/* * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "interpreter/interpreter.hpp" #include "interpreter/interpreterRuntime.hpp" #include "memory/allocation.inline.hpp" #include "prims/methodHandles.hpp" #define __ _masm-> #ifdef PRODUCT #define BLOCK_COMMENT(str) /* nothing */ #else #define BLOCK_COMMENT(str) __ block_comment(str) #endif #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") // Workaround for C++ overloading nastiness on '0' for RegisterOrConstant. static RegisterOrConstant constant(int value) { return RegisterOrConstant(value); } address MethodHandleEntry::start_compiled_entry(MacroAssembler* _masm, address interpreted_entry) { // Just before the actual machine code entry point, allocate space // for a MethodHandleEntry::Data record, so that we can manage everything // from one base pointer. __ align(wordSize); address target = __ pc() + sizeof(Data); while (__ pc() < target) { __ nop(); __ align(wordSize); } MethodHandleEntry* me = (MethodHandleEntry*) __ pc(); me->set_end_address(__ pc()); // set a temporary end_address me->set_from_interpreted_entry(interpreted_entry); me->set_type_checking_entry(NULL); return (address) me; } MethodHandleEntry* MethodHandleEntry::finish_compiled_entry(MacroAssembler* _masm, address start_addr) { MethodHandleEntry* me = (MethodHandleEntry*) start_addr; assert(me->end_address() == start_addr, "valid ME"); // Fill in the real end_address: __ align(wordSize); me->set_end_address(__ pc()); return me; } // stack walking support frame MethodHandles::ricochet_frame_sender(const frame& fr, RegisterMap *map) { RicochetFrame* f = RicochetFrame::from_frame(fr); if (map->update_map()) frame::update_map_with_saved_link(map, &f->_sender_link); return frame(f->extended_sender_sp(), f->exact_sender_sp(), f->sender_link(), f->sender_pc()); } void MethodHandles::ricochet_frame_oops_do(const frame& fr, OopClosure* blk, const RegisterMap* reg_map) { RicochetFrame* f = RicochetFrame::from_frame(fr); // pick up the argument type descriptor: Thread* thread = Thread::current(); Handle cookie(thread, f->compute_saved_args_layout(true, true)); // process fixed part blk->do_oop((oop*)f->saved_target_addr()); blk->do_oop((oop*)f->saved_args_layout_addr()); // process variable arguments: if (cookie.is_null()) return; // no arguments to describe // the cookie is actually the invokeExact method for my target // his argument signature is what I'm interested in assert(cookie->is_method(), ""); methodHandle invoker(thread, methodOop(cookie())); assert(invoker->name() == vmSymbols::invokeExact_name(), "must be this kind of method"); assert(!invoker->is_static(), "must have MH argument"); int slot_count = invoker->size_of_parameters(); assert(slot_count >= 1, "must include 'this'"); intptr_t* base = f->saved_args_base(); intptr_t* retval = NULL; if (f->has_return_value_slot()) retval = f->return_value_slot_addr(); int slot_num = slot_count; intptr_t* loc = &base[slot_num -= 1]; //blk->do_oop((oop*) loc); // original target, which is irrelevant int arg_num = 0; for (SignatureStream ss(invoker->signature()); !ss.is_done(); ss.next()) { if (ss.at_return_type()) continue; BasicType ptype = ss.type(); if (ptype == T_ARRAY) ptype = T_OBJECT; // fold all refs to T_OBJECT assert(ptype >= T_BOOLEAN && ptype <= T_OBJECT, "not array or void"); loc = &base[slot_num -= type2size[ptype]]; bool