/* * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "code/codeCache.hpp" #include "code/compiledIC.hpp" #include "code/dependencies.hpp" #include "code/nmethod.hpp" #include "code/scopeDesc.hpp" #include "compiler/abstractCompiler.hpp" #include "compiler/compileBroker.hpp" #include "compiler/compileLog.hpp" #include "compiler/compilerOracle.hpp" #include "compiler/disassembler.hpp" #include "interpreter/bytecode.hpp" #include "oops/methodData.hpp" #include "prims/jvmtiRedefineClassesTrace.hpp" #include "prims/jvmtiImpl.hpp" #include "runtime/sharedRuntime.hpp" #include "runtime/sweeper.hpp" #include "utilities/dtrace.hpp" #include "utilities/events.hpp" #include "utilities/xmlstream.hpp" #ifdef SHARK #include "shark/sharkCompiler.hpp" #endif #ifdef DTRACE_ENABLED // Only bother with this argument setup if dtrace is available #ifndef USDT2 HS_DTRACE_PROBE_DECL8(hotspot, compiled__method__load, const char*, int, const char*, int, const char*, int, void*, size_t); HS_DTRACE_PROBE_DECL6(hotspot, compiled__method__unload, char*, int, char*, int, char*, int); #define DTRACE_METHOD_UNLOAD_PROBE(method) \ { \ Method* m = (method); \ if (m != NULL) { \ Symbol* klass_name = m->klass_name(); \ Symbol* name = m->name(); \ Symbol* signature = m->signature(); \ HS_DTRACE_PROBE6(hotspot, compiled__method__unload, \ klass_name->bytes(), klass_name->utf8_length(), \ name->bytes(), name->utf8_length(), \ signature->bytes(), signature->utf8_length()); \ } \ } #else /* USDT2 */ #define DTRACE_METHOD_UNLOAD_PROBE(method) \ { \ Method* m = (method); \ if (m != NULL) { \ Symbol* klass_name = m->klass_name(); \ Symbol* name = m->name(); \ Symbol* signature = m->signature(); \ HOTSPOT_COMPILED_METHOD_UNLOAD( \ (char *) klass_name->bytes(), klass_name->utf8_length(), \ (char *) name->bytes(), name->utf8_length(), \ (char *) signature->bytes(), signature->utf8_length()); \ } \ } #endif /* USDT2 */ #else // ndef DTRACE_ENABLED #define DTRACE_METHOD_UNLOAD_PROBE(method) #endif bool nmethod::is_compiled_by_c1() const { if (compiler() == NULL || method() == NULL) return false; // can happen during debug printing if (is_native_method()) return false; return compiler()->is_c1(); } bool nmethod::is_compiled_by_c2() const { if (compiler() == NULL || method() == NULL) return false; // can happen during debug printing if (is_native_method()) return false; return compiler()->is_c2(); } bool nmethod::is_compiled_by_shark() const { if (is_native_method()) return false; assert(compiler() != NULL, "must be"); return compiler()->is_shark(); } //--------------------------------------------------------------------------------- // NMethod statistics // They are printed under various flags, including: // PrintC1Statistics, PrintOptoStatistics, LogVMOutput, and LogCompilation. // (In the latter two cases, they like other stats are printed to the log only.) #ifndef PRODUCT // These variables are put into one block to reduce relocations // and make it simpler to print from the debugger. static struct nmethod_stats_struct { int nmethod_count; int total_size; int relocation_size; int consts_size; int insts_size; int stub_size; int scopes_data_size; int scopes_pcs_size; int dependencies_size; int handler_table_size; int nul_chk_table_size; int oops_size; void note_nmethod(nmethod* nm) { nmethod_count += 1; total_size += nm->size(); relocation_size += nm->relocation_size(); consts_size += nm->consts_size(); insts_size += nm->insts_size(); stub_size += nm->stub_size(); oops_size += nm->oops_size(); scopes_data_size += nm->scopes_data_size(); scopes_pcs_size += nm->scopes_pcs_size(); dependencies_size += nm->dependencies_size(); handler_table_size += nm->handler_table_size(); nul_chk_table_size += nm->nul_chk_table_size(); } void print_nmethod_stats() { if (nmethod_count == 0) return; tty->print_cr("Statistics for %d bytecoded nmethods:", nmethod_count); if (total_size != 0) tty->print_cr(" total in heap = %d", total_size); if (relocation_size != 0) tty->print_cr(" relocation = %d", relocation_size); if (consts_size != 0) tty->print_cr(" constants = %d", consts_size); if (insts_size != 0) tty->print_cr(" main code = %d", insts_size); if (stub_size != 0) tty->print_cr(" stub code = %d", stub_size); if (oops_size != 0) tty->print_cr(" oops = %d", oops_size); if (scopes_data_size != 0) tty->print_cr(" scopes data = %d", scopes_data_size); if (scopes_pcs_size != 0) tty->print_cr(" scopes pcs = %d", scopes_pcs_size); if (dependencies_size != 0) tty->print_cr(" dependencies = %d", dependencies_size); if (handler_table_size != 0) tty->print_cr(" handler table = %d", handler_table_size); if (nul_chk_table_size != 0) tty->print_cr(" nul chk table = %d", nul_chk_table_size); } int native_nmethod_count; int native_total_size; int native_relocation_size; int native_insts_size; int native_oops_size; void note_native_nmethod(nmethod* nm) { native_nmethod_count += 1; native_total_size += nm->size(); native_relocation_size += nm->relocation_size(); native_insts_size += nm->insts_size(); native_oops_size += nm->oops_size(); } void print_native_nmethod_stats() { if (native_nmethod_count == 0) return; tty->print_cr("Statistics for %d native nmethods:", native_nmethod_count); if (native_total_size != 0) tty->print_cr(" N. total size = %d", native_total_size); if (native_relocation_size != 0) tty->print_cr(" N. relocation = %d", native_relocation_size); if (native_insts_size != 0) tty->print_cr(" N. main code = %d", native_insts_size); if (native_oops_size != 0) tty->print_cr(" N. oops = %d", native_oops_size); } int pc_desc_resets; // number of resets (= number of caches) int pc_desc_queries; // queries to nmethod::find_pc_desc int pc_desc_approx; // number of those which have approximate true int pc_desc_repeats; // number of _pc_descs[0] hits int pc_desc_hits; // number of LRU cache hits int pc_desc_tests; // total number of PcDesc examinations int pc_desc_searches; // total number of quasi-binary search steps int pc_desc_adds; // number of LUR cache insertions void print_pc_stats() { tty->print_cr("PcDesc Statistics: %d queries, %.2f comparisons per query", pc_desc_queries, (double)(pc_desc_tests + pc_desc_searches) / pc_desc_queries); tty->print_cr(" caches=%d queries=%d/%d, hits=%d+%d, tests=%d+%d, adds=%d", pc_desc_resets, pc_desc_queries, pc_desc_approx, pc_desc_repeats, pc_desc_hits, pc_desc_tests, pc_desc_searches, pc_desc_adds); } } nmethod_stats; #endif //PRODUCT //--------------------------------------------------------------------------------- ExceptionCache::ExceptionCache(Handle exception, address pc, address handler) { assert(pc != NULL, "Must be non null"); assert(exception.not_null(), "Must be non null"); assert(handler != NULL, "Must be non null"); _count = 0; _exception_type = exception->klass(); _next = NULL; add_address_and_handler(pc,handler); } address ExceptionCache::match(Handle exception, address pc) { assert(pc != NULL,"Must be non null"); assert(exception.not_null(),"Must be non null"); if (exception->klass() == exception_type()) { return (test_address(pc)); } return NULL; } bool ExceptionCache::match_exception_with_space(Handle exception) { assert(exception.not_null(),"Must be non null"); if (exception->klass() == exception_type() && count() < cache_size) { return true; } return false; } address ExceptionCache::test_address(address addr) { for (int i=0; imatch_exception_with_space(exception)) { return ec; } ec = ec->next(); } return NULL; } //----------------------------------------------------------------------------- // Helper used by both find_pc_desc methods. static inline bool match_desc(PcDesc* pc, int pc_offset, bool approximate) { NOT_PRODUCT(++nmethod_stats.pc_desc_tests); if (!approximate) return pc->pc_offset() == pc_offset; else return (pc-1)->pc_offset() < pc_offset && pc_offset <= pc->pc_offset(); } void PcDescCache::reset_to(PcDesc* initial_pc_desc) { if (initial_pc_desc == NULL) { _pc_descs[0] = NULL; // native method; no PcDescs at all return; } NOT_PRODUCT(++nmethod_stats.pc_desc_resets); // reset the cache by filling it with benign (non-null) values assert(initial_pc_desc->pc_offset() < 0, "must be sentinel"); for (int i = 0; i < cache_size; i++) _pc_descs[i] = initial_pc_desc; } PcDesc* PcDescCache::find_pc_desc(int pc_offset, bool approximate) { NOT_PRODUCT(++nmethod_stats.pc_desc_queries); NOT_PRODUCT(if (approximate) ++nmethod_stats.pc_desc_approx); // Note: one might think that caching the most recently // read value separately would be a win, but one would be // wrong. When many threads are updating it, the cache // line it's in would bounce between caches, negating // any benefit. // In order to prevent race conditions do not load cache elements // repeatedly, but use a local copy: PcDesc* res; // Step one: Check the most recently added value. res = _pc_descs[0]; if (res == NULL) return NULL; // native method; no PcDescs at all if (match_desc(res, pc_offset, approximate)) { NOT_PRODUCT(++nmethod_stats.pc_desc_repeats); return res; } // Step two: Check the rest of the LRU cache. for (int i = 1; i < cache_size; ++i) { res = _pc_descs[i]; if (res->pc_offset() < 0) break; // optimization: skip empty cache if (match_desc(res, pc_offset, approximate)) { NOT_PRODUCT(++nmethod_stats.pc_desc_hits); return res; } } // Report failure. return NULL; } void PcDescCache::add_pc_desc(PcDesc* pc_desc) { NOT_PRODUCT(++nmethod_stats.pc_desc_adds); // Update the LRU cache by shifting pc_desc forward. for (int i = 0; i < cache_size; i++) { PcDesc* next = _pc_descs[i]; _pc_descs[i] = pc_desc; pc_desc = next; } } // adjust pcs_size so that it is a multiple of both oopSize and // sizeof(PcDesc) (assumes that if sizeof(PcDesc) is not a multiple // of oopSize, then 2*sizeof(PcDesc) is) static int adjust_pcs_size(int pcs_size) { int nsize = round_to(pcs_size, oopSize); if ((nsize % sizeof(PcDesc)) != 0) { nsize = pcs_size + sizeof(PcDesc); } assert((nsize % oopSize) == 0, "correct alignment"); return nsize; } //----------------------------------------------------------------------------- void nmethod::add_exception_cache_entry(ExceptionCache* new_entry) { assert(ExceptionCache_lock->owned_by_self(),"Must hold the ExceptionCache_lock"); assert(new_entry != NULL,"Must be non null"); assert(new_entry->next() == NULL, "Must be null"); if (exception_cache() != NULL) { new_entry->set_next(exception_cache()); } set_exception_cache(new_entry); } void nmethod::remove_from_exception_cache(ExceptionCache* ec) { ExceptionCache* prev = NULL; ExceptionCache* curr = exception_cache(); assert(curr != NULL, "nothing to remove"); // find the previous and next entry of ec while (curr != ec) { prev = curr; curr = curr->next(); assert(curr != NULL, "ExceptionCache not found"); } // now: curr == ec ExceptionCache* next = curr->next(); if (prev == NULL) { set_exception_cache(next); } else { prev->set_next(next); } delete curr; } // public method for accessing the exception cache // These are the public access methods. address nmethod::handler_for_exception_and_pc(Handle exception, address pc) { // We never grab a lock to read the exception cache, so