edges = target->pred_count(); if (edges < pnum) edges = pnum; // might be a new path! RegionNode *r = new (C) RegionNode(edges+1); gvn().set_type(r, Type::CONTROL); record_for_igvn(r); // zap all inputs to NULL for debugging (done in Node(uint) constructor) // for (int j = 1; j < edges+1; j++) { r->init_req(j, NULL); } r->init_req(pnum, control()); set_control(r); set_parse_bci(current_bci); // Restore bci } // Convert the existing Parser mapping into a mapping at this bci. store_state_to(target); assert(target->is_merged(), "do not come here twice"); } else { // Prior mapping at this bci if (TraceOptoParse) { tty->print(" with previous state"); } #ifdef ASSERT if (target->is_SEL_head()) { target->mark_merged_backedge(block()); } #endif // We must not manufacture more phis if the target is already parsed. bool nophi = target->is_parsed(); SafePointNode* newin = map();// Hang on to incoming mapping Block* save_block = block(); // Hang on to incoming block; load_state_from(target); // Get prior mapping assert(newin->jvms()->locoff() == jvms()->locoff(), "JVMS layouts agree"); assert(newin->jvms()->stkoff() == jvms()->stkoff(), "JVMS layouts agree"); assert(newin->jvms()->monoff() == jvms()->monoff(), "JVMS layouts agree"); assert(newin->jvms()->endoff() == jvms()->endoff(), "JVMS layouts agree"); // Iterate over my current mapping and the old mapping. // Where different, insert Phi functions. // Use any existing Phi functions. assert(control()->is_Region(), "must be merging to a region"); RegionNode* r = control()->as_Region(); // Compute where to merge into // Merge incoming control path r->init_req(pnum, newin->control()); if (pnum == 1) { // Last merge for this Region? if (!block()->flow()->is_irreducible_entry()) { Node* result = _gvn.transform_no_reclaim(r); if (r != result && TraceOptoParse) { tty->print_cr("Block #%d replace %d with %d", block()->rpo(), r->_idx, result->_idx); } } record_for_igvn(r); } // Update all the non-control inputs to map: assert(TypeFunc::Parms == newin->jvms()->locoff(), "parser map should contain only youngest jvms"); bool check_elide_phi = target->is_SEL_backedge(save_block); for (uint j = 1; j < newin->req(); j++) { Node* m = map()->in(j); // Current state of target. Node* n = newin->in(j); // Incoming change to target state. PhiNode* phi; if (m->is_Phi() && m->as_Phi()->region() == r) phi = m->as_Phi(); else phi = NULL; if (m != n) { // Different; must merge switch (j) { // Frame pointer and Return Address never changes case TypeFunc::FramePtr:// Drop m, use the original value case TypeFunc::ReturnAdr: break; case TypeFunc::Memory: // Merge inputs to the MergeMem node assert(phi == NULL, "the merge contains phis, not vice versa"); merge_memory_edges(n->as_MergeMem(), pnum, nophi); continue; default: // All normal stuff if (phi == NULL) { const JVMState* jvms = map()->jvms(); if (EliminateNestedLocks && jvms->is_mon(j) && jvms->is_monitor_box(j)) { // BoxLock nodes are not commoning. // Use old BoxLock node as merged box. assert(newin->jvms()->is_monitor_box(j), "sanity"); // This assert also tests that nodes are BoxLock. assert(BoxLockNode::same_slot(n, m), "sanity"); C->gvn_replace_by(n, m); } else if (!check_elide_phi || !target->can_elide_SEL_phi(j)) { phi = ensure_phi(j, nophi); } } break; } } // At this point, n might be top if: // - there is no phi (because TypeFlow detected a conflict), or // - the corresponding control edges is top (a dead incoming path) // It is a bug if we create a phi which sees a garbage value on a live path. if (phi != NULL) { assert(n != top() || r->in(pnum) == top(), "live value must not be garbage"); assert(phi->region() == r, ""); phi->set_req(pnum, n); // Then add 'n' to the merge if (pnum == PhiNode::Input) { // Last merge for this Phi. // So far, Phis have had a reasonable type from ciTypeFlow. // Now _gvn will join that with the meet of current inputs. // BOTTOM is never permissible here, 'cause pessimistically // Phis of pointers cannot lose the basic pointer type. debug_only(const Type* bt1 = phi->bottom_type()); assert(bt1 != Type::BOTTOM, "should not be building conflict phis"); map()->set_req(j, _gvn.transform_no_reclaim(phi)); debug_only(const Type* bt2 = phi->bottom_type()); assert(bt2->higher_equal(bt1), "must be consistent with type-flow"); record_for_igvn(phi); } } } // End of for all