is_oop = (ptype == T_OBJECT && loc != retval); if (is_oop) blk->do_oop((oop*)loc); arg_num += 1; } assert(slot_num == 0, "must have processed all the arguments"); } oop MethodHandles::RicochetFrame::compute_saved_args_layout(bool read_cache, bool write_cache) { oop cookie = NULL; if (read_cache) { cookie = saved_args_layout(); if (cookie != NULL) return cookie; } oop target = saved_target(); oop mtype = java_lang_invoke_MethodHandle::type(target); oop mtform = java_lang_invoke_MethodType::form(mtype); cookie = java_lang_invoke_MethodTypeForm::vmlayout(mtform); if (write_cache) { (*saved_args_layout_addr()) = cookie; } return cookie; } void MethodHandles::RicochetFrame::generate_ricochet_blob(MacroAssembler* _masm, // output params: int* bounce_offset, int* exception_offset, int* frame_size_in_words) { (*frame_size_in_words) = RicochetFrame::frame_size_in_bytes() / wordSize; address start = __ pc(); #ifdef ASSERT __ hlt(); __ hlt(); __ hlt(); // here's a hint of something special: __ push(MAGIC_NUMBER_1); __ push(MAGIC_NUMBER_2); #endif //ASSERT __ hlt(); // not reached // A return PC has just been popped from the stack. // Return values are in registers. // The ebp points into the RicochetFrame, which contains // a cleanup continuation we must return to. (*bounce_offset) = __ pc() - start; BLOCK_COMMENT("ricochet_blob.bounce"); if (VerifyMethodHandles) RicochetFrame::verify_clean(_masm); trace_method_handle(_masm, "return/ricochet_blob.bounce"); __ jmp(frame_address(continuation_offset_in_bytes())); __ hlt(); DEBUG_ONLY(__ push(MAGIC_NUMBER_2)); (*exception_offset) = __ pc() - start; BLOCK_COMMENT("ricochet_blob.exception"); // compare this to Interpreter::rethrow_exception_entry, which is parallel code // for example, see TemplateInterpreterGenerator::generate_throw_exception // Live registers in: // rax: exception // rdx: return address/pc that threw exception (ignored, always equal to bounce addr) __ verify_oop(rax); // no need to empty_FPU_stack or reinit_heapbase, since caller frame will do the same if needed // Take down the frame. // Cf. InterpreterMacroAssembler::remove_activation. leave_ricochet_frame(_masm, /*rcx_recv=*/ noreg, saved_last_sp_register(), /*sender_pc_reg=*/ rdx); // In between activations - previous activation type unknown yet // compute continuation point - the continuation point expects the // following registers set up: // // rax: exception // rdx: return address/pc that threw exception // rsp: expression stack of caller // rbp: ebp of caller __ push(rax); // save exception __ push(rdx); // save return address Register thread_reg = LP64_ONLY(r15_thread) NOT_LP64(rdi); NOT_LP64(__ get_thread(thread_reg)); __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), thread_reg, rdx); __ mov(rbx, rax); // save exception handler __ pop(rdx); // restore return address __ pop(rax); // restore exception __ jmp(rbx); // jump to exception // handler of caller } void MethodHandles::RicochetFrame::enter_ricochet_frame(MacroAssembler* _masm, Register rcx_recv, Register rax_argv, address return_handler, Register rbx_temp) { const Register saved_last_sp = saved_last_sp_register(); Address rcx_mh_vmtarget( rcx_recv, java_lang_invoke_MethodHandle::vmtarget_offset_in_bytes() ); Address rcx_amh_conversion( rcx_recv, java_lang_invoke_AdapterMethodHandle::conversion_offset_in_bytes() ); // Push