we may // have false negatives. This is okay, as it can only happen during // the first few exception lookups for a given nmethod. ExceptionCache* ec = exception_cache(); while (ec != NULL) { address ret_val; if ((ret_val = ec->match(exception,pc)) != NULL) { return ret_val; } ec = ec->next(); } return NULL; } void nmethod::add_handler_for_exception_and_pc(Handle exception, address pc, address handler) { // There are potential race conditions during exception cache updates, so we // must own the ExceptionCache_lock before doing ANY modifications. Because // we don't lock during reads, it is possible to have several threads attempt // to update the cache with the same data. We need to check for already inserted // copies of the current data before adding it. MutexLocker ml(ExceptionCache_lock); ExceptionCache* target_entry = exception_cache_entry_for_exception(exception); if (target_entry == NULL || !target_entry->add_address_and_handler(pc,handler)) { target_entry = new ExceptionCache(exception,pc,handler); add_exception_cache_entry(target_entry); } } //-------------end of code for ExceptionCache-------------- int nmethod::total_size() const { return consts_size() + insts_size() + stub_size() + scopes_data_size() + scopes_pcs_size() + handler_table_size() + nul_chk_table_size(); } const char* nmethod::compile_kind() const { if (is_osr_method()) return "osr"; if (method() != NULL && is_native_method()) return "c2n"; return NULL; } // Fill in default values for various flag fields void nmethod::init_defaults() { _state = alive; _marked_for_reclamation = 0; _has_flushed_dependencies = 0; _speculatively_disconnected = 0; _has_unsafe_access = 0; _has_method_handle_invokes = 0; _lazy_critical_native = 0; _marked_for_deoptimization = 0; _lock_count = 0; _stack_traversal_mark = 0; _unload_reported = false; // jvmti state #ifdef ASSERT _oops_are_stale = false; #endif _oops_do_mark_link = NULL; _jmethod_id = NULL; _osr_link = NULL; _scavenge_root_link = NULL; _scavenge_root_state = 0; _saved_nmethod_link = NULL; _compiler = NULL; #ifdef HAVE_DTRACE_H _trap_offset = 0; #endif // def HAVE_DTRACE_H } nmethod* nmethod::new_native_nmethod(methodHandle method, int compile_id, CodeBuffer *code_buffer, int vep_offset, int frame_complete, int frame_size, ByteSize basic_lock_owner_sp_offset, ByteSize basic_lock_sp_offset, OopMapSet* oop_maps) { code_buffer->finalize_oop_references(method); // create nmethod nmethod* nm = NULL; { MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag); int native_nmethod_size = allocation_size(code_buffer, sizeof(nmethod)); CodeOffsets offsets; offsets.set_value(CodeOffsets::Verified_Entry, vep_offset); offsets.set_value(CodeOffsets::Frame_Complete, frame_complete); nm = new (native_nmethod_size) nmethod(method(), native_nmethod_size, compile_id, &offsets, code_buffer, frame_size, basic_lock_owner_sp_offset, basic_lock_sp_offset, oop_maps); NOT_PRODUCT(if (nm != NULL) nmethod_stats.note_native_nmethod(nm)); if (PrintAssembly && nm != NULL) Disassembler::decode(nm); } // verify nmethod debug_only(if (nm) nm->verify();) // might block if (nm != NULL) { nm->log_new_nmethod(); } return nm; } #ifdef HAVE_DTRACE_H nmethod* nmethod::new_dtrace_nmethod(methodHandle method, CodeBuffer *code_buffer, int vep_offset, int trap_offset, int frame_complete, int frame_size) { code_buffer->finalize_oop_references(method); // create nmethod nmethod* nm = NULL; { MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag); int nmethod_size = allocation_size(code_buffer, sizeof(nmethod)); CodeOffsets offsets; offsets.set_value(CodeOffsets::Verified_Entry, vep_offset); offsets.set_value(CodeOffsets::Dtrace_trap, trap_offset); offsets.set_value(CodeOffsets::Frame_Complete, frame_complete); nm = new (nmethod_size) nmethod(method(), nmethod_size, &offsets, code_buffer, frame_size); NOT_PRODUCT(if (nm != NULL) nmethod_stats.note_nmethod(nm)); if (PrintAssembly && nm != NULL) Disassembler::decode(nm); } // verify nmethod debug_only(if (nm) nm->verify();) // might block if (nm != NULL) { nm->log_new_nmethod(); } return nm; } #endif // def HAVE_DTRACE_H nmethod* nmethod::new_nmethod(methodHandle method, int compile_id, int entry_bci, CodeOffsets* offsets, int orig_pc_offset, DebugInformationRecorder* debug_info, Dependencies* dependencies, CodeBuffer* code_buffer, int frame_size, OopMapSet* oop_maps, ExceptionHandlerTable* handler_table, ImplicitExceptionTable* nul_chk_table, AbstractCompiler* compiler, int comp_level ) { assert(debug_info->oop_recorder() == code_buffer->oop_recorder(), "shared OR"); code_buffer->finalize_oop_references(method); // create nmethod nmethod* nm = NULL; { MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag); int nmethod_size = allocation_size(code_buffer, sizeof(nmethod)) + adjust_pcs_size(debug_info->pcs_size()) + round_to(dependencies->size_in_bytes() , oopSize) + round_to(handler_table->size_in_bytes(), oopSize) + round_to(nul_chk_table->size_in_bytes(), oopSize) + round_to(debug_info->data_size() , oopSize); nm = new (nmethod_size) nmethod(method(), nmethod_size, compile_id, entry_bci, offsets, orig_pc_offset, debug_info, dependencies, code_buffer, frame_size, oop_maps, handler_table, nul_chk_table, compiler, comp_level); if (nm != NULL) { // To make dependency checking during class loading fast, record // the nmethod dependencies in the classes it is dependent on. // This allows the dependency checking code to simply walk the // class hierarchy above the loaded class, checking only nmethods // which are dependent on those classes. The slow way is to // check every nmethod for dependencies which makes it linear in // the number of methods compiled. For applications with a lot // classes the slow way is too slow. for (Dependencies::DepStream deps(nm); deps.next(); ) { Klass* klass = deps.context_type(); if (klass == NULL) continue; // ignore things like evol_method // record this nmethod as dependent on this klass InstanceKlass::cast(klass)->add_dependent_nmethod(nm); } } NOT_PRODUCT(if (nm != NULL) nmethod_stats.note_nmethod(nm)); if (PrintAssembly && nm != NULL) Disassembler::decode(nm); } // verify nmethod debug_only(if (nm) nm->verify();) // might block if (nm != NULL) { nm->log_new_nmethod(); } // done return nm; } // For native wrappers nmethod::nmethod( Method* method, int nmethod_size, int compile_id, CodeOffsets* offsets, CodeBuffer* code_buffer, int frame_size, ByteSize basic_lock_owner_sp_offset, ByteSize basic_lock_sp_offset, OopMapSet* oop_maps ) : CodeBlob("native nmethod", code_buffer, sizeof(nmethod), nmethod_size, offsets->value(CodeOffsets::Frame_Complete), frame_size, oop_maps), _native_receiver_sp_offset(basic_lock_owner_sp_offset), _native_basic_lock_sp_offset(basic_lock_sp_offset) { { debug_only(No_Safepoint_Verifier nsv;) assert_locked_or_safepoint(CodeCache_lock); init_defaults(); _method = method; _entry_bci = InvocationEntryBci; // We have no exception handler or deopt handler make the // values something that will never match a pc like the nmethod vtable entry _exception_offset = 0; _deoptimize_offset = 0; _deoptimize_mh_offset = 0; _orig_pc_offset = 0; _consts_offset = data_offset(); _stub_offset = data_offset(); _oops_offset = data_offset(); _metadata_offset = _oops_offset + round_to(code_buffer->total_oop_size(), oopSize); _scopes_data_offset = _metadata_offset + round_to(code_buffer->total_metadata_size(), wordSize); _scopes_pcs_offset = _scopes_data_offset; _dependencies_offset = _scopes_pcs_offset; _handler_table_offset = _dependencies_offset; _nul_chk_table_offset = _handler_table_offset; _nmethod_end_offset = _nul_chk_table_offset; _compile_id = compile_id; _comp_level = CompLevel_none; _entry_point = code_begin() + offsets->value(CodeOffsets::Entry); _verified_entry_point = code_begin() + offsets->value(CodeOffsets::Verified_Entry); _osr_entry_point = NULL; _exception_cache = NULL; _pc_desc_cache.reset_to(NULL); code_buffer->copy_values_to(this); if (ScavengeRootsInCode && detect_scavenge_root_oops()) { CodeCache::add_scavenge_root_nmethod(this); } debug_only(verify_scavenge_root_oops()); CodeCache::commit(this); } if (PrintNativeNMethods || PrintDebugInfo || PrintRelocations || PrintDependencies) { ttyLocker ttyl; // keep the following output all in one block // This output goes directly to the tty, not the compiler log. // To enable tools to match it up with the compilation activity, // be sure to tag this tty output with the compile ID. if (xtty != NULL) { xtty->begin_head("print_native_nmethod"); xtty->method(_method); xtty->stamp(); xtty->end_head(" address='" INTPTR_FORMAT "'", (intptr_t) this); } // print the header part first print(); // then print the requested information if (PrintNativeNMethods) { print_code(); oop_maps->print(); } if (PrintRelocations) { print_relocations(); } if (xtty != NULL) { xtty->tail("print_native_nmethod"); } } } // For dtrace wrappers #ifdef HAVE_DTRACE_H nmethod::nmethod( Method* method, int nmethod_size, CodeOffsets* offsets, CodeBuffer* code_buffer, int frame_size) : CodeBlob("dtrace nmethod", code_buffer, sizeof(nmethod), nmethod_size, offsets->value(CodeOffsets::Frame_Complete), frame_size, NULL), _native_receiver_sp_offset(in_ByteSize(-1)), _native_basic_lock_sp_offset(in_ByteSize(-1)) { { debug_only(No_Safepoint_Verifier nsv;) assert_locked_or_safepoint(CodeCache_lock); init_defaults(); _method = method; _entry_bci = InvocationEntryBci; // We have no exception handler or deopt handler make the // values something that will never match a pc like the nmethod vtable entry _exception_offset = 0; _deoptimize_offset = 0; _deoptimize_mh_offset = 0; _unwind_handler_offset = -1; _trap_offset = offsets->value(CodeOffsets::Dtrace_trap); _orig_pc_offset = 0; _consts_offset = data_offset(); _stub_offset = data_offset(); _oops_offset = data_offset(); _metadata_offset = _oops_offset + round_to(code_buffer->total_oop_size(), oopSize); _scopes_data_offset = _metadata_offset + round_to(code_buffer->total_metadata_size(), wordSize); _scopes_pcs_offset = _scopes_data_offset; _dependencies_offset = _scopes_pcs_offset; _handler_table_offset = _dependencies_offset; _nul_chk_table_offset = _handler_table_offset; _nmethod_end_offset = _nul_chk_table_offset; _compile_id = 0; // default _comp_level = CompLevel_none; _entry_point = code_begin() + offsets->value(CodeOffsets::Entry); _verified_entry_point = code_begin() + offsets->value(CodeOffsets::Verified_Entry); _osr_entry_point = NULL; _exception_cache = NULL; _pc_desc_cache.reset_to(NULL); code_buffer->copy_values_to(this); debug_only(verify_scavenge_root_oops()); CodeCache::commit(this); } if (PrintNMethods || PrintDebugInfo || PrintRelocations || PrintDependencies) { ttyLocker ttyl; // keep the following output all in one block // This output goes directly to the tty, not the compiler log. // To enable tools to match it up with the compilation activity, // be sure to tag this tty output with the compile ID. if (xtty != NULL) { xtty->begin_head("print_dtrace_nmethod"); xtty->method(_method); xtty->stamp(); xtty->end_head(" address='" INTPTR_FORMAT "'", (intptr_t) this); } // print the header part first print(); // then print the requested information if (PrintNMethods) { print_code(); } if (PrintRelocations) { print_relocations(); } if (xtty != NULL) { xtty->tail("print_dtrace_nmethod"); } } } #endif // def HAVE_DTRACE_H void* nmethod::operator new(size_t size, int nmethod_size) { // Always leave some room in the CodeCache for I2C/C2I adapters if (CodeCache::largest_free_block() < CodeCacheMinimumFreeSpace) return NULL; return CodeCache::allocate(nmethod_size); } nmethod::nmethod( Method* method, int nmethod_size, int compile_id, int entry_bci, CodeOffsets* offsets, int orig_pc_offset, DebugInformationRecorder* debug_info, Dependencies* dependencies, CodeBuffer *code_buffer, int frame_size, OopMapSet* oop_maps, ExceptionHandlerTable* handler_table, ImplicitExceptionTable* nul_chk_table, AbstractCompiler* compiler, int comp_level ) : CodeBlob("nmethod", code_buffer, sizeof(nmethod), nmethod_size, offsets->value(CodeOffsets::Frame_Complete), frame_size, oop_maps), _native_receiver_sp_offset(in_ByteSize(-1)), _native_basic_lock_sp_offset(in_ByteSize(-1)) { assert(debug_info->oop_recorder() == code_buffer->oop_recorder(), "shared OR"); { debug_only(No_Safepoint_Verifier nsv;) assert_locked_or_safepoint(CodeCache_lock); init_defaults(); _method = method; _entry_bci = entry_bci; _compile_id = compile_id; _comp_level = comp_level; _compiler = compiler; _orig_pc_offset = orig_pc_offset; // Section offsets _consts_offset = content_offset() + code_buffer->total_offset_of(code_buffer->consts()); _stub_offset = content_offset() + code_buffer->total_offset_of(code_buffer->stubs()); // Exception handler and deopt handler are in the stub section assert(offsets->value(CodeOffsets::Exceptions) != -1, "must be set"); assert(offsets->value(CodeOffsets::Deopt ) != -1, "must be set"); _exception_offset = _stub_offset + offsets->value(CodeOffsets::Exceptions); _deoptimize_offset = _stub_offset + offsets->value(CodeOffsets::Deopt); if (offsets->value(CodeOffsets::DeoptMH) != -1) { _deoptimize_mh_offset = _stub_offset + offsets->value(CodeOffsets::DeoptMH); } else { _deoptimize_mh_offset = -1; } if (offsets->value(CodeOffsets::UnwindHandler) != -1) { _unwind_handler_offset = code_offset() + offsets->value(CodeOffsets::UnwindHandler); } else { _unwind_handler_offset = -1; } _oops_offset = data_offset(); _metadata_offset = _oops_offset + round_to(code_buffer->total_oop_size(), oopSize); _scopes_data_offset = _metadata_offset + round_to(code_buffer->total_metadata_size(), wordSize); _scopes_pcs_offset = _scopes_data_offset + round_to(debug_info->data_size (), oopSize); _dependencies_offset = _scopes_pcs_offset + adjust_pcs_size(debug_info->pcs_size()); _handler_table_offset = _dependencies_offset + round_to(dependencies->size_in_bytes (), oopSize); _nul_chk_table_offset = _handler_table_offset + round_to(handler_table->size_in_bytes(), oopSize); _nmethod_end_offset = _nul_chk_table_offset + round_to(nul_chk_table->size_in_bytes(), oopSize); _entry_point = code_begin() + offsets->value(CodeOffsets::Entry); _verified_entry_point = code_begin() + offsets->value(CodeOffsets::Verified_Entry); _osr_entry_point = code_begin() + offsets->value(CodeOffsets::OSR_Entry); _exception_cache = NULL; _pc_desc_cache.reset_to(scopes_pcs_begin()); // Copy contents of ScopeDescRecorder to nmethod code_buffer->copy_values_to(this); debug_info->copy_to(this); dependencies->copy_to(this); if (ScavengeRootsInCode && detect_scavenge_root_oops()) { CodeCache::add_scavenge_root_nmethod(this); } debug_only(verify_scavenge_root_oops()); CodeCache::commit(this); // Copy contents of ExceptionHandlerTable to nmethod handler_table->copy_to(this); nul_chk_table->copy_to(this); // we use the information of entry points to find out if a method is // static or non static assert(compiler->is_c2() || _method->is_static() == (entry_point() == _verified_entry_point), " entry points must be same for static methods and vice versa"); } bool printnmethods = PrintNMethods || CompilerOracle::should_print(_method) || CompilerOracle::has_option_string(_method, "PrintNMethods"); if (printnmethods || PrintDebugInfo || PrintRelocations || PrintDependencies || PrintExceptionHandlers) { print_nmethod(printnmethods); } } // Print a short set of xml attributes to identify this nmethod. The // output should be embedded in some other element. void nmethod::log_identity(xmlStream* log) const { log->print(" compile_id='%d'", compile_id()); const char* nm_kind = compile_kind(); if (nm_kind != NULL) log->print(" compile_kind='%s'", nm_kind); if (compiler() != NULL) { log->print(" compiler='%s'", compiler()->name()); } if (TieredCompilation) { log->print(" level='%d'", comp_level()); } } #define LOG_OFFSET(log, name) \ if ((intptr_t)name##_end() - (intptr_t)name##_begin()) \ log->print(" " XSTR(name) "_offset='%d'" , \ (intptr_t)name##_begin() - (intptr_t)this) void nmethod::log_new_nmethod() const { if (LogCompilation && xtty != NULL) { ttyLocker ttyl; HandleMark hm; xtty->begin_elem("nmethod"); log_identity(xtty); xtty->print(" entry='" INTPTR_FORMAT "' size='%d'", code_begin(), size()); xtty->print(" address='" INTPTR_FORMAT "'", (intptr_t) this); LOG_OFFSET(xtty, relocation); LOG_OFFSET(xtty, consts); LOG_OFFSET(xtty, insts); LOG_OFFSET(xtty, stub); LOG_OFFSET(xtty, scopes_data); LOG_OFFSET(xtty, scopes_pcs); LOG_OFFSET(xtty, dependencies); LOG_OFFSET(xtty, handler_table); LOG_OFFSET(xtty, nul_chk_table); LOG_OFFSET(xtty, oops); xtty->method(method()); xtty->stamp(); xtty->end_elem(); } } #undef LOG_OFFSET // Print out more verbose output usually for a newly created nmethod. void nmethod::print_on(outputStream* st, const char* msg) const { if (st != NULL) { ttyLocker ttyl; if (WizardMode) { CompileTask::print_compilation(st, this, msg, /*short_form:*/ true); st->print_cr(" (" INTPTR_FORMAT ")", this); } else { CompileTask::print_compilation(st, this, msg, /*short_form:*/ false); } } } void nmethod::print_nmethod(bool printmethod) { ttyLocker ttyl; // keep the following output all in one block if (xtty != NULL) { xtty->begin_head("print_nmethod"); xtty->stamp(); xtty->end_head(); } // print the header part first print(); // then print the requested information if (printmethod) { print_code(); print_pcs(); if (oop_maps()) { oop_maps()->print(); } } if (PrintDebugInfo) { print_scopes(); } if (PrintRelocations) { print_relocations(); } if (PrintDependencies) { print_dependencies(); } if (PrintExceptionHandlers) { print_handler_table(); print_nul_chk_table(); } if (xtty != NULL) { xtty->tail("print_nmethod"); } } // Promote one word from an assembly-time handle to a live embedded oop. inline void nmethod::initialize_immediate_oop(oop* dest, jobject handle) { if (handle == NULL || // As a special case, IC oops are initialized to 1 or -1. handle == (jobject) Universe::non_oop_word()) { (*dest) = (oop) handle; } else { (*dest) = JNIHandles::resolve_non_null(handle); } } // Have to have the same name because it's called by a template void nmethod::copy_values(GrowableArray* array) { int length = array->length(); assert((address)(oops_begin() + length) <= (address)oops_end(), "oops big enough"); oop* dest = oops_begin(); for (int index = 0 ; index < length; index++) { initialize_immediate_oop(&dest[index], array->at(index)); } // Now we can fix up all the oops in the code. We need to do this // in the code because the assembler uses jobjects as placeholders. // The code and relocations have already been initialized by the // CodeBlob constructor, so it is valid even at this early point to // iterate over relocations and patch the code. fix_oop_relocations(NULL, NULL, /*initialize_immediates=*/ true); } void nmethod::copy_values(GrowableArray* array) { int length = array->length(); assert((address)(metadata_begin() + length) <= (address)metadata_end(), "big enough"); Metadata** dest = metadata_begin(); for (int index = 0 ; index < length; index++) { dest[index] = array->at(index); } } bool nmethod::is_at_poll_return(address pc) { RelocIterator iter(this, pc, pc+1); while (iter.next()) { if (iter.type() == relocInfo::poll_return_type) return true; } return false; } bool nmethod::is_at_poll_or_poll_return(address pc) { RelocIterator iter(this, pc, pc+1); while (iter.next()) { relocInfo::relocType t = iter.type(); if (t == relocInfo::poll_return_type || t == relocInfo::poll_type) return true; } return false; } void nmethod::fix_oop_relocations(address begin, address end, bool initialize_immediates) { // re-patch all oop-bearing instructions, just in case some oops moved RelocIterator iter(this, begin, end); while (iter.next()) { if (iter.type() == relocInfo::oop_type) { oop_Relocation* reloc = iter.oop_reloc(); if (initialize_immediates && reloc->oop_is_immediate()) { oop* dest = reloc->oop_addr(); initialize_immediate_oop(dest, (jobject) *dest); } // Refresh the oop-related bits of this instruction. reloc->fix_oop_relocation(); } else if (iter.type() == relocInfo::metadata_type) { metadata_Relocation* reloc = iter.metadata_reloc(); reloc->fix_metadata_relocation(); } // There must not be any interfering patches or breakpoints. assert(!(iter.type() == relocInfo::breakpoint_type && iter.breakpoint_reloc()->active()), "no active breakpoint"); } } void nmethod::verify_oop_relocations() { // Ensure sure that the code matches the current oop values RelocIterator iter(this, NULL, NULL); while (iter.next()) { if (iter.type() == relocInfo::oop_type) { oop_Relocation* reloc = iter.oop_reloc(); if (!reloc->oop_is_immediate()) { reloc->verify_oop_relocation(); } } } } ScopeDesc* nmethod::scope_desc_at(address pc) { PcDesc* pd = pc_desc_at(pc); guarantee(pd != NULL, "scope must be present"); return new ScopeDesc(this, pd->scope_decode_offset(), pd->obj_decode_offset(), pd->should_reexecute(), pd->return_oop()); } void nmethod::clear_inline_caches() { assert(SafepointSynchronize::is_at_safepoint(), "cleaning of IC's only allowed at safepoint"); if (is_zombie()) { return; } RelocIterator iter(this); while (iter.next()) { iter.reloc()->clear_inline_cache(); } } void nmethod::cleanup_inline_caches() { assert_locked_or_safepoint(CompiledIC_lock); // If the method is not entrant or zombie then a JMP is plastered over the // first few bytes. If an oop in the old code was there, that oop // should not get GC'd. Skip the first few bytes of oops on // not-entrant methods. address low_boundary = verified_entry_point(); if (!is_in_use()) { low_boundary += NativeJump::instruction_size; // %%% Note: On SPARC we patch only a 4-byte trap, not a full NativeJump. // This means that the low_boundary is going to be a little too high. // This shouldn't matter, since oops of non-entrant methods are never used. // In fact, why are we bothering to look at oops in a non-entrant method?? } // Find all calls in an nmethod, and clear the ones that points to zombie methods ResourceMark rm; RelocIterator iter(this, low_boundary); while(iter.next()) { switch(iter.type()) { case relocInfo::virtual_call_type: case relocInfo::opt_virtual_call_type: { CompiledIC *ic = CompiledIC_at(iter.reloc()); // Ok, to lookup references to zombies here CodeBlob *cb = CodeCache::find_blob_unsafe(ic->ic_destination()); if( cb != NULL && cb->is_nmethod() ) { nmethod* nm = (nmethod*)cb; // Clean inline caches pointing to both zombie and not_entrant methods if (!nm->is_in_use() || (nm->method()->code() != nm)) ic->set_to_clean(); } break; } case relocInfo::static_call_type: { CompiledStaticCall *csc = compiledStaticCall_at(iter.reloc()); CodeBlob *cb = CodeCache::find_blob_unsafe(csc->destination()); if( cb != NULL && cb->is_nmethod() ) { nmethod* nm = (nmethod*)cb; // Clean inline caches pointing to both zombie and not_entrant methods if (!nm->is_in_use() || (nm->method()->code() != nm)) csc->set_to_clean(); } break; } } } } // This is a private interface with the sweeper. void nmethod::mark_as_seen_on_stack() { assert(is_not_entrant(), "must be a non-entrant method"); // Set the traversal mark to ensure that the sweeper does 2 // cleaning passes before moving to zombie. set_stack_traversal_mark(NMethodSweeper::traversal_count()); } // Tell if a non-entrant method can be converted to a zombie (i.e., // there are no activations on the stack, not in use by the VM, // and not in use by the ServiceThread) bool nmethod::can_not_entrant_be_converted() { assert(is_not_entrant(), "must be a non-entrant method"); // Since the nmethod sweeper only does partial sweep the sweeper's traversal // count can be greater than the stack traversal count before it hits the // nmethod for the second time. return stack_traversal_mark()+1 < NMethodSweeper::traversal_count() && !is_locked_by_vm(); } void nmethod::inc_decompile_count() { if (!is_compiled_by_c2()) return; // Could be gated by ProfileTraps, but do not bother... Method* m = method(); if (m == NULL) return; MethodData* mdo = m->method_data(); if (mdo == NULL) return; // There is a benign race here. See comments in methodData.hpp. mdo->inc_decompile_count(); } void nmethod::make_unloaded(BoolObjectClosure* is_alive, oop cause) { post_compiled_method_unload(); // Since this nmethod is being unloaded, make sure that dependencies // recorded in instanceKlasses get flushed and pass non-NULL closure to // indicate that this work is being done during a GC. assert(Universe::heap()->is_gc_active(), "should only be called during gc"); assert(is_alive != NULL, "Should be non-NULL"); // A non-NULL is_alive closure indicates that this is being called during GC. flush_dependencies(is_alive); // Break cycle between nmethod & method if (TraceClassUnloading && WizardMode) { tty->print_cr("[Class unloading: Making nmethod " INTPTR_FORMAT " unloadable], Method*(" INTPTR_FORMAT "), cause(" INTPTR_FORMAT ")", this, (address)_method, (address)cause); if (!Universe::heap()->is_gc_active()) cause->klass()->print(); } // Unlink the osr method, so we do not look this up again if (is_osr_method()) { invalidate_osr_method(); } // If _method is already NULL the Method* is about to be unloaded, // so we don't have to break the cycle. Note that it is possible to // have the Method* live here, in case we unload the nmethod because // it is pointing to some oop (other than the Method*) being unloaded. if (_method != NULL) { // OSR methods point to the Method*, but the Method* does not // point back! if (_method->code() == this) { _method->clear_code(); // Break a cycle } _method = NULL; // Clear the method of this dead nmethod } // Make the class unloaded - i.e., change state and notify sweeper assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint"); if (is_in_use()) { // Transitioning directly from live to unloaded -- so // we need to force a cache clean-up; remember this // for later on. CodeCache::set_needs_cache_clean(true); } _state = unloaded; // Log the unloading. log_state_change(); // The Method* is gone at this point assert(_method == NULL, "Tautology"); set_osr_link(NULL); //set_scavenge_root_link(NULL); // done by prune_scavenge_root_nmethods NMethodSweeper::notify(this); } void nmethod::invalidate_osr_method() { assert(_entry_bci != InvocationEntryBci, "wrong kind of nmethod"); // Remove from list of active nmethods if (method() != NULL) InstanceKlass::cast(method()->method_holder())->remove_osr_nmethod(this); // Set entry as invalid _entry_bci = InvalidOSREntryBci; } void nmethod::log_state_change() const { if (LogCompilation) { if (xtty != NULL) { ttyLocker ttyl; // keep the following output all in one block if (_state == unloaded) { xtty->begin_elem("make_unloaded thread='" UINTX_FORMAT "'", os::current_thread_id()); } else { xtty->begin_elem("make_not_entrant thread='" UINTX_FORMAT "'%s", os::current_thread_id(), (_state == zombie ? " zombie='1'" : "")); } log_identity(xtty); xtty->stamp(); xtty->end_elem(); } } if (PrintCompilation && _state != unloaded) { print_on(tty, _state == zombie ? "made zombie" : "made not entrant"); } } // Common functionality for both make_not_entrant and make_zombie bool nmethod::make_not_entrant_or_zombie(unsigned int state) { assert(state == zombie || state == not_entrant, "must be zombie or not_entrant"); assert(!is_zombie(), "should not already be a zombie"); // Make sure neither the nmethod nor the method is flushed in case of a safepoint in code below. nmethodLocker nml(this); methodHandle the_method(method()); No_Safepoint_Verifier nsv; { // invalidate osr nmethod before acquiring the patching lock since // they both acquire leaf locks and we don't want a deadlock. // This logic is equivalent to the logic below for patching the // verified entry point of regular methods. if (is_osr_method()) { // this effectively makes the osr nmethod not entrant invalidate_osr_method(); } // Enter critical section. Does not block for safepoint. MutexLockerEx pl(Patching_lock, Mutex::_no_safepoint_check_flag); if (_state == state) { // another thread already performed this transition so nothing // to do, but return false to indicate this. return false; } // The caller can be calling the method statically or through an inline // cache call. if (!is_osr_method() && !is_not_entrant()) { NativeJump::patch_verified_entry(entry_point(), verified_entry_point(), SharedRuntime::get_handle_wrong_method_stub()); } if (is_in_use()) { // It's a true state change, so mark the method as decompiled. // Do it only for transition from alive. inc_decompile_count(); } // Change state _state = state; // Log the transition once log_state_change(); // Remove nmethod from method. // We need to check if both the _code and _from_compiled_code_entry_point // refer to this nmethod because there is a race in setting these two fields // in Method* as seen in bugid 4947125. // If the vep() points to the zombie nmethod, the memory for the nmethod // could be flushed and the compiler and vtable stubs could still call // through it. if (method() != NULL && (method()->code() == this || method()->from_compiled_entry() == verified_entry_point())) { HandleMark hm; method()->clear_code(); } if (state == not_entrant) { mark_as_seen_on_stack(); } } // leave critical region under Patching_lock // When the nmethod becomes zombie it is no longer alive so the // dependencies must be flushed. nmethods in the not_entrant // state will be flushed later when the transition to zombie // happens or they get unloaded. if (state == zombie) { { // Flushing dependecies must be done before any possible // safepoint can sneak in, otherwise the oops used by the // dependency logic could have become stale. MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag); flush_dependencies(NULL); } // zombie only - if a JVMTI agent has enabled the CompiledMethodUnload // event and it hasn't already been reported for this nmethod then // report it now. The event may have been reported earilier if the GC // marked it for unloading). JvmtiDeferredEventQueue support means // we no longer go to a safepoint here. post_compiled_method_unload(); #ifdef ASSERT // It's no longer safe to access the oops section since zombie // nmethods aren't scanned for GC. _oops_are_stale = true; #endif } else { assert(state == not_entrant, "other cases may need to be handled differently"); } if (TraceCreateZombies) { tty->print_cr("nmethod <" INTPTR_FORMAT "> code made %s", this, (state == not_entrant) ? "not entrant" : "zombie"); } // Make sweeper aware that there is a zombie method that needs to be removed NMethodSweeper::notify(this); return true; } void nmethod::flush() { // Note that there are no valid oops in the nmethod anymore. assert(is_zombie() || (is_osr_method() && is_unloaded()), "must be a zombie method"); assert(is_marked_for_reclamation() || (is_osr_method() && is_unloaded()), "must be marked for reclamation"); assert (!is_locked_by_vm(), "locked methods shouldn't be flushed"); assert_locked_or_safepoint(CodeCache_lock); // completely deallocate this method Events::log(JavaThread::current(), "flushing nmethod " INTPTR_FORMAT, this); if (PrintMethodFlushing) { tty->print_cr("*flushing nmethod %3d/" INTPTR_FORMAT ". Live blobs:" UINT32_FORMAT "/Free CodeCache:" SIZE_FORMAT "Kb", _compile_id, this, CodeCache::nof_blobs(), CodeCache::unallocated_capacity()/1024); } // We need to deallocate any ExceptionCache data. // Note that we do not need to grab the nmethod lock for this, it // better be thread safe if we're disposing of it! ExceptionCache* ec = exception_cache(); set_exception_cache(NULL); while(ec != NULL) { ExceptionCache* next = ec->next(); delete ec; ec = next; } if (on_scavenge_root_list()) { CodeCache::drop_scavenge_root_nmethod(this); } if (is_speculatively_disconnected()) { CodeCache::remove_saved_code(this); } #ifdef SHARK ((SharkCompiler *) compiler())->free_compiled_method(insts_begin()); #endif // SHARK ((CodeBlob*)(this))->flush(); CodeCache::free(this); } // // Notify all classes this nmethod is dependent on that it is no // longer dependent. This should only be called in two situations. // First, when a nmethod transitions to a zombie all dependents need // to be clear. Since zombification happens at a safepoint there's no // synchronization issues. The second place is a little more tricky. // During phase 1 of mark sweep class unloading may happen and as a // result some nmethods may get unloaded. In this case the flushing // of dependencies must happen during phase 1 since after GC any // dependencies in the unloaded nmethod won't be updated, so // traversing the dependency information in unsafe. In that case this // function is called with a non-NULL argument and this function only // notifies instanceKlasses that are reachable void nmethod::flush_dependencies(BoolObjectClosure* is_alive) { assert_locked_or_safepoint(CodeCache_lock); assert(Universe::heap()->is_gc_active() == (is_alive != NULL), "is_alive is non-NULL if and only if we are called during GC"); if (!has_flushed_dependencies()) { set_has_flushed_dependencies(); for (Dependencies::DepStream deps(this); deps.next(); ) { Klass* klass = deps.context_type(); if (klass == NULL) continue; // ignore things like evol_method // During GC the is_alive closure is non-NULL, and is used to // determine liveness of dependees that need to be