values to be merged if (pnum == PhiNode::Input && !r->in(0)) { // The occasional useless Region assert(control() == r, ""); set_control(r->nonnull_req()); } // newin has been subsumed into the lazy merge, and is now dead. set_block(save_block); stop(); // done with this guy, for now } if (TraceOptoParse) { tty->print_cr(" on path %d", pnum); } // Done with this parser state. assert(stopped(), ""); } //--------------------------merge_memory_edges--------------------------------- void Parse::merge_memory_edges(MergeMemNode* n, int pnum, bool nophi) { // (nophi means we must not create phis, because we already parsed here) assert(n != NULL, ""); // Merge the inputs to the MergeMems MergeMemNode* m = merged_memory(); assert(control()->is_Region(), "must be merging to a region"); RegionNode* r = control()->as_Region(); PhiNode* base = NULL; MergeMemNode* remerge = NULL; for (MergeMemStream mms(m, n); mms.next_non_empty2(); ) { Node *p = mms.force_memory(); Node *q = mms.memory2(); if (mms.is_empty() && nophi) { // Trouble: No new splits allowed after a loop body is parsed. // Instead, wire the new split into a MergeMem on the backedge. // The optimizer will sort it out, slicing the phi. if (remerge == NULL) { assert(base != NULL, ""); assert(base->in(0) != NULL, "should not be xformed away"); remerge = MergeMemNode::make(C, base->in(pnum)); gvn().set_type(remerge, Type::MEMORY); base->set_req(pnum, remerge); } remerge->set_memory_at(mms.alias_idx(), q); continue; } assert(!q->is_MergeMem(), ""); PhiNode* phi; if (p != q) { phi = ensure_memory_phi(mms.alias_idx(), nophi); } else { if (p->is_Phi() && p->as_Phi()->region() == r) phi = p->as_Phi(); else phi = NULL; } // Insert q into local phi if (phi != NULL) { assert(phi->region() == r, ""); p = phi; phi->set_req(pnum, q); if (mms.at_base_memory()) { base = phi; // delay transforming it } else if (pnum == 1) { record_for_igvn(phi); p = _gvn.transform_no_reclaim(phi); } mms.set_memory(p);// store back through the iterator } } // Transform base last, in case we must fiddle with remerging. if (base != NULL && pnum == 1) { record_for_igvn(base); m->set_base_memory( _gvn.transform_no_reclaim(base) ); } } //------------------------ensure_phis_everywhere------------------------------- void Parse::ensure_phis_everywhere() { ensure_phi(TypeFunc::I_O); // Ensure a phi on all currently known memories. for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) { ensure_memory_phi(mms.alias_idx()); debug_only(mms.set_memory()); // keep the iterator happy } // Note: This is our only chance to create phis for memory slices. // If we miss a slice that crops up later, it will have to be // merged into the base-memory phi that we are building here. // Later, the optimizer will comb out the knot, and build separate // phi-loops for each memory slice that matters. // Monitors must nest nicely and not get confused amongst themselves. // Phi-ify everything up to the monitors, though. uint monoff = map()->jvms()->monoff(); uint nof_monitors = map()->jvms()->nof_monitors(); assert(TypeFunc::Parms == map()->jvms()->locoff(), "parser map should contain only youngest jvms"); bool check_elide_phi = block()->is_SEL_head(); for (uint i = TypeFunc::Parms; i < monoff; i++) { if (!check_elide_phi || !block()->can_elide_SEL_phi(i)) { ensure_phi(i); } } // Even monitors need Phis, though they are well-structured. // This is true for OSR methods, and also for the rare cases where // a monitor object is the subject of a replace_in_map operation. // See bugs 4426707 and 5043395. for (uint m = 0; m < nof_monitors; m++) { ensure_phi(map()->jvms()->monitor_obj_offset(m)); } } //-----------------------------add_new_path------------------------------------ // Add a previously unaccounted predecessor to this block. int Parse::Block::add_new_path() { // If there is no map, return the lowest unused path number. if (!is_merged()) return pred_count()+1; // there will be a map shortly SafePointNode* map = start_map(); if (!map->control()->is_Region()) return pred_count()+1; // there may be a region some day RegionNode* r = map->control()->as_Region(); // Add new path to the region. uint pnum = r->req(); r->add_req(NULL); for (uint i = 1; i < map->req(); i++) { Node* n = map->in(i); if (i == TypeFunc::Memory) { // Ensure a phi on all currently known memories. for (MergeMemStream