the RicochetFrame a word at a time. // This creates something similar to an interpreter frame. // Cf. TemplateInterpreterGenerator::generate_fixed_frame. BLOCK_COMMENT("push RicochetFrame {"); DEBUG_ONLY(int rfo = (int) sizeof(RicochetFrame)); assert((rfo -= wordSize) == RicochetFrame::sender_pc_offset_in_bytes(), ""); #define RF_FIELD(push_value, name) \ { push_value; \ assert((rfo -= wordSize) == RicochetFrame::name##_offset_in_bytes(), ""); } RF_FIELD(__ push(rbp), sender_link); RF_FIELD(__ push(saved_last_sp), exact_sender_sp); // rsi/r13 RF_FIELD(__ pushptr(rcx_amh_conversion), conversion); RF_FIELD(__ push(rax_argv), saved_args_base); // can be updated if args are shifted RF_FIELD(__ push((int32_t) NULL_WORD), saved_args_layout); // cache for GC layout cookie if (UseCompressedOops) { __ load_heap_oop(rbx_temp, rcx_mh_vmtarget); RF_FIELD(__ push(rbx_temp), saved_target); } else { RF_FIELD(__ pushptr(rcx_mh_vmtarget), saved_target); } __ lea(rbx_temp, ExternalAddress(return_handler)); RF_FIELD(__ push(rbx_temp), continuation); #undef RF_FIELD assert(rfo == 0, "fully initialized the RicochetFrame"); // compute new frame pointer: __ lea(rbp, Address(rsp, RicochetFrame::sender_link_offset_in_bytes())); // Push guard word #1 in debug mode. DEBUG_ONLY(__ push((int32_t) RicochetFrame::MAGIC_NUMBER_1)); // For debugging, leave behind an indication of which stub built this frame. DEBUG_ONLY({ Label L; __ call(L, relocInfo::none); __ bind(L); }); BLOCK_COMMENT("} RicochetFrame"); } void MethodHandles::RicochetFrame::leave_ricochet_frame(MacroAssembler* _masm, Register rcx_recv, Register new_sp_reg, Register sender_pc_reg) { assert_different_registers(rcx_recv, new_sp_reg, sender_pc_reg); const Register saved_last_sp = saved_last_sp_register(); // Take down the frame. // Cf. InterpreterMacroAssembler::remove_activation. BLOCK_COMMENT("end_ricochet_frame {"); // TO DO: If (exact_sender_sp - extended_sender_sp) > THRESH, compact the frame down. // This will keep stack in bounds even with unlimited tailcalls, each with an adapter. if (rcx_recv->is_valid()) __ movptr(rcx_recv, RicochetFrame::frame_address(RicochetFrame::saved_target_offset_in_bytes())); __ movptr(sender_pc_reg, RicochetFrame::frame_address(RicochetFrame::sender_pc_offset_in_bytes())); __ movptr(saved_last_sp, RicochetFrame::frame_address(RicochetFrame::exact_sender_sp_offset_in_bytes())); __ movptr(rbp, RicochetFrame::frame_address(RicochetFrame::sender_link_offset_in_bytes())); __ mov(rsp, new_sp_reg); BLOCK_COMMENT("} end_ricochet_frame"); } // Emit code to verify that RBP is pointing at a valid ricochet frame. #ifdef ASSERT enum { ARG_LIMIT = 255, SLOP = 4, // use this parameter for checking for garbage stack movements: UNREASONABLE_STACK_MOVE = (ARG_LIMIT + SLOP) // the slop defends against false alarms due to fencepost errors }; void MethodHandles::RicochetFrame::verify_clean(MacroAssembler* _masm) { // The stack should look like this: // ... keep1 | dest=42 | keep2 | RF | magic | handler | magic | recursive args | // Check various invariants. verify_offsets(); Register rdi_temp = rdi; Register rcx_temp = rcx; { __ push(rdi_temp); __ push(rcx_temp); } #define UNPUSH_TEMPS \ { __ pop(rcx_temp); __ pop(rdi_temp); } Address magic_number_1_addr = RicochetFrame::frame_address(RicochetFrame::magic_number_1_offset_in_bytes()); Address