updated. if (is_alive == NULL || klass->is_loader_alive(is_alive)) { InstanceKlass::cast(klass)->remove_dependent_nmethod(this); } } } } // If this oop is not live, the nmethod can be unloaded. bool nmethod::can_unload(BoolObjectClosure* is_alive, oop* root, bool unloading_occurred) { assert(root != NULL, "just checking"); oop obj = *root; if (obj == NULL || is_alive->do_object_b(obj)) { return false; } // If ScavengeRootsInCode is true, an nmethod might be unloaded // simply because one of its constant oops has gone dead. // No actual classes need to be unloaded in order for this to occur. assert(unloading_occurred || ScavengeRootsInCode, "Inconsistency in unloading"); make_unloaded(is_alive, obj); return true; } // ------------------------------------------------------------------ // post_compiled_method_load_event // new method for install_code() path // Transfer information from compilation to jvmti void nmethod::post_compiled_method_load_event() { Method* moop = method(); #ifndef USDT2 HS_DTRACE_PROBE8(hotspot, compiled__method__load, moop->klass_name()->bytes(), moop->klass_name()->utf8_length(), moop->name()->bytes(), moop->name()->utf8_length(), moop->signature()->bytes(), moop->signature()->utf8_length(), insts_begin(), insts_size()); #else /* USDT2 */ HOTSPOT_COMPILED_METHOD_LOAD( (char *) moop->klass_name()->bytes(), moop->klass_name()->utf8_length(), (char *) moop->name()->bytes(), moop->name()->utf8_length(), (char *) moop->signature()->bytes(), moop->signature()->utf8_length(), insts_begin(), insts_size()); #endif /* USDT2 */ if (JvmtiExport::should_post_compiled_method_load() || JvmtiExport::should_post_compiled_method_unload()) { get_and_cache_jmethod_id(); } if (JvmtiExport::should_post_compiled_method_load()) { // Let the Service thread (which is a real Java thread) post the event MutexLockerEx ml(Service_lock, Mutex::_no_safepoint_check_flag); JvmtiDeferredEventQueue::enqueue( JvmtiDeferredEvent::compiled_method_load_event(this)); } } jmethodID nmethod::get_and_cache_jmethod_id() { if (_jmethod_id == NULL) { // Cache the jmethod_id since it can no longer be looked up once the // method itself has been marked for unloading. _jmethod_id = method()->jmethod_id(); } return _jmethod_id; } void nmethod::post_compiled_method_unload() { if (unload_reported()) { // During unloading we transition to unloaded and then to zombie // and the unloading is reported during the first transition. return; } assert(_method != NULL && !is_unloaded(), "just checking"); DTRACE_METHOD_UNLOAD_PROBE(method()); // If a JVMTI agent has enabled the CompiledMethodUnload event then // post the event. Sometime later this nmethod will be made a zombie // by the sweeper but the Method* will not be valid at that point. // If the _jmethod_id is null then no load event was ever requested // so don't bother posting the unload. The main reason for this is // that the jmethodID is a weak reference to the Method* so if // it's being unloaded there's no way to look it up since the weak // ref will have been cleared. if (_jmethod_id != NULL && JvmtiExport::should_post_compiled_method_unload()) { assert(!unload_reported(), "already unloaded"); JvmtiDeferredEvent event = JvmtiDeferredEvent::compiled_method_unload_event(this, _jmethod_id, insts_begin()); if (SafepointSynchronize::is_at_safepoint()) { // Don't want to take the queueing lock. Add it as pending and // it will get enqueued later. JvmtiDeferredEventQueue::add_pending_event(event); } else { MutexLockerEx ml(Service_lock, Mutex::_no_safepoint_check_flag); JvmtiDeferredEventQueue::enqueue(event); } } // The JVMTI CompiledMethodUnload event can be enabled or disabled at // any time. As the nmethod is being unloaded now we mark it has // having the unload event reported - this will ensure that we don't // attempt to report the event in the unlikely scenario where the // event is enabled at the time the nmethod is made a zombie. set_unload_reported(); } // This is called at the end of the strong tracing/marking phase of a // GC to unload an nmethod if it contains otherwise unreachable // oops. void nmethod::do_unloading(BoolObjectClosure* is_alive, bool unloading_occurred) { // Make sure the oop's ready to receive visitors assert(!is_zombie() && !is_unloaded(), "should not call follow on zombie or unloaded nmethod"); // If the method is not entrant then a JMP is plastered over the // first few bytes. If an oop in the old code was there, that oop // should not get GC'd. Skip the first few bytes of oops on // not-entrant methods. address low_boundary = verified_entry_point(); if (is_not_entrant()) { low_boundary += NativeJump::instruction_size; // %%% Note: On SPARC we patch only a 4-byte trap, not a full NativeJump. // (See comment above.) } // The RedefineClasses() API can cause the class unloading invariant // to no longer be true. See jvmtiExport.hpp for details. // Also, leave a debugging breadcrumb in local flag. bool a_class_was_redefined = JvmtiExport::has_redefined_a_class(); if (a_class_was_redefined) { // This set of the unloading_occurred flag is done before the // call to post_compiled_method_unload() so that the unloading // of this nmethod is reported. unloading_occurred = true; } // Exception cache ExceptionCache* ec = exception_cache(); while (ec != NULL) { Klass* ex_klass = ec->exception_type(); ExceptionCache* next_ec = ec->next(); if (ex_klass != NULL && !ex_klass->is_loader_alive(is_alive)) { remove_from_exception_cache(ec); } ec = next_ec; } // If class unloading occurred we first iterate over all inline caches and // clear ICs where the cached oop is referring to an unloaded klass or method. // The remaining live cached oops will be traversed in the relocInfo::oop_type // iteration below. if (unloading_occurred) { RelocIterator iter(this, low_boundary); while(iter.next()) { if (iter.type() == relocInfo::virtual_call_type) { CompiledIC *ic = CompiledIC_at(iter.reloc()); if (ic->is_icholder_call()) { // The only exception is compiledICHolder oops which may // yet be marked below. (We check this further below). CompiledICHolder* cichk_oop = ic->cached_icholder(); if (cichk_oop->holder_method()->method_holder()->is_loader_alive(is_alive) && cichk_oop->holder_klass()->is_loader_alive(is_alive)) { continue; } } else { Metadata* ic_oop = ic->cached_metadata(); if (ic_oop != NULL) { if (ic_oop->is_klass()) { if (((Klass*)ic_oop)->is_loader_alive(is_alive)) { continue; } } else if (ic_oop->is_method()) { if (((Method*)ic_oop)->method_holder()->is_loader_alive(is_alive)) { continue; } } else { ShouldNotReachHere(); } } } ic->set_to_clean(); } } } // Compiled code { RelocIterator iter(this, low_boundary); while (iter.next()) { if (iter.type() == relocInfo::oop_type) { oop_Relocation* r = iter.oop_reloc(); // In this loop, we must only traverse those oops directly embedded in // the code. Other oops (oop_index>0) are seen as part of scopes_oops. assert(1 == (r->oop_is_immediate()) + (r->oop_addr() >= oops_begin() && r->oop_addr() < oops_end()), "oop must be found in exactly one place"); if (r->oop_is_immediate() && r->oop_value() != NULL) { if (can_unload(is_alive, r->oop_addr(), unloading_occurred)) { return; } } } } } // Scopes for (oop* p = oops_begin(); p < oops_end(); p++) { if (*p == Universe::non_oop_word()) continue; // skip non-oops if (can_unload(is_alive, p, unloading_occurred)) { return; } } // Ensure that all metadata is still alive verify_metadata_loaders(low_boundary, is_alive); } #ifdef ASSERT class CheckClass : AllStatic { static BoolObjectClosure* _is_alive; // Check class_loader is alive for this bit of metadata. static void check_class(Metadata* md) { Klass* klass = NULL; if (md->is_klass()) { klass = ((Klass*)md); } else if (md->is_method()) { klass = ((Method*)md)->method_holder(); } else if (md->is_methodData()) { klass = ((MethodData*)md)->method()->method_holder(); } else { md->print(); ShouldNotReachHere(); } assert(klass->is_loader_alive(_is_alive), "must be alive"); } public: static void do_check_class(BoolObjectClosure* is_alive, nmethod* nm) { assert(SafepointSynchronize::is_at_safepoint(), "this is only ok at safepoint"); _is_alive = is_alive; nm->metadata_do(check_class); } }; // This is called during a safepoint so can use static data BoolObjectClosure* CheckClass::_is_alive = NULL; #endif // ASSERT // Processing of oop references should have been sufficient to keep // all strong references alive. Any weak references should have been // cleared as well. Visit all the metadata and ensure that it's // really alive. void nmethod::verify_metadata_loaders(address low_boundary, BoolObjectClosure* is_alive) { #ifdef ASSERT RelocIterator iter(this, low_boundary); while (iter.next()) { // static_stub_Relocations may have dangling references to // Method*s so trim them out here. Otherwise it looks like // compiled code is maintaining a link to dead metadata. address static_call_addr = NULL; if (iter.type() == relocInfo::opt_virtual_call_type) { CompiledIC* cic = CompiledIC_at(iter.reloc()); if (!cic->is_call_to_interpreted()) { static_call_addr = iter.addr(); } } else if (iter.type() == relocInfo::static_call_type) { CompiledStaticCall* csc = compiledStaticCall_at(iter.reloc()); if (!csc->is_call_to_interpreted()) { static_call_addr = iter.addr(); } } if (static_call_addr != NULL) { RelocIterator sciter(this, low_boundary); while (sciter.next()) { if (sciter.type() == relocInfo::static_stub_type && sciter.static_stub_reloc()->static_call() == static_call_addr) { sciter.static_stub_reloc()->clear_inline_cache(); } } } } // Check that the metadata embedded in the nmethod is alive CheckClass::do_check_class(is_alive, this); #endif } // Iterate over metadata calling this function. Used by RedefineClasses void nmethod::metadata_do(void f(Metadata*)) { address low_boundary = verified_entry_point(); if (is_not_entrant()) { low_boundary += NativeJump::instruction_size; // %%% Note: On SPARC we patch only a 4-byte trap, not a full NativeJump. // (See comment above.) } { // Visit all immediate references that are embedded in the instruction stream. RelocIterator iter(this, low_boundary); while (iter.next()) { if (iter.type() == relocInfo::metadata_type ) { metadata_Relocation* r = iter.metadata_reloc(); // In this lmetadata, we must only follow those metadatas directly embedded in // the code. Other metadatas (oop_index>0) are seen as part of // the metadata section below. assert(1 == (r->metadata_is_immediate()) + (r->metadata_addr() >= metadata_begin() && r->metadata_addr() < metadata_end()), "metadata must be found in exactly one place"); if (r->metadata_is_immediate() && r->metadata_value() != NULL) { Metadata* md = r->metadata_value(); f(md); } } } } // Visit the metadata section for (Metadata** p = metadata_begin(); p < metadata_end(); p++) { if (*p == Universe::non_oop_word() || *p == NULL) continue; // skip non-oops Metadata* md = *p; f(md); } // Call function Method*, not embedded in these other places. if (_method != NULL) f(_method); } // This method is called twice during GC -- once while // tracing the "active" nmethods on thread