/* * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "interpreter/interpreter.hpp" #include "memory/resourceArea.hpp" #include "oops/markOop.hpp" #include "oops/methodOop.hpp" #include "oops/oop.inline.hpp" #include "prims/methodHandles.hpp" #include "runtime/frame.inline.hpp" #include "runtime/handles.inline.hpp" #include "runtime/javaCalls.hpp" #include "runtime/monitorChunk.hpp" #include "runtime/signature.hpp" #include "runtime/stubCodeGenerator.hpp" #include "runtime/stubRoutines.hpp" #include "vmreg_x86.inline.hpp" #ifdef COMPILER1 #include "c1/c1_Runtime1.hpp" #include "runtime/vframeArray.hpp" #endif #ifdef ASSERT void RegisterMap::check_location_valid() { } #endif // Profiling/safepoint support bool frame::safe_for_sender(JavaThread *thread) { address sp = (address)_sp; address fp = (address)_fp; address unextended_sp = (address)_unextended_sp; // sp must be within the stack bool sp_safe = (sp <= thread->stack_base()) && (sp >= thread->stack_base() - thread->stack_size()); if (!sp_safe) { return false; } // unextended sp must be within the stack and above or equal sp bool unextended_sp_safe = (unextended_sp <= thread->stack_base()) && (unextended_sp >= sp); if (!unextended_sp_safe) { return false; } // an fp must be within the stack and above (but not equal) sp bool fp_safe = (fp <= thread->stack_base()) && (fp > sp); // We know sp/unextended_sp are safe only fp is questionable here // If the current frame is known to the code cache then we can attempt to // to construct the sender and do some validation of it. This goes a long way // toward eliminating issues when we get in frame construction code if (_cb != NULL ) { // First check if frame is complete and tester is reliable // Unfortunately we can only check frame complete for runtime stubs and nmethod // other generic buffer blobs are more problematic so we just assume they are // ok. adapter blobs never have a frame complete and are never ok. if (!_cb->is_frame_complete_at(_pc)) { if (_cb->is_nmethod() || _cb->is_adapter_blob() || _cb->is_runtime_stub()) { return false; } } // Entry frame checks if (is_entry_frame()) { // an entry frame must have a valid fp. if (!fp_safe) return false; // Validate the JavaCallWrapper an entry frame must have address jcw = (address)entry_frame_call_wrapper(); bool jcw_safe = (jcw <= thread->stack_base()) && ( jcw > fp); return jcw_safe; } intptr_t* sender_sp = NULL; address sender_pc = NULL; if (is_interpreted_frame()) { // fp must be safe if (!fp_safe) { return false; } sender_pc = (address) this->fp()[return_addr_offset]; sender_sp = (intptr_t*) addr_at(sender_sp_offset); } else { // must be some sort of compiled/runtime frame // fp does not have to be safe (although it could be check for c1?) sender_sp = _unextended_sp + _cb->frame_size(); // On Intel the return_address is always the word on the stack sender_pc = (address) *(sender_sp-1); } // We must always be able to find a recognizable pc CodeBlob* sender_blob = CodeCache::find_blob_unsafe(sender_pc); if (sender_pc == NULL || sender_blob == NULL) { return false; } // If the potential sender is the interpreter then we can do some more checking if (Interpreter::contains(sender_pc)) { // ebp is always saved in a recognizable place in any code we generate. However // only if the sender is interpreted/call_stub (c1 too?) are we certain that the saved ebp // is really a frame pointer. intptr_t *saved_fp = (intptr_t*)*(sender_sp - frame::sender_sp_offset); bool saved_fp_safe = ((address)saved_fp <= thread->stack_base()) && (saved_fp > sender_sp); if (!saved_fp_safe) { return false; } // construct the potential sender frame sender(sender_sp, saved_fp, sender_pc); return sender.is_interpreted_frame_valid(thread); } // Could just be some random pointer within the codeBlob if (!sender_blob->code_contains(sender_pc)) { return false; } // We should never be able to see an adapter if the current frame is something from code cache if (sender_blob->is_adapter_blob()) { return false; } // Could be the call_stub if (StubRoutines::returns_to_call_stub(sender_pc)) { intptr_t *saved_fp = (intptr_t*)*(sender_sp - frame::sender_sp_offset); bool saved_fp_safe = ((address)saved_fp <= thread->stack_base()) && (saved_fp > sender_sp); if (!saved_fp_safe) { return false; } // construct the potential sender frame sender(sender_sp, saved_fp, sender_pc); // Validate the JavaCallWrapper an entry frame must have address jcw = (address)sender.entry_frame_call_wrapper(); bool jcw_safe = (jcw <= thread->stack_base()) && ( jcw > (address)sender.fp()); return jcw_safe; } // If the frame size is 0 something is bad because every nmethod has a non-zero frame size // because the return address counts against the callee's frame. if (sender_blob->frame_size() == 0) { assert(!sender_blob->is_nmethod(), "should count return address at least"); return false; } // We should never be able to see anything here except an nmethod. If something in the // code cache (current frame) is called by an entity within the code cache that entity // should not be anything but the call stub (already covered), the interpreter (already covered) // or an nmethod. assert(sender_blob->is_nmethod(), "Impossible call chain"); // Could put some more validation for the potential non-interpreted sender // frame we'd create by calling sender if I could think of any. Wait for next crash in forte... // One idea is seeing if the sender_pc we have is one that we'd expect to call to current cb // We've validated the potential sender that would be created return true; } // Must be native-compiled frame. Since sender will try and use fp to find // linkages it must be safe if (!fp_safe) { return false; } // Will the pc we fetch be non-zero (which we'll find at the oldest frame) if ( (address) this->fp()[return_addr_offset] == NULL) return false; // could try and do some more potential verification of native frame if we could think of some... return true; } void frame::patch_pc(Thread* thread, address pc) { address* pc_addr = &(((address*) sp())[-1]); if (TracePcPatching) { tty->print_cr("patch_pc at address " INTPTR_FORMAT " [" INTPTR_FORMAT " -> " INTPTR_FORMAT "]", pc_addr, *pc_addr, pc); } // Either the return address is the original one or we are going to // patch in the same address that's already there. assert(_pc == *pc_addr || pc == *pc_addr, "must be"); *pc_addr = pc; _cb = CodeCache::find_blob(pc); address original_pc = nmethod::get_deopt_original_pc(this); if (original_pc != NULL) { assert(original_pc == _pc, "expected original PC to be stored before patching"); _deopt_state = is_deoptimized; // leave _pc as is } else { _deopt_state = not_deoptimized; _pc = pc; } } bool frame::is_interpreted_frame() const { return Interpreter::contains(pc()); } int frame::frame_size(RegisterMap* map) const { frame sender = this->sender(map); return sender.sp() - sp(); } intptr_t* frame::entry_frame_argument_at(int offset) const { // convert offset to index to deal with tsi int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize); // Entry frame's arguments are always in relation to unextended_sp() return &unextended_sp()[index]; } // sender_sp #ifdef CC_INTERP intptr_t* frame::interpreter_frame_sender_sp() const { assert(is_interpreted_frame(), "interpreted frame expected"); // QQQ why does this specialize method exist if frame::sender_sp() does same thing? // seems odd and if we always know interpreted vs. non then sender_sp() is really // doing too much work. return get_interpreterState()->sender_sp(); } // monitor elements BasicObjectLock* frame::interpreter_frame_monitor_begin() const { return get_interpreterState()->monitor_base(); } BasicObjectLock* frame::interpreter_frame_monitor_end() const { return (BasicObjectLock*) get_interpreterState()->stack_base(); } #else // CC_INTERP intptr_t* frame::interpreter_frame_sender_sp() const { assert(is_interpreted_frame(), "interpreted frame expected"); return (intptr_t*) at(interpreter_frame_sender_sp_offset); } void frame::set_interpreter_frame_sender_sp(intptr_t* sender_sp) { assert(is_interpreted_frame(), "interpreted frame expected"); ptr_at_put(interpreter_frame_sender_sp_offset, (intptr_t) sender_sp); } // monitor elements BasicObjectLock* frame::interpreter_frame_monitor_begin() const { return (BasicObjectLock*) addr_at(interpreter_frame_monitor_block_bottom_offset); } BasicObjectLock* frame::interpreter_frame_monitor_end() const { BasicObjectLock* result = (BasicObjectLock*) *addr_at(interpreter_frame_monitor_block_top_offset); // make sure the pointer points inside the frame assert(sp() <= (intptr_t*) result, "monitor end should be above the stack pointer"); assert((intptr_t*) result < fp(), "monitor end should be strictly below the frame pointer"); return result; } void frame::interpreter_frame_set_monitor_end(BasicObjectLock* value) { *((BasicObjectLock**)addr_at(interpreter_frame_monitor_block_top_offset)) = value; } // Used by template based interpreter deoptimization void frame::interpreter_frame_set_last_sp(intptr_t* sp) { *((intptr_t**)addr_at(interpreter_frame_last_sp_offset)) = sp; } #endif // CC_INTERP frame frame::sender_for_entry_frame(RegisterMap* map) const { assert(map != NULL, "map must be set"); // Java frame called from C; skip all C frames and return top C // frame of that chunk as the sender JavaFrameAnchor* jfa = entry_frame_call_wrapper()->anchor(); assert(!entry_frame_is_first(), "next Java fp must be non zero"); assert(jfa->last_Java_sp() > sp(), "must be above this frame on stack"); map->clear(); assert(map->include_argument_oops(), "should be set by clear"); if (jfa->last_Java_pc() != NULL ) { frame fr(jfa->last_Java_sp(), jfa->last_Java_fp(), jfa->last_Java_pc()); return fr; } frame fr(jfa->last_Java_sp(), jfa->last_Java_fp()); return fr; } //------------------------------------------------------------------------------ // frame::verify_deopt_original_pc // // Verifies the calculated original PC of a deoptimization PC for the // given unextended SP. The unextended SP might also be the saved SP // for MethodHandle call sites. #if ASSERT void frame::verify_deopt_original_pc(nmethod* nm, intptr_t* unextended_sp, bool is_method_handle_return) { frame fr; // This is ugly but it's better than to change {get,set}_original_pc // to take an SP value as argument. And it's only a debugging // method anyway. fr._unextended_sp = unextended_sp; address original_pc = nm->get_original_pc(&fr); assert(nm->insts_contains(original_pc), "original PC must be in nmethod"); assert(nm->is_method_handle_return(original_pc) == is_method_handle_return, "must be"); } #endif //------------------------------------------------------------------------------ // frame::adjust_unextended_sp void frame::adjust_unextended_sp() { // If we are returning to a compiled MethodHandle call site, the // saved_fp will in fact be a saved value of the unextended SP. The // simplest way to tell whether we are returning to such a call site // is as follows: nmethod* sender_nm = (_cb == NULL) ? NULL : _cb->as_nmethod_or_null(); if (sender_nm != NULL) { // If the sender PC is a deoptimization point, get the original // PC. For MethodHandle call site the unextended_sp is stored in // saved_fp. if (sender_nm->is_deopt_mh_entry(_pc)) { DEBUG_ONLY(verify_deopt_mh_original_pc(sender_nm, _fp)); _unextended_sp = _fp; } else if (sender_nm->is_deopt_entry(_pc)) { DEBUG_ONLY(verify_deopt_original_pc(sender_nm, _unextended_sp)); } else if (sender_nm->is_method_handle_return(_pc)) { _unextended_sp = _fp; } } } //------------------------------------------------------------------------------ // frame::update_map_with_saved_link void frame::update_map_with_saved_link(RegisterMap* map, intptr_t** link_addr) { // The interpreter and compiler(s) always save EBP/RBP in a known // location on entry. We must record where that location is // so this if EBP/RBP was live on callout from c2 we can find // the saved copy no matter what it called. // Since the interpreter always saves EBP/RBP if we record where it is then // we don't have to always save EBP/RBP on entry and exit to c2 compiled // code, on entry will be enough. map->set_location(rbp->as_VMReg(), (address) link_addr); #ifdef AMD64 // this is weird "H" ought to be at a higher address however the // oopMaps seems to have the "H" regs at the same address and the // vanilla register. // XXXX make this go away if (true) { map->set_location(rbp->as_VMReg()->next(), (address) link_addr); } #endif // AMD64 } //------------------------------------------------------------------------------ // frame::sender_for_interpreter_frame frame frame::sender_for_interpreter_frame(RegisterMap* map) const { // SP is the raw SP from the sender after adapter or interpreter // extension. intptr_t* sender_sp = this->sender_sp(); // This is the sp before any possible extension (adapter/locals). intptr_t* unextended_sp = interpreter_frame_sender_sp(); #ifdef COMPILER2 if (map->update_map()) { update_map_with_saved_link(map, (intptr_t**) addr_at(link_offset)); } #endif // COMPILER2 return frame(sender_sp, unextended_sp, link(), sender_pc()); } //------------------------------------------------------------------------------ // frame::sender_for_compiled_frame frame frame::sender_for_compiled_frame(RegisterMap* map) const { assert(map != NULL, "map must be set"); // frame owned by optimizing compiler assert(_cb->frame_size() >= 0, "must have non-zero frame size"); intptr_t* sender_sp = unextended_sp() + _cb->frame_size(); intptr_t* unextended_sp = sender_sp; // On Intel the return_address is always the word on the stack address sender_pc = (address) *(sender_sp-1); // This is the saved value of EBP which may or may not really be an FP. // It is only an FP if the sender is an interpreter frame (or C1?). intptr_t** saved_fp_addr = (intptr_t**) (sender_sp - frame::sender_sp_offset); if (map->update_map()) { // Tell GC to use argument oopmaps for some runtime stubs that need it. // For C1, the runtime stub might not have oop maps, so set this flag // outside of update_register_map. map->set_include_argument_oops(_cb->caller_must_gc_arguments(map->thread())); if (_cb->oop_maps() != NULL) { OopMapSet::update_register_map(this, map); } // Since the prolog does the save and restore of EBP there is no oopmap // for it so we must fill in its location as if there was an oopmap entry // since if our caller was compiled code there could be live jvm state in it. update_map_with_saved_link(map, saved_fp_addr); } assert(sender_sp != sp(), "must have changed"); return frame(sender_sp, unextended_sp, *saved_fp_addr, sender_pc); } //------------------------------------------------------------------------------ // frame::sender frame frame::sender(RegisterMap* map) const { // Default is we done have to follow them. The sender_for_xxx will // update it accordingly map->set_include_argument_oops(false); if (is_entry_frame()) return sender_for_entry_frame(map); if (is_interpreted_frame()) return sender_for_interpreter_frame(map); assert(_cb == CodeCache::find_blob(pc()),"Must be the same"); if (_cb != NULL) { return sender_for_compiled_frame(map); } // Must be native-compiled frame, i.e. the marshaling code for native // methods that exists in the core system. return frame(sender_sp(), link(), sender_pc()); } bool frame::interpreter_frame_equals_unpacked_fp(intptr_t* fp) { assert(is_interpreted_frame(), "must be interpreter frame"); methodOop method = interpreter_frame_method(); // When unpacking an optimized frame the frame pointer is // adjusted with: int diff = (method->max_locals() - method->size_of_parameters()) * Interpreter::stackElementWords; return _fp == (fp - diff); } void frame::pd_gc_epilog() { // nothing done here now } bool frame::is_interpreted_frame_valid(JavaThread* thread) const { // QQQ #ifdef CC_INTERP #else assert(is_interpreted_frame(), "Not an interpreted frame"); // These are reasonable sanity checks if (fp() == 0 || (intptr_t(fp()) & (wordSize-1)) != 0) { return false; } if (sp() == 0 || (intptr_t(sp()) & (wordSize-1)) != 0) { return false; } if (fp() + interpreter_frame_initial_sp_offset < sp()) { return false; } // These are hacks to keep us out of trouble. // The problem with these is that they mask other problems if (fp() <= sp()) { // this attempts to deal with unsigned comparison above return false; } // do some validation of frame elements // first the method methodOop m = *interpreter_frame_method_addr(); // validate the method we'd find in this potential sender if (!Universe::heap()->is_valid_method(m)) return