magic_number_2_addr = RicochetFrame::frame_address(RicochetFrame::magic_number_2_offset_in_bytes()); Address continuation_addr = RicochetFrame::frame_address(RicochetFrame::continuation_offset_in_bytes()); Address conversion_addr = RicochetFrame::frame_address(RicochetFrame::conversion_offset_in_bytes()); Address saved_args_base_addr = RicochetFrame::frame_address(RicochetFrame::saved_args_base_offset_in_bytes()); Label L_bad, L_ok; BLOCK_COMMENT("verify_clean {"); // Magic numbers must check out: __ cmpptr(magic_number_1_addr, (int32_t) MAGIC_NUMBER_1); __ jcc(Assembler::notEqual, L_bad); __ cmpptr(magic_number_2_addr, (int32_t) MAGIC_NUMBER_2); __ jcc(Assembler::notEqual, L_bad); // Arguments pointer must look reasonable: __ movptr(rcx_temp, saved_args_base_addr); __ cmpptr(rcx_temp, rbp); __ jcc(Assembler::below, L_bad); __ subptr(rcx_temp, UNREASONABLE_STACK_MOVE * Interpreter::stackElementSize); __ cmpptr(rcx_temp, rbp); __ jcc(Assembler::above, L_bad); load_conversion_dest_type(_masm, rdi_temp, conversion_addr); __ cmpl(rdi_temp, T_VOID); __ jcc(Assembler::equal, L_ok); __ movptr(rcx_temp, saved_args_base_addr); load_conversion_vminfo(_masm, rdi_temp, conversion_addr); __ cmpptr(Address(rcx_temp, rdi_temp, Interpreter::stackElementScale()), (int32_t) RETURN_VALUE_PLACEHOLDER); __ jcc(Assembler::equal, L_ok); __ BIND(L_bad); UNPUSH_TEMPS; __ stop("damaged ricochet frame"); __ BIND(L_ok); UNPUSH_TEMPS; BLOCK_COMMENT("} verify_clean"); #undef UNPUSH_TEMPS } #endif //ASSERT void MethodHandles::load_klass_from_Class(MacroAssembler* _masm, Register klass_reg) { if (VerifyMethodHandles) verify_klass(_masm, klass_reg, SystemDictionaryHandles::Class_klass(), "AMH argument is a Class"); __ load_heap_oop(klass_reg, Address(klass_reg, java_lang_Class::klass_offset_in_bytes())); } void MethodHandles::load_conversion_vminfo(MacroAssembler* _masm, Register reg, Address conversion_field_addr) { int bits = BitsPerByte; int offset = (CONV_VMINFO_SHIFT / bits); int shift = (CONV_VMINFO_SHIFT % bits); __ load_unsigned_byte(reg, conversion_field_addr.plus_disp(offset)); assert(CONV_VMINFO_MASK == right_n_bits(bits - shift), "else change type of previous load"); assert(shift == 0, "no shift needed"); } void MethodHandles::load_conversion_dest_type(MacroAssembler* _masm, Register reg, Address conversion_field_addr) { int bits = BitsPerByte; int offset = (CONV_DEST_TYPE_SHIFT / bits); int shift = (CONV_DEST_TYPE_SHIFT % bits); __ load_unsigned_byte(reg, conversion_field_addr.plus_disp(offset)); assert(CONV_TYPE_MASK == right_n_bits(bits - shift), "else change type of previous load"); __ shrl(reg, shift); DEBUG_ONLY(int conv_type_bits = (int) exact_log2(CONV_TYPE_MASK+1)); assert((shift + conv_type_bits) == bits, "left justified in byte"); } void MethodHandles::load_stack_move(MacroAssembler* _masm, Register rdi_stack_move, Register rcx_amh, bool might_be_negative) { BLOCK_COMMENT("load_stack_move {"); Address rcx_amh_conversion(rcx_amh, java_lang_invoke_AdapterMethodHandle::conversion_offset_in_bytes()); __ movl(rdi_stack_move, rcx_amh_conversion); __ sarl(rdi_stack_move, CONV_STACK_MOVE_SHIFT); #ifdef _LP64 if (might_be_negative) { // clean high bits of stack motion register (was loaded as an int) __ movslq(rdi_stack_move, rdi_stack_move); } #endif //_LP64 #ifdef ASSERT if (VerifyMethodHandles) { Label L_ok, L_bad; int32_t