mms(n->as_MergeMem()); mms.next_non_empty(); ) { Node* phi = mms.memory(); if (phi->is_Phi() && phi->as_Phi()->region() == r) { assert(phi->req() == pnum, "must be same size as region"); phi->add_req(NULL); } } } else { if (n->is_Phi() && n->as_Phi()->region() == r) { assert(n->req() == pnum, "must be same size as region"); n->add_req(NULL); } } } return pnum; } //------------------------------ensure_phi------------------------------------- // Turn the idx'th entry of the current map into a Phi PhiNode *Parse::ensure_phi(int idx, bool nocreate) { SafePointNode* map = this->map(); Node* region = map->control(); assert(region->is_Region(), ""); Node* o = map->in(idx); assert(o != NULL, ""); if (o == top()) return NULL; // TOP always merges into TOP if (o->is_Phi() && o->as_Phi()->region() == region) { return o->as_Phi(); } // Now use a Phi here for merging assert(!nocreate, "Cannot build a phi for a block already parsed."); const JVMState* jvms = map->jvms(); const Type* t; if (jvms->is_loc(idx)) { t = block()->local_type_at(idx - jvms->locoff()); } else if (jvms->is_stk(idx)) { t = block()->stack_type_at(idx - jvms->stkoff()); } else if (jvms->is_mon(idx)) { assert(!jvms->is_monitor_box(idx), "no phis for boxes"); t = TypeInstPtr::BOTTOM; // this is sufficient for a lock object } else if ((uint)idx < TypeFunc::Parms) { t = o->bottom_type(); // Type::RETURN_ADDRESS or such-like. } else { assert(false, "no type information for this phi"); } // If the type falls to bottom, then this must be a local that // is mixing ints and oops or some such. Forcing it to top // makes it go dead. if (t == Type::BOTTOM) { map->set_req(idx, top()); return NULL; } // Do not create phis for top either. // A top on a non-null control flow must be an unused even after the.phi. if (t == Type::TOP || t == Type::HALF) { map->set_req(idx, top()); return NULL; } PhiNode* phi = PhiNode::make(region, o, t); gvn().set_type(phi, t); if (C->do_escape_analysis()) record_for_igvn(phi); map->set_req(idx, phi); return phi; } //--------------------------ensure_memory_phi---------------------------------- // Turn the idx'th slice of the current memory into a Phi PhiNode *Parse::ensure_memory_phi(int idx, bool nocreate) { MergeMemNode* mem = merged_memory(); Node* region = control(); assert(region->is_Region(), ""); Node *o = (idx == Compile::AliasIdxBot)? mem->base_memory(): mem->memory_at(idx); assert(o != NULL && o != top(), ""); PhiNode* phi; if (o->is_Phi() && o->as_Phi()->region() == region) { phi = o->as_Phi(); if (phi == mem->base_memory() && idx >= Compile::AliasIdxRaw) { // clone the shared base memory phi to make a new memory split assert(!nocreate, "Cannot build a phi for a block already parsed."); const Type* t = phi->bottom_type(); const TypePtr* adr_type = C->get_adr_type(idx); phi = phi->slice_memory(adr_type); gvn().set_type(phi, t); } return phi; } // Now use a Phi here for merging assert(!nocreate, "Cannot build a phi for a block already parsed."); const Type* t = o->bottom_type(); const TypePtr* adr_type = C->get_adr_type(idx); phi = PhiNode::make(region, o, t, adr_type); gvn().set_type(phi, t); if (idx == Compile::AliasIdxBot) mem->set_base_memory(phi); else mem->set_memory_at(idx, phi); return phi; } //------------------------------call_register_finalizer----------------------- // Check the klass of the receiver and call register_finalizer if the // class need finalization. void Parse::call_register_finalizer() { Node* receiver = local(0); assert(receiver != NULL && receiver->bottom_type()->isa_instptr() != NULL, "must have non-null instance type"); const TypeInstPtr *tinst = receiver->bottom_type()->isa_instptr(); if (tinst != NULL && tinst->klass()->is_loaded() && !tinst->klass_is_exact()) { // The type isn't known exactly so see if CHA tells us anything. ciInstanceKlass* ik = tinst->klass()->as_instance_klass(); if (!Dependencies::has_finalizable_subclass(ik)) { // No finalizable subclasses so skip the dynamic check. C->dependencies()->assert_has_no_finalizable_subclasses(ik); return; } } // Insert a dynamic test for whether the instance needs // finalization. In general this will fold up since the concrete // class is often visible so the access flags are constant. Node* klass_addr = basic_plus_adr( receiver, receiver, oopDesc::klass_offset_in_bytes() ); Node* klass = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), klass_addr, TypeInstPtr::KLASS) ); Node* access_flags_addr = basic_plus_adr(klass, klass, in_bytes(Klass::access_flags_offset())); Node* access_flags = make_load(NULL, access_flags_addr, TypeInt::INT, T_INT, MemNode::unordered); Node* mask = _gvn.transform(new (C) AndINode(access_flags, intcon(JVM_ACC_HAS_FINALIZER))); Node* check = _gvn.transform(new (C) CmpINode(mask, intcon(0))); Node* test = _gvn.transform(new (C) BoolNode(check, BoolTest::ne)); IfNode* iff = create_and_map_if(control(), test, PROB_MAX, COUNT_UNKNOWN); RegionNode* result_rgn = new (C) RegionNode(3); record_for_igvn(result_rgn); Node *skip_register = _gvn.transform(new (C) IfFalseNode(iff)); result_rgn->init_req(1, skip_register); Node *needs_register = _gvn.transform(new (C) IfTrueNode(iff)); set_control(needs_register); if (stopped()) { // There is no slow path. result_rgn->init_req(2, top()); } else { Node *call = make_runtime_call(RC_NO_LEAF, OptoRuntime::register_finalizer_Type(), OptoRuntime::register_finalizer_Java(), NULL, TypePtr::BOTTOM, receiver); make_slow_call_ex(call, env()->Throwable_klass(), true); Node* fast_io = call->in(TypeFunc::I_O); Node* fast_mem = call->in(TypeFunc::Memory); // These two phis are pre-filled with copies of of the fast IO and Memory Node* io_phi = PhiNode::make(result_rgn, fast_io, Type::ABIO); Node* mem_phi = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM); result_rgn->init_req(2, control()); io_phi ->init_req(2, i_o()); mem_phi ->init_req(2, reset_memory()); set_all_memory( _gvn.transform(mem_phi) ); set_i_o( _gvn.transform(io_phi) ); } set_control( _gvn.transform(result_rgn) ); } //------------------------------return_current--------------------------------- // Append current _map to _exit_return void Parse::return_current(Node* value) { if (RegisterFinalizersAtInit && method()->intrinsic_id() == vmIntrinsics::_Object_init) { call_register_finalizer(); } // Do not set_parse_bci, so that return goo is credited to the return insn. set_bci(InvocationEntryBci); if (method()->is_synchronized() && GenerateSynchronizationCode) { shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node()); } if (C->env()->dtrace_method_probes()) { make_dtrace_method_exit(method()); } SafePointNode* exit_return = _exits.map(); exit_return->in( TypeFunc::Control )->add_req( control() ); exit_return->in( TypeFunc::I_O )->add_req( i_o () ); Node *mem = exit_return->in( TypeFunc::Memory ); for (MergeMemStream mms(mem->as_MergeMem(), merged_memory()); mms.next_non_empty2(); ) { if (mms.is_empty()) { // get a copy of the base memory, and patch just this one input const TypePtr* adr_type = mms.adr_type(C); Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type); assert(phi->as_Phi()->region() == mms.base_memory()->in(0), ""); gvn().set_type_bottom(phi); phi->del_req(phi->req()-1); // prepare to re-patch mms.set_memory(phi); } mms.memory()->add_req(mms.memory2()); } // frame pointer is always same, already captured if (value != NULL) { // If returning oops to an interface-return, there is a silent free // cast from oop to interface allowed by the Verifier. Make it explicit // here. Node* phi = _exits.argument(0); const TypeInstPtr *tr = phi->bottom_type()->isa_instptr(); if( tr && tr->klass()->is_loaded() && tr->klass()->is_interface() ) { const TypeInstPtr *tp = value->bottom_type()->isa_instptr(); if (tp && tp->klass()->is_loaded() && !tp->klass()->is_interface()) { // sharpen the type eagerly; this eases certain assert checking if (tp->higher_equal(TypeInstPtr::NOTNULL)) tr = tr->join(TypeInstPtr::NOTNULL)->is_instptr(); value = _gvn.transform(new (C) CheckCastPPNode(0,value,tr)); } } phi->add_req(value); } stop_and_kill_map(); // This CFG path dies here } //------------------------------add_safepoint---------------------------------- void Parse::add_safepoint() { // See if we can avoid this safepoint. No need for a SafePoint immediately // after a Call (except Leaf Call) or another SafePoint. Node *proj = control(); bool add_poll_param = SafePointNode::needs_polling_address_input(); uint parms = add_poll_param ? TypeFunc::Parms+1 : TypeFunc::Parms; if( proj->is_Proj() ) { Node *n0 = proj->in(0); if( n0->is_Catch() ) { n0 = n0->in(0)->in(0); assert( n0->is_Call(), "expect a call here" ); } if( n0->is_Call() ) { if( n0->as_Call()->guaranteed_safepoint() ) return; } else