false; // stack frames shouldn't be much larger than max_stack elements if (fp() - sp() > 1024 + m->max_stack()*Interpreter::stackElementSize) { return false; } // validate bci/bcx intptr_t bcx = interpreter_frame_bcx(); if (m->validate_bci_from_bcx(bcx) < 0) { return false; } // validate constantPoolCacheOop constantPoolCacheOop cp = *interpreter_frame_cache_addr(); if (cp == NULL || !Space::is_aligned(cp) || !Universe::heap()->is_permanent((void*)cp)) return false; // validate locals address locals = (address) *interpreter_frame_locals_addr(); if (locals > thread->stack_base() || locals < (address) fp()) return false; // We'd have to be pretty unlucky to be mislead at this point #endif // CC_INTERP return true; } BasicType frame::interpreter_frame_result(oop* oop_result, jvalue* value_result) { #ifdef CC_INTERP // Needed for JVMTI. The result should always be in the // interpreterState object interpreterState istate = get_interpreterState(); #endif // CC_INTERP assert(is_interpreted_frame(), "interpreted frame expected"); methodOop method = interpreter_frame_method(); BasicType type = method->result_type(); intptr_t* tos_addr; if (method->is_native()) { // Prior to calling into the runtime to report the method_exit the possible // return value is pushed to the native stack. If the result is a jfloat/jdouble // then ST0 is saved before EAX/EDX. See the note in generate_native_result tos_addr = (intptr_t*)sp(); if (type == T_FLOAT || type == T_DOUBLE) { // QQQ seems like this code is equivalent on the two platforms #ifdef AMD64 // This is times two because we do a push(ltos) after pushing XMM0 // and that takes two interpreter stack slots. tos_addr += 2 * Interpreter::stackElementWords; #else tos_addr += 2; #endif // AMD64 } } else { tos_addr = (intptr_t*)interpreter_frame_tos_address(); } switch (type) { case T_OBJECT : case T_ARRAY : { oop obj; if (method->is_native()) { #ifdef CC_INTERP obj = istate->_oop_temp; #else obj = (oop) at(interpreter_frame_oop_temp_offset); #endif // CC_INTERP } else { oop* obj_p = (oop*)tos_addr; obj = (obj_p == NULL) ? (oop)NULL : *obj_p; } assert(obj == NULL || Universe::heap()->is_in(obj), "sanity check"); *oop_result = obj; break; } case T_BOOLEAN : value_result->z = *(jboolean*)tos_addr; break; case T_BYTE : value_result->b = *(jbyte*)tos_addr; break; case T_CHAR : value_result->c = *(jchar*)tos_addr; break; case T_SHORT : value_result->s = *(jshort*)tos_addr; break; case T_INT : value_result->i = *(jint*)tos_addr; break; case T_LONG : value_result->j = *(jlong*)tos_addr; break; case T_FLOAT : { #ifdef AMD64 value_result->f = *(jfloat*)tos_addr; #else if (method->is_native()) { jdouble d = *(jdouble*)tos_addr; // Result was in ST0 so need to convert to jfloat value_result->f = (jfloat)d; } else { value_result->f = *(jfloat*)tos_addr; } #endif // AMD64 break; } case T_DOUBLE : value_result->d = *(jdouble*)tos_addr; break; case T_VOID : /* Nothing to do */ break; default : ShouldNotReachHere(); } return type; } intptr_t* frame::interpreter_frame_tos_at(jint offset) const { int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize); return &interpreter_frame_tos_address()[index]; } #ifndef PRODUCT #define DESCRIBE_FP_OFFSET(name) \ values.describe(frame_no, fp() + frame::name##_offset, #name) void frame::describe_pd(FrameValues& values, int frame_no) { if (is_interpreted_frame()) { DESCRIBE_FP_OFFSET(interpreter_frame_sender_sp); DESCRIBE_FP_OFFSET(interpreter_frame_last_sp); DESCRIBE_FP_OFFSET(interpreter_frame_method); DESCRIBE_FP_OFFSET(interpreter_frame_mdx); DESCRIBE_FP_OFFSET(interpreter_frame_cache); DESCRIBE_FP_OFFSET(interpreter_frame_locals); DESCRIBE_FP_OFFSET(interpreter_frame_bcx); DESCRIBE_FP_OFFSET(interpreter_frame_initial_sp); } } #endif intptr_t *frame::initial_deoptimization_info() { // used to reset the saved FP return fp(); } intptr_t* frame::real_fp() const { if (_cb != NULL) { // use the frame size if valid int size = _cb->frame_size(); if (size > 0) { return unextended_sp() + size; } } // else rely on fp() assert(! is_compiled_frame(), "unknown compiled frame size"); return fp(); }