stack_move_limit = 0x4000; // extra-large __ cmpptr(rdi_stack_move, stack_move_limit); __ jcc(Assembler::greaterEqual, L_bad); __ cmpptr(rdi_stack_move, -stack_move_limit); __ jcc(Assembler::greater, L_ok); __ bind(L_bad); __ stop("load_stack_move of garbage value"); __ BIND(L_ok); } #endif BLOCK_COMMENT("} load_stack_move"); } #ifdef ASSERT void MethodHandles::RicochetFrame::verify_offsets() { // Check compatibility of this struct with the more generally used offsets of class frame: int ebp_off = sender_link_offset_in_bytes(); // offset from struct base to local rbp value assert(ebp_off + wordSize*frame::interpreter_frame_method_offset == saved_args_base_offset_in_bytes(), ""); assert(ebp_off + wordSize*frame::interpreter_frame_last_sp_offset == conversion_offset_in_bytes(), ""); assert(ebp_off + wordSize*frame::interpreter_frame_sender_sp_offset == exact_sender_sp_offset_in_bytes(), ""); // These last two have to be exact: assert(ebp_off + wordSize*frame::link_offset == sender_link_offset_in_bytes(), ""); assert(ebp_off + wordSize*frame::return_addr_offset == sender_pc_offset_in_bytes(), ""); } void MethodHandles::RicochetFrame::verify() const { verify_offsets(); assert(magic_number_1() == MAGIC_NUMBER_1, err_msg(PTR_FORMAT " == " PTR_FORMAT, magic_number_1(), MAGIC_NUMBER_1)); assert(magic_number_2() == MAGIC_NUMBER_2, err_msg(PTR_FORMAT " == " PTR_FORMAT, magic_number_2(), MAGIC_NUMBER_2)); if (!Universe::heap()->is_gc_active()) { if (saved_args_layout() != NULL) { assert(saved_args_layout()->is_method(), "must be valid oop"); } if (saved_target() != NULL) { assert(java_lang_invoke_MethodHandle::is_instance(saved_target()), "checking frame value"); } } int conv_op = adapter_conversion_op(conversion()); assert(conv_op == java_lang_invoke_AdapterMethodHandle::OP_COLLECT_ARGS || conv_op == java_lang_invoke_AdapterMethodHandle::OP_FOLD_ARGS || conv_op == java_lang_invoke_AdapterMethodHandle::OP_PRIM_TO_REF, "must be a sane conversion"); if (has_return_value_slot()) { assert(*return_value_slot_addr() == RETURN_VALUE_PLACEHOLDER, ""); } } #endif //PRODUCT #ifdef ASSERT void MethodHandles::verify_argslot(MacroAssembler* _masm, Register argslot_reg, const char* error_message) { // Verify that argslot lies within (rsp, rbp]. Label L_ok, L_bad; BLOCK_COMMENT("verify_argslot {"); __ cmpptr(argslot_reg, rbp); __ jccb(Assembler::above, L_bad); __ cmpptr(rsp, argslot_reg); __ jccb(Assembler::below, L_ok); __ bind(L_bad); __ stop(error_message); __ BIND(L_ok); BLOCK_COMMENT("} verify_argslot"); } void MethodHandles::verify_argslots(MacroAssembler* _masm, RegisterOrConstant arg_slots, Register arg_slot_base_reg, bool negate_argslots, const char* error_message) { // Verify that [argslot..argslot+size) lies within (rsp, rbp). Label L_ok, L_bad; Register rdi_temp = rdi; BLOCK_COMMENT("verify_argslots {"); __ push(rdi_temp); if (negate_argslots) { if (arg_slots.is_constant()) { arg_slots = -1 * arg_slots.as_constant(); } else { __ movptr(rdi_temp, arg_slots); __ negptr(rdi_temp); arg_slots = rdi_temp; } } __ lea(rdi_temp, Address(arg_slot_base_reg, arg_slots, Interpreter::stackElementScale())); __ cmpptr(rdi_temp, rbp); __ pop(rdi_temp); __ jcc(Assembler::above, L_bad); __ cmpptr(rsp, arg_slot_base_reg); __ jcc(Assembler::below, L_ok); __ bind(L_bad); __ stop(error_message); __ BIND(L_ok); BLOCK_COMMENT("} verify_argslots"); } // Make