if( n0->is_SafePoint() && n0->req() >= parms ) { return; } } // Clear out dead values from the debug info. kill_dead_locals(); // Clone the JVM State SafePointNode *sfpnt = new (C) SafePointNode(parms, NULL); // Capture memory state BEFORE a SafePoint. Since we can block at a // SafePoint we need our GC state to be safe; i.e. we need all our current // write barriers (card marks) to not float down after the SafePoint so we // must read raw memory. Likewise we need all oop stores to match the card // marks. If deopt can happen, we need ALL stores (we need the correct JVM // state on a deopt). // We do not need to WRITE the memory state after a SafePoint. The control // edge will keep card-marks and oop-stores from floating up from below a // SafePoint and our true dependency added here will keep them from floating // down below a SafePoint. // Clone the current memory state Node* mem = MergeMemNode::make(C, map()->memory()); mem = _gvn.transform(mem); // Pass control through the safepoint sfpnt->init_req(TypeFunc::Control , control()); // Fix edges normally used by a call sfpnt->init_req(TypeFunc::I_O , top() ); sfpnt->init_req(TypeFunc::Memory , mem ); sfpnt->init_req(TypeFunc::ReturnAdr, top() ); sfpnt->init_req(TypeFunc::FramePtr , top() ); // Create a node for the polling address if( add_poll_param ) { Node *polladr = ConPNode::make(C, (address)os::get_polling_page()); sfpnt->init_req(TypeFunc::Parms+0, _gvn.transform(polladr)); } // Fix up the JVM State edges add_safepoint_edges(sfpnt); Node *transformed_sfpnt = _gvn.transform(sfpnt); set_control(transformed_sfpnt); // Provide an edge from root to safepoint. This makes the safepoint // appear useful until the parse has completed. if( OptoRemoveUseless && transformed_sfpnt->is_SafePoint() ) { assert(C->root() != NULL, "Expect parse is still valid"); C->root()->add_prec(transformed_sfpnt); } } #ifndef PRODUCT //------------------------show_parse_info-------------------------------------- void Parse::show_parse_info() { InlineTree* ilt = NULL; if (C->ilt() != NULL) { JVMState* caller_jvms = is_osr_parse() ? caller()->caller() : caller(); ilt = InlineTree::find_subtree_from_root(C->ilt(), caller_jvms, method()); } if (PrintCompilation && Verbose) { if (depth() == 1) { if( ilt->count_inlines() ) { tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(), ilt->count_inline_bcs()); tty->cr(); } } else { if (method()->is_synchronized()) tty->print("s"); if (method()->has_exception_handlers()) tty->print("!"); // Check this is not the final compiled version if (C->trap_can_recompile()) { tty->print("-"); } else { tty->print(" "); } method()->print_short_name(); if (is_osr_parse()) { tty->print(" @ %d", osr_bci()); } tty->print(" (%d bytes)",method()->code_size()); if (ilt->count_inlines()) { tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(), ilt->count_inline_bcs()); } tty->cr(); } } if (PrintOpto && (depth() == 1 || PrintOptoInlining)) { // Print that we succeeded; suppress this message on the first osr parse. if (method()->is_synchronized()) tty->print("s"); if (method()->has_exception_handlers()) tty->print("!"); // Check this is not the final compiled version if (C->trap_can_recompile() && depth() == 1) { tty->print("-"); } else { tty->print(" "); } if( depth() != 1 ) { tty->print(" "); } // missing compile count for (int i = 1; i < depth(); ++i) { tty->print(" "); } method()->print_short_name(); if (is_osr_parse()) { tty->print(" @ %d", osr_bci()); } if (ilt->caller_bci() != -1) { tty->print(" @ %d", ilt->caller_bci()); } tty->print(" (%d bytes)",method()->code_size()); if (ilt->count_inlines()) { tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(), ilt->count_inline_bcs()); } tty->cr(); } } //------------------------------dump------------------------------------------- // Dump information associated with the bytecodes of current _method void Parse::dump() { if( method() != NULL ) { // Iterate over bytecodes ciBytecodeStream iter(method()); for( Bytecodes::Code bc = iter.next(); bc != ciBytecodeStream::EOBC() ; bc = iter.next() ) { dump_bci( iter.cur_bci() ); tty->cr(); } } } // Dump information associated with a byte code index, 'bci' void Parse::dump_bci(int bci) { // Output info on merge-points, cloning, and within _jsr..._ret // NYI tty->print(" bci:%d", bci); } #endif