stacks during // the (strong) marking phase, and then again when walking // the code cache contents during the weak roots processing // phase. The two uses are distinguished by means of the // 'do_strong_roots_only' flag, which is true in the first // case. We want to walk the weak roots in the nmethod // only in the second case. The weak roots in the nmethod // are the oops in the ExceptionCache and the InlineCache // oops. void nmethod::oops_do(OopClosure* f, bool do_strong_roots_only) { // make sure the oops ready to receive visitors assert(!is_zombie() && !is_unloaded(), "should not call follow on zombie or unloaded nmethod"); // If the method is not entrant or zombie then a JMP is plastered over the // first few bytes. If an oop in the old code was there, that oop // should not get GC'd. Skip the first few bytes of oops on // not-entrant methods. address low_boundary = verified_entry_point(); if (is_not_entrant()) { low_boundary += NativeJump::instruction_size; // %%% Note: On SPARC we patch only a 4-byte trap, not a full NativeJump. // (See comment above.) } RelocIterator iter(this, low_boundary); while (iter.next()) { if (iter.type() == relocInfo::oop_type ) { oop_Relocation* r = iter.oop_reloc(); // In this loop, we must only follow those oops directly embedded in // the code. Other oops (oop_index>0) are seen as part of scopes_oops. assert(1 == (r->oop_is_immediate()) + (r->oop_addr() >= oops_begin() && r->oop_addr() < oops_end()), "oop must be found in exactly one place"); if (r->oop_is_immediate() && r->oop_value() != NULL) { f->do_oop(r->oop_addr()); } } } // Scopes // This includes oop constants not inlined in the code stream. for (oop* p = oops_begin(); p < oops_end(); p++) { if (*p == Universe::non_oop_word()) continue; // skip non-oops f->do_oop(p); } } #define NMETHOD_SENTINEL ((nmethod*)badAddress) nmethod* volatile nmethod::_oops_do_mark_nmethods; // An nmethod is "marked" if its _mark_link is set non-null. // Even if it is the end of the linked list, it will have a non-null link value, // as long as it is on the list. // This code must be MP safe, because it is used from parallel GC passes. bool nmethod::test_set_oops_do_mark() { assert(nmethod::oops_do_marking_is_active(), "oops_do_marking_prologue must be called"); nmethod* observed_mark_link = _oops_do_mark_link; if (observed_mark_link == NULL) { // Claim this nmethod for this thread to mark. observed_mark_link = (nmethod*) Atomic::cmpxchg_ptr(NMETHOD_SENTINEL, &_oops_do_mark_link, NULL); if (observed_mark_link == NULL) { // Atomically append this nmethod (now claimed) to the head of the list: nmethod* observed_mark_nmethods = _oops_do_mark_nmethods; for (;;) { nmethod* required_mark_nmethods = observed_mark_nmethods; _oops_do_mark_link = required_mark_nmethods; observed_mark_nmethods = (nmethod*) Atomic::cmpxchg_ptr(this, &_oops_do_mark_nmethods, required_mark_nmethods); if (observed_mark_nmethods == required_mark_nmethods) break; } // Mark was clear when we first saw this guy. NOT_PRODUCT(if (TraceScavenge) print_on(tty, "oops_do, mark")); return false; } } // On fall through, another racing thread marked this nmethod before we did. return true; } void nmethod::oops_do_marking_prologue() { NOT_PRODUCT(if (TraceScavenge) tty->print_cr("[oops_do_marking_prologue")); assert(_oops_do_mark_nmethods == NULL, "must not call oops_do_marking_prologue twice in a row"); // We use cmpxchg_ptr instead of regular assignment here because the user // may fork a bunch of threads, and we need them all to see the same state. void* observed = Atomic::cmpxchg_ptr(NMETHOD_SENTINEL, &_oops_do_mark_nmethods, NULL); guarantee(observed == NULL, "no races in this sequential code"); } void nmethod::oops_do_marking_epilogue() { assert(_oops_do_mark_nmethods != NULL, "must not call oops_do_marking_epilogue twice in a row"); nmethod* cur = _oops_do_mark_nmethods; while (cur != NMETHOD_SENTINEL) { assert(cur != NULL, "not NULL-terminated"); nmethod* next = cur->_oops_do_mark_link; cur->_oops_do_mark_link = NULL; cur->fix_oop_relocations(); NOT_PRODUCT(if (TraceScavenge) cur->print_on(tty, "oops_do, unmark")); cur = next; } void* required = _oops_do_mark_nmethods; void* observed = Atomic::cmpxchg_ptr(NULL, &_oops_do_mark_nmethods, required); guarantee(observed == required, "no races in this sequential code"); NOT_PRODUCT(if (TraceScavenge) tty->print_cr("oops_do_marking_epilogue]")); } class DetectScavengeRoot: public OopClosure { bool _detected_scavenge_root; public: DetectScavengeRoot() : _detected_scavenge_root(false) { NOT_PRODUCT(_print_nm = NULL); } bool detected_scavenge_root() { return _detected_scavenge_root; } virtual void do_oop(oop* p) { if ((*p) != NULL && (*p)->is_scavengable()) { NOT_PRODUCT(maybe_print(p)); _detected_scavenge_root = true; } } virtual void do_oop(narrowOop* p) { ShouldNotReachHere(); } #ifndef PRODUCT nmethod* _print_nm; void maybe_print(oop* p) { if (_print_nm == NULL) return; if (!_detected_scavenge_root) _print_nm->print_on(tty, "new scavenge root"); tty->print_cr(""PTR_FORMAT"[offset=%d] detected scavengable oop "PTR_FORMAT" (found at "PTR_FORMAT")", _print_nm, (int)((intptr_t)p - (intptr_t)_print_nm), (intptr_t)(*p), (intptr_t)p); (*p)->print(); } #endif //PRODUCT }; bool nmethod::detect_scavenge_root_oops() { DetectScavengeRoot detect_scavenge_root; NOT_PRODUCT(if (TraceScavenge) detect_scavenge_root._print_nm = this); oops_do(&detect_scavenge_root); return detect_scavenge_root.detected_scavenge_root(); } // Method that knows how to preserve outgoing arguments at call. This method must be // called with a frame corresponding to a Java invoke void nmethod::preserve_callee_argument_oops(frame fr, const RegisterMap *reg_map, OopClosure* f) { #ifndef SHARK if (!method()->is_native()) { SimpleScopeDesc ssd(this, fr.pc()); Bytecode_invoke call(ssd.method(), ssd.bci()); // compiled invokedynamic call sites have an implicit receiver at // resolution time, so make sure it gets GC'ed. bool has_receiver = !call.is_invokestatic(); Symbol* signature = call.signature(); fr.oops_compiled_arguments_do(signature, has_receiver, reg_map, f); } #endif // !SHARK } oop nmethod::embeddedOop_at(u_char* p) { RelocIterator iter(this, p, p + 1); while (iter.next()) if (iter.type() == relocInfo::oop_type) { return iter.oop_reloc()->oop_value(); } return NULL; } inline bool includes(void* p, void* from, void* to) { return from <= p && p < to; } void nmethod::copy_scopes_pcs(PcDesc* pcs, int count) { assert(count >= 2, "must be sentinel values, at least"); #ifdef ASSERT // must be sorted and unique; we do a binary search in find_pc_desc() int prev_offset = pcs[0].pc_offset(); assert(prev_offset == PcDesc::lower_offset_limit, "must start with a sentinel"); for (int i = 1; i < count; i++) { int this_offset = pcs[i].pc_offset(); assert(this_offset > prev_offset, "offsets must be sorted"); prev_offset = this_offset; } assert(prev_offset == PcDesc::upper_offset_limit, "must end with a sentinel"); #endif //ASSERT // Search for MethodHandle invokes and tag the nmethod. for (int i = 0; i < count; i++) { if (pcs[i].is_method_handle_invoke()) { set_has_method_handle_invokes(true); break; } } assert(has_method_handle_invokes() == (_deoptimize_mh_offset != -1), "must have deopt mh handler"); int size = count * sizeof(PcDesc); assert(scopes_pcs_size() >= size, "oob"); memcpy(scopes_pcs_begin(), pcs, size); // Adjust the final sentinel downward. PcDesc* last_pc = &scopes_pcs_begin()[count-1]; assert(last_pc->pc_offset() == PcDesc::upper_offset_limit, "sanity"); last_pc->set_pc_offset(content_size() + 1); for (; last_pc + 1 < scopes_pcs_end(); last_pc += 1) { // Fill any rounding gaps with copies of the last record. last_pc[1] = last_pc[0]; } // The following assert could fail if sizeof(PcDesc) is not // an integral multiple of oopSize (the rounding term). // If it fails, change the logic to always allocate a multiple // of sizeof(PcDesc), and fill unused words with copies of *last_pc. assert(last_pc + 1 == scopes_pcs_end(), "must match exactly"); } void nmethod::copy_scopes_data(u_char* buffer, int size) { assert(scopes_data_size() >= size, "oob"); memcpy(scopes_data_begin(), buffer, size); } #ifdef ASSERT static PcDesc* linear_search(nmethod* nm, int pc_offset, bool approximate) { PcDesc* lower = nm->scopes_pcs_begin(); PcDesc* upper = nm->scopes_pcs_end(); lower += 1; // exclude initial sentinel PcDesc* res = NULL; for (PcDesc* p = lower; p < upper; p++) { NOT_PRODUCT(--nmethod_stats.pc_desc_tests); // don't count this call to match_desc if (match_desc(p, pc_offset, approximate)) { if (res == NULL) res = p; else res = (PcDesc*) badAddress; } } return res; } #endif // Finds a PcDesc with real-pc equal to "pc" PcDesc* nmethod::find_pc_desc_internal(address pc, bool approximate) { address base_address = code_begin(); if ((pc < base_address) || (pc - base_address) >= (ptrdiff_t) PcDesc::upper_offset_limit) { return NULL; // PC is wildly out of range } int pc_offset = (int) (pc - base_address); // Check the PcDesc cache if it contains the desired PcDesc // (This as an almost 100% hit rate.) PcDesc* res = _pc_desc_cache.find_pc_desc(pc_offset, approximate); if (res != NULL) { assert(res == linear_search(this, pc_offset, approximate), "cache ok"); return res; } // Fallback algorithm: quasi-linear search for the PcDesc // Find the last pc_offset less than the given offset. // The successor must be the required match, if there is a match at all. // (Use a fixed radix to avoid expensive affine pointer arithmetic.) PcDesc* lower = scopes_pcs_begin(); PcDesc* upper = scopes_pcs_end(); upper -= 1; // exclude final sentinel if (lower >= upper) return NULL; // native method; no PcDescs at all #define assert_LU_OK \ /* invariant on lower..upper during the following search: */ \ assert(lower->pc_offset() < pc_offset, "sanity"); \ assert(upper->pc_offset() >= pc_offset, "sanity") assert_LU_OK; // Use the last successful return as a split point. PcDesc* mid = _pc_desc_cache.last_pc_desc(); NOT_PRODUCT(++nmethod_stats.pc_desc_searches); if (mid->pc_offset() < pc_offset) { lower = mid; } else { upper = mid; } // Take giant steps at first (4096, then 256, then 16, then 1) const int LOG2_RADIX = 4 /*smaller steps in debug mode:*/ debug_only(-1); const int RADIX = (1 << LOG2_RADIX); for (int step = (1 << (LOG2_RADIX*3)); step > 1; step >>= LOG2_RADIX) { while ((mid = lower + step) < upper) { assert_LU_OK; NOT_PRODUCT(++nmethod_stats.pc_desc_searches); if (mid->pc_offset() < pc_offset) { lower = mid; } else { upper = mid; break; } } assert_LU_OK; } // Sneak up on the value with a linear search of length ~16. while (true) { assert_LU_OK; mid = lower + 1; NOT_PRODUCT(++nmethod_stats.pc_desc_searches); if (mid->pc_offset() < pc_offset) { lower = mid; } else { upper = mid; break; } } #undef assert_LU_OK if (match_desc(upper, pc_offset, approximate)) { assert(upper == linear_search(this, pc_offset, approximate), "search ok"); _pc_desc_cache.add_pc_desc(upper); return upper; } else { assert(NULL == linear_search(this, pc_offset, approximate), "search ok"); return NULL; } } bool nmethod::check_all_dependencies() { bool found_check = false; // wholesale check of all dependencies for (Dependencies::DepStream deps(this); deps.next(); ) { if (deps.check_dependency() != NULL) { found_check = true; NOT_DEBUG(break); } } return found_check; // tell caller if we found anything } bool nmethod::check_dependency_on(DepChange& changes) { // What has happened: // 1) a new class dependee has been added // 2) dependee and all its super classes have been marked bool found_check = false; // set true if we are upset for (Dependencies::DepStream deps(this); deps.next(); ) { // Evaluate only relevant dependencies. if (deps.spot_check_dependency_at(changes) != NULL) { found_check = true; NOT_DEBUG(break); } } return found_check; } bool nmethod::is_evol_dependent_on(Klass* dependee) { InstanceKlass *dependee_ik = InstanceKlass::cast(dependee); Array* dependee_methods = dependee_ik->methods(); for (Dependencies::DepStream deps(this); deps.next(); ) { if (deps.type() == Dependencies::evol_method) { Method* method = deps.method_argument(0); for (int j = 0; j < dependee_methods->length(); j++) { if (dependee_methods->at(j) == method) { // RC_TRACE macro has an embedded ResourceMark RC_TRACE(0x01000000, ("Found evol dependency of nmethod %s.%s(%s) compile_id=%d on method %s.%s(%s)", _method->method_holder()->external_name(), _method->name()->as_C_string(), _method->signature()->as_C_string(), compile_id(), method->method_holder()->external_name(), method->name()->as_C_string(), method->signature()->as_C_string())); if (TraceDependencies || LogCompilation) deps.log_dependency(dependee); return true; } } } } return false; } // Called from mark_for_deoptimization, when dependee is invalidated. bool nmethod::is_dependent_on_method(Method* dependee) { for (Dependencies::DepStream deps(this); deps.next(); ) { if (deps.type() != Dependencies::evol_method) continue; Method* method = deps.method_argument(0); if (method == dependee) return true; } return false; } bool nmethod::is_patchable_at(address instr_addr) { assert(insts_contains(instr_addr), "wrong nmethod used"); if (is_zombie()) { // a zombie may never be patched return false; } return true; } address nmethod::continuation_for_implicit_exception(address pc) { // Exception happened outside inline-cache check code => we are inside // an active nmethod => use cpc to determine a return address int exception_offset = pc - code_begin(); int cont_offset = ImplicitExceptionTable(this).at( exception_offset ); #ifdef ASSERT if (cont_offset == 0) { Thread* thread = ThreadLocalStorage::get_thread_slow(); ResetNoHandleMark rnm; // Might be called from LEAF/QUICK ENTRY HandleMark hm(thread); ResourceMark rm(thread); CodeBlob* cb = CodeCache::find_blob(pc); assert(cb != NULL && cb == this, ""); tty->print_cr("implicit exception happened at " INTPTR_FORMAT, pc); print(); method()->print_codes(); print_code(); print_pcs(); } #endif if (cont_offset == 0) { // Let the normal error handling report the exception return NULL; } return code_begin() + cont_offset; } void nmethod_init() { // make sure you didn't forget to adjust the filler fields assert(sizeof(nmethod) % oopSize == 0, "nmethod size must be multiple of a word"); } //------------------------------------------------------------------------------------------- // QQQ might we make this work from a frame?? nmethodLocker::nmethodLocker(address pc) { CodeBlob* cb = CodeCache::find_blob(pc); guarantee(cb != NULL && cb->is_nmethod(), "bad pc for a nmethod found"); _nm = (nmethod*)cb; lock_nmethod(_nm); } // Only JvmtiDeferredEvent::compiled_method_unload_event() // should pass zombie_ok == true. void nmethodLocker::lock_nmethod(nmethod* nm, bool zombie_ok) { if (nm == NULL) return; Atomic::inc(&nm->_lock_count); guarantee(zombie_ok || !nm->is_zombie(), "cannot lock a zombie method"); } void nmethodLocker::unlock_nmethod(nmethod* nm) { if (nm == NULL) return; Atomic::dec(&nm->_lock_count); guarantee(nm->_lock_count >= 0, "unmatched nmethod lock/unlock"); } // ----------------------------------------------------------------------------- // nmethod::get_deopt_original_pc // // Return the original PC for the given PC if: // (a) the given PC belongs to a nmethod and // (b) it is a deopt PC address nmethod::get_deopt_original_pc(const frame* fr) { if (fr->cb() == NULL) return NULL; nmethod* nm = fr->cb()->as_nmethod_or_null(); if (nm != NULL && nm->is_deopt_pc(fr->pc())) return nm->get_original_pc(fr); return NULL; } // ----------------------------------------------------------------------------- // MethodHandle bool nmethod::is_method_handle_return(address return_pc) { if (!has_method_handle_invokes()) return false; PcDesc* pd = pc_desc_at(return_pc); if (pd == NULL) return false; return pd->is_method_handle_invoke(); } // ----------------------------------------------------------------------------- // Verification class VerifyOopsClosure: public OopClosure { nmethod* _nm; bool _ok; public: VerifyOopsClosure(nmethod* nm) : _nm(nm), _ok(true) { } bool ok() { return _ok; } virtual void do_oop(oop* p) { if ((*p) == NULL || (*p)->is_oop()) return; if (_ok) { _nm->print_nmethod(true); _ok = false; } tty->print_cr("*** non-oop "PTR_FORMAT" found at "PTR_FORMAT" (offset %d)", (intptr_t)(*p), (intptr_t)p, (int)((intptr_t)p - (intptr_t)_nm)); } virtual void do_oop(narrowOop* p) { ShouldNotReachHere(); } }; void nmethod::verify() { // Hmm. OSR methods can be deopted but not marked as zombie or not_entrant // seems odd. if( is_zombie() || is_not_entrant() ) return; // Make sure all the entry points are correctly aligned for patching. NativeJump::check_verified_entry_alignment(entry_point(), verified_entry_point()); // assert(method()->is_oop(), "must be valid"); ResourceMark rm; if (!CodeCache::contains(this)) { fatal(err_msg("nmethod at " INTPTR_FORMAT " not in zone", this)); } if(is_native_method() ) return; nmethod* nm = CodeCache::find_nmethod(verified_entry_point()); if (nm != this) { fatal(err_msg("findNMethod did not find this nmethod (" INTPTR_FORMAT ")", this)); } for (PcDesc* p = scopes_pcs_begin(); p < scopes_pcs_end(); p++) { if (! p->verify(this)) { tty->print_cr("\t\tin nmethod at " INTPTR_FORMAT " (pcs)", this); } } VerifyOopsClosure voc(this); oops_do(&voc); assert(voc.ok(), "embedded oops must be OK"); verify_scavenge_root_oops(); verify_scopes(); } void nmethod::verify_interrupt_point(address call_site) { // This code does not work in release mode since // owns_lock only is available in debug mode. CompiledIC* ic = NULL; Thread *cur = Thread::current(); if (CompiledIC_lock->owner() == cur || ((cur->is_VM_thread() || cur->is_ConcurrentGC_thread()) && SafepointSynchronize::is_at_safepoint())) { ic = CompiledIC_at(this, call_site); CHECK_UNHANDLED_OOPS_ONLY(Thread::current()->clear_unhandled_oops()); } else { MutexLocker ml_verify (CompiledIC_lock); ic = CompiledIC_at(this, call_site); } PcDesc* pd = pc_desc_at(ic->end_of_call()); assert(pd != NULL, "PcDesc must exist"); for (ScopeDesc* sd = new ScopeDesc(this, pd->scope_decode_offset(), pd->obj_decode_offset(), pd->should_reexecute(), pd->return_oop()); !sd->is_top(); sd = sd->sender()) { sd->verify(); } } void nmethod::verify_scopes() { if( !method() ) return; // Runtime stubs have no scope if (method()->is_native()) return; // Ignore stub methods. // iterate through all interrupt point // and verify the debug information is valid. RelocIterator iter((nmethod*)this); while (iter.next()) { address stub = NULL; switch (iter.type()) { case relocInfo::virtual_call_type: verify_interrupt_point(iter.addr()); break; case relocInfo::opt_virtual_call_type: stub = iter.opt_virtual_call_reloc()->static_stub(); verify_interrupt_point(iter.addr()); break; case relocInfo::static_call_type: stub = iter.static_call_reloc()->static_stub(); //verify_interrupt_point(iter.addr()); break; case relocInfo::runtime_call_type: address destination = iter.reloc()->value(); // Right now there is no way to find out which entries support // an interrupt point. It would be nice if we had this // information in a table. break; } assert(stub == NULL || stub_contains(stub), "static call stub outside stub section"); } } // ----------------------------------------------------------------------------- // Non-product code #ifndef PRODUCT class DebugScavengeRoot: public OopClosure { nmethod* _nm; bool _ok; public: DebugScavengeRoot(nmethod* nm) : _nm(nm), _ok(true) { } bool ok() { return _ok; } virtual void do_oop(oop* p) { if ((*p) == NULL || !(*p)->is_scavengable()) return; if (_ok) { _nm->print_nmethod(true); _ok = false; } tty->print_cr("*** scavengable oop "PTR_FORMAT" found at "PTR_FORMAT" (offset %d)", (intptr_t)(*p), (intptr_t)p, (int)((intptr_t)p - (intptr_t)_nm)); (*p)->print(); } virtual void do_oop(narrowOop* p) { ShouldNotReachHere(); } }; void nmethod::verify_scavenge_root_oops() { if (!on_scavenge_root_list()) { // Actually look inside, to verify the claim that it's clean. DebugScavengeRoot debug_scavenge_root(this); oops_do(&debug_scavenge_root); if (!debug_scavenge_root.ok()) fatal("found an unadvertised bad scavengable oop in the code cache"); } assert(scavenge_root_not_marked(), ""); } #endif // PRODUCT // Printing operations void nmethod::print() const { ResourceMark rm; ttyLocker ttyl; // keep the following output all in one block tty->print("Compiled method "); if (is_compiled_by_c1()) { tty->print("(c1) "); } else if (is_compiled_by_c2()) { tty->print("(c2) "); } else if (is_compiled_by_shark()) { tty->print("(shark) "); } else { tty->print("(nm) "); } print_on(tty, NULL); if (WizardMode) { tty->print("((nmethod*) "INTPTR_FORMAT ") ", this); tty->print(" for method " INTPTR_FORMAT , (address)method()); tty->print(" { "); if (is_in_use()) tty->print("in_use "); if (is_not_entrant()) tty->print("not_entrant "); if (is_zombie()) tty->print("zombie "); if (is_unloaded()) tty->print("unloaded "); if (on_scavenge_root_list()) tty->print("scavenge_root "); tty->print_cr("}:"); } if (size () > 0) tty->print_cr(" total in heap [" INTPTR_FORMAT "," INTPTR_FORMAT "] = %d", (address)this, (address)this + size(), size()); if (relocation_size () > 0) tty->print_cr(" relocation [" INTPTR_FORMAT "," INTPTR_FORMAT "] = %d", relocation_begin(), relocation_end(), relocation_size()); if (consts_size () > 0) tty->print_cr(" constants [" INTPTR_FORMAT "," INTPTR_FORMAT "] = %d", consts_begin(), consts_end(), consts_size()); if (insts_size () > 0) tty->print_cr(" main code [" INTPTR_FORMAT "," INTPTR_FORMAT "] = %d", insts_begin(), insts_end(), insts_size()); if (stub_size () > 0) tty->print_cr(" stub code [" INTPTR_FORMAT "," INTPTR_FORMAT "] = %d", stub_begin(), stub_end(), stub_size()); if (oops_size () > 0) tty->print_cr(" oops [" INTPTR_FORMAT "," INTPTR_FORMAT "] = %d", oops_begin(), oops_end(), oops_size()); if (metadata_size () > 0) tty->print_cr(" metadata [" INTPTR_FORMAT "," INTPTR_FORMAT "] = %d", metadata_begin(), metadata_end(), metadata_size()); if (scopes_data_size () > 0) tty->print_cr(" scopes data [" INTPTR_FORMAT "," INTPTR_FORMAT "] = %d", scopes_data_begin(), scopes_data_end(), scopes_data_size()); if (scopes_pcs_size () > 0) tty->print_cr(" scopes pcs [" INTPTR_FORMAT "," INTPTR_FORMAT "] = %d", scopes_pcs_begin(), scopes_pcs_end(), scopes_pcs_size()); if (dependencies_size () > 0) tty->print_cr(" dependencies [" INTPTR_FORMAT "," INTPTR_FORMAT "] = %d", dependencies_begin(), dependencies_end(), dependencies_size()); if (handler_table_size() > 0) tty->print_cr(" handler table [" INTPTR_FORMAT "," INTPTR_FORMAT "] = %d", handler_table_begin(), handler_table_end(), handler_table_size()); if (nul_chk_table_size() > 0) tty->print_cr(" nul chk table [" INTPTR_FORMAT "," INTPTR_FORMAT "] = %d", nul_chk_table_begin(), nul_chk_table_end(), nul_chk_table_size()); } void nmethod::print_code() { HandleMark hm; ResourceMark m; Disassembler::decode(this); } #ifndef PRODUCT void nmethod::print_scopes() { // Find the first pc desc for all scopes in the code and print it. ResourceMark rm; for (PcDesc* p = scopes_pcs_begin(); p < scopes_pcs_end(); p++) { if (p->scope_decode_offset() == DebugInformationRecorder::serialized_null) continue; ScopeDesc* sd = scope_desc_at(p->real_pc(this)); sd->print_on(tty, p); } } void nmethod::print_dependencies() { ResourceMark rm; ttyLocker ttyl; // keep the following output all in one block tty->print_cr("Dependencies:"); for (Dependencies::DepStream deps(this); deps.next(); ) { deps.print_dependency(); Klass* ctxk = deps.context_type(); if (ctxk != NULL) { Klass* k = Klass::cast(ctxk); if (k->oop_is_instance() && ((InstanceKlass*)k)->is_dependent_nmethod(this)) { tty->print_cr(" [nmethod<=klass]%s", k->external_name()); } } deps.log_dependency(); // put it into the xml log also } } void nmethod::print_relocations() { ResourceMark m; // in case methods get printed via the debugger tty->print_cr("relocations:"); RelocIterator iter(this); iter.print(); if (UseRelocIndex) { jint* index_end = (jint*)relocation_end() - 1; jint index_size = *index_end; jint* index_start = (jint*)( (address)index_end - index_size ); tty->print_cr(" index @" INTPTR_FORMAT ": index_size=%d", index_start, index_size); if (index_size > 0) { jint* ip; for (ip = index_start; ip+2 <= index_end; ip += 2) tty->print_cr(" (%d %d) addr=" INTPTR_FORMAT " @" INTPTR_FORMAT, ip[0], ip[1], header_end()+ip[0], relocation_begin()-1+ip[1]); for (; ip < index_end; ip++) tty->print_cr(" (%d ?)", ip[0]); tty->print_cr(" @" INTPTR_FORMAT ": index_size=%d", ip, *ip++); tty->print_cr("reloc_end @" INTPTR_FORMAT ":", ip); } } } void nmethod::print_pcs() { ResourceMark m; // in case methods get printed via debugger tty->print_cr("pc-bytecode offsets:"); for (PcDesc* p = scopes_pcs_begin(); p < scopes_pcs_end(); p++) { p->print(this); } } #endif // PRODUCT const char* nmethod::reloc_string_for(u_char* begin, u_char* end) { RelocIterator iter(this, begin, end); bool have_one = false; while (iter.next()) { have_one = true; switch (iter.type()) { case relocInfo::none: return "no_reloc"; case relocInfo::oop_type: { stringStream st; oop_Relocation* r = iter.oop_reloc(); oop obj = r->oop_value(); st.print("oop("); if (obj == NULL) st.print("NULL"); else obj->print_value_on(&st); st.print(")"); return st.as_string(); } case relocInfo::metadata_type: { stringStream st; metadata_Relocation* r = iter.metadata_reloc(); Metadata* obj = r->metadata_value(); st.print("metadata("); if (obj == NULL) st.print("NULL"); else obj->print_value_on(&st); st.print(")"); return st.as_string(); } case relocInfo::virtual_call_type: return "virtual_call"; case relocInfo::opt_virtual_call_type: return "optimized virtual_call"; case relocInfo::static_call_type: return "static_call"; case relocInfo::static_stub_type: return "static_stub"; case relocInfo::runtime_call_type: return "runtime_call"; case relocInfo::external_word_type: return "external_word"; case relocInfo::internal_word_type: return "internal_word"; case relocInfo::section_word_type: return "section_word"; case relocInfo::poll_type: return "poll"; case relocInfo::poll_return_type: return "poll_return"; case relocInfo::type_mask: return "type_bit_mask"; } } return have_one ? "other" : NULL; } // Return a the last scope in (begin..end] ScopeDesc* nmethod::scope_desc_in(address begin, address end) { PcDesc* p = pc_desc_near(begin+1); if (p != NULL && p->real_pc(this) <= end) { return new ScopeDesc(this, p->scope_decode_offset(), p->obj_decode_offset(), p->should_reexecute(), p->return_oop()); } return NULL; } void nmethod::print_nmethod_labels(outputStream* stream, address block_begin) { if (block_begin == entry_point()) stream->print_cr("[Entry Point]"); if (block_begin == verified_entry_point()) stream->print_cr("[Verified Entry Point]"); if (block_begin == exception_begin()) stream->print_cr("[Exception Handler]"); if (block_begin == stub_begin()) stream->print_cr("[Stub Code]"); if (block_begin == deopt_handler_begin()) stream->print_cr("[Deopt Handler Code]"); if (has_method_handle_invokes()) if (block_begin == deopt_mh_handler_begin()) stream->print_cr("[Deopt MH Handler Code]"); if (block_begin == consts_begin()) stream->print_cr("[Constants]"); if (block_begin == entry_point()) { methodHandle m = method(); if (m.not_null()) { stream->print(" # "); m->print_value_on(stream); stream->cr(); } if (m.not_null() && !is_osr_method()) { ResourceMark rm; int sizeargs = m->size_of_parameters(); BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, sizeargs); VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair, sizeargs); { int sig_index = 0; if (!m->is_static()) sig_bt[sig_index++] = T_OBJECT; // 'this' for (SignatureStream ss(m->signature()); !ss.at_return_type(); ss.next()) { BasicType t = ss.type(); sig_bt[sig_index++] = t; if (type2size[t] == 2) { sig_bt[sig_index++] = T_VOID; } else { assert(type2size[t] == 1, "size is 1 or 2"); } } assert(sig_index == sizeargs, ""); } const char* spname = "sp"; // make arch-specific? intptr_t out_preserve = SharedRuntime::java_calling_convention(sig_bt, regs, sizeargs, false); int stack_slot_offset = this->frame_size() * wordSize; int tab1 = 14, tab2 = 24; int sig_index = 0; int arg_index = (m->is_static() ? 0 : -1); bool did_old_sp = false; for (SignatureStream ss(m->signature()); !ss.at_return_type(); ) { bool at_this = (arg_index == -1); bool at_old_sp = false; BasicType t = (at_this ? T_OBJECT : ss.type()); assert(t == sig_bt[sig_index], "sigs in sync"); if (at_this) stream->print(" # this: "); else stream->print(" # parm%d: ", arg_index); stream->move_to(tab1); VMReg fst = regs[sig_index].first(); VMReg snd = regs[sig_index].second(); if (fst->is_reg()) { stream->print("%s", fst->name()); if (snd->is_valid()) { stream->print(":%s", snd->name()); } } else if (fst->is_stack()) { int offset = fst->reg2stack() * VMRegImpl::stack_slot_size + stack_slot_offset; if (offset == stack_slot_offset) at_old_sp = true; stream->print("[%s+0x%x]", spname, offset); } else { stream->print("reg%d:%d??", (int)(intptr_t)fst, (int)(intptr_t)snd); } stream->print(" "); stream->move_to(tab2); stream->print("= "); if (at_this) { m->method_holder()->print_value_on(stream); } else { bool did_name = false; if (!at_this && ss.is_object()) { Symbol* name = ss.as_symbol_or_null(); if (name != NULL) { name->print_value_on(stream); did_name = true; } } if (!did_name) stream->print("%s", type2name(t)); } if (at_old_sp) { stream->print(" (%s of caller)", spname); did_old_sp = true; } stream->cr(); sig_index += type2size[t]; arg_index += 1; if (!at_this) ss.next(); } if (!did_old_sp) { stream->print(" # "); stream->move_to(tab1); stream->print("[%s+0x%x]", spname, stack_slot_offset); stream->print(" (%s of caller)", spname); stream->cr(); } } } } void nmethod::print_code_comment_on(outputStream* st, int column, u_char* begin, u_char* end) { // First, find an oopmap in (begin, end]. // We use the odd half-closed interval so that oop maps and scope descs // which are tied to the byte after a call are printed with the call itself. address base = code_begin(); OopMapSet* oms = oop_maps(); if (oms != NULL) { for (int i = 0, imax = oms->size(); i < imax; i++) { OopMap* om = oms->at(i); address pc = base + om->offset(); if (pc > begin) { if (pc <= end) { st->move_to(column); st->print("; "); om->print_on(st); } break; } } } // Print any debug info present at this pc. ScopeDesc* sd = scope_desc_in(begin, end); if (sd != NULL) { st->move_to(column); if (sd->bci() == SynchronizationEntryBCI) { st->print(";*synchronization entry"); } else { if (sd->method() == NULL) { st->print("method is NULL"); } else if (sd->method()->is_native()) { st->print("method is native"); } else { Bytecodes::Code bc = sd->method()->java_code_at(sd->bci()); st->print(";*%s", Bytecodes::name(bc)); switch (bc) { case Bytecodes::_invokevirtual: case Bytecodes::_invokespecial: case Bytecodes::_invokestatic: case Bytecodes::_invokeinterface: { Bytecode_invoke invoke(sd->method(), sd->bci()); st->print(" "); if (invoke.name() != NULL) invoke.name()->print_symbol_on(st); else st->print(""); break; } case Bytecodes::_getfield: case Bytecodes::_putfield: case Bytecodes::_getstatic: case Bytecodes::_putstatic: { Bytecode_field field(sd->method(), sd->bci()); st->print(" "); if (field.name() != NULL) field.name()->print_symbol_on(st); else st->print(""); } } } } // Print all scopes for (;sd != NULL; sd = sd->sender()) { st->move_to(column); st->print("; -"); if (sd->method() == NULL) { st->print("method is NULL"); } else { sd->method()->print_short_name(st); } int lineno = sd->method()->line_number_from_bci(sd->bci()); if (lineno != -1) { st->print("@%d (line %d)", sd->bci(), lineno); } else { st->print("@%d", sd->bci()); } st->cr(); } } // Print relocation information const char* str = reloc_string_for(begin, end); if (str != NULL) { if (sd != NULL) st->cr(); st->move_to(column); st->print("; {%s}", str); } int cont_offset = ImplicitExceptionTable(this).at(begin - code_begin()); if (cont_offset != 0) { st->move_to(column); st->print("; implicit exception: dispatches to " INTPTR_FORMAT, code_begin() + cont_offset); } } #ifndef PRODUCT void nmethod::print_value_on(outputStream* st) const { st->print("nmethod"); print_on(st, NULL); } void nmethod::print_calls(outputStream* st) { RelocIterator iter(this); while (iter.next()) { switch (iter.type()) { case relocInfo::virtual_call_type: case relocInfo::opt_virtual_call_type: { VerifyMutexLocker mc(CompiledIC_lock); CompiledIC_at(iter.reloc())->print(); break; } case relocInfo::static_call_type: st->print_cr("Static call at " INTPTR_FORMAT, iter.reloc()->addr()); compiledStaticCall_at(iter.reloc())->print(); break; } } } void nmethod::print_handler_table() { ExceptionHandlerTable(this).print(); } void nmethod::print_nul_chk_table() { ImplicitExceptionTable(this).print(code_begin()); } void nmethod::print_statistics() { ttyLocker ttyl; if (xtty != NULL) xtty->head("statistics type='nmethod'"); nmethod_stats.print_native_nmethod_stats(); nmethod_stats.print_nmethod_stats(); DebugInformationRecorder::print_statistics(); nmethod_stats.print_pc_stats(); Dependencies::print_statistics(); if (xtty != NULL) xtty->tail("statistics"); } #endif // PRODUCT