sure that arg_slots has the same sign as the given direction. // If (and only if) arg_slots is a assembly-time constant, also allow it to be zero. void MethodHandles::verify_stack_move(MacroAssembler* _masm, RegisterOrConstant arg_slots, int direction) { bool allow_zero = arg_slots.is_constant(); if (direction == 0) { direction = +1; allow_zero = true; } assert(stack_move_unit() == -1, "else add extra checks here"); if (arg_slots.is_register()) { Label L_ok, L_bad; BLOCK_COMMENT("verify_stack_move {"); // testl(arg_slots.as_register(), -stack_move_unit() - 1); // no need // jcc(Assembler::notZero, L_bad); __ cmpptr(arg_slots.as_register(), (int32_t) NULL_WORD); if (direction > 0) { __ jcc(allow_zero ? Assembler::less : Assembler::lessEqual, L_bad); __ cmpptr(arg_slots.as_register(), (int32_t) UNREASONABLE_STACK_MOVE); __ jcc(Assembler::less, L_ok); } else { __ jcc(allow_zero ? Assembler::greater : Assembler::greaterEqual, L_bad); __ cmpptr(arg_slots.as_register(), (int32_t) -UNREASONABLE_STACK_MOVE); __ jcc(Assembler::greater, L_ok); } __ bind(L_bad); if (direction > 0) __ stop("assert arg_slots > 0"); else __ stop("assert arg_slots < 0"); __ BIND(L_ok); BLOCK_COMMENT("} verify_stack_move"); } else { intptr_t size = arg_slots.as_constant(); if (direction < 0) size = -size; assert(size >= 0, "correct direction of constant move"); assert(size < UNREASONABLE_STACK_MOVE, "reasonable size of constant move"); } } void MethodHandles::verify_klass(MacroAssembler* _masm, Register obj, KlassHandle klass, const char* error_message) { oop* klass_addr = klass.raw_value(); assert(klass_addr >= SystemDictionaryHandles::Object_klass().raw_value() && klass_addr <= SystemDictionaryHandles::Long_klass().raw_value(), "must be one of the SystemDictionaryHandles"); Register temp = rdi; Label L_ok, L_bad; BLOCK_COMMENT("verify_klass {"); __ verify_oop(obj); __ testptr(obj, obj); __ jcc(Assembler::zero, L_bad); __ push(temp); __ load_klass(temp, obj); __ cmpptr(temp, ExternalAddress((address) klass_addr)); __ jcc(Assembler::equal, L_ok); intptr_t super_check_offset = klass->super_check_offset(); __ movptr(temp, Address(temp, super_check_offset)); __ cmpptr(temp, ExternalAddress((address) klass_addr)); __ jcc(Assembler::equal, L_ok); __ pop(temp); __ bind(L_bad); __ stop(error_message); __ BIND(L_ok); __ pop(temp); BLOCK_COMMENT("} verify_klass"); } #endif //ASSERT void MethodHandles::jump_from_method_handle(MacroAssembler* _masm, Register method, Register temp) { if (JvmtiExport::can_post_interpreter_events()) { Label run_compiled_code; // JVMTI events, such as single-stepping, are implemented partly by avoiding running // compiled code in threads for which the event is enabled. Check here for // interp_only_mode if these events CAN be enabled. #ifdef _LP64 Register rthread = r15_thread; #else Register rthread = temp; __ get_thread(rthread); #endif // interp_only is an int, on little endian it is sufficient to test the byte only // Is a cmpl faster? __ cmpb(Address(rthread, JavaThread::interp_only_mode_offset()), 0); __ jccb(Assembler::zero, run_compiled_code); __ jmp(Address(method, methodOopDesc::interpreter_entry_offset())); __ bind(run_compiled_code); } __ jmp(Address(method, methodOopDesc::from_interpreted_offset())); } // Code generation address MethodHandles::generate_method_handle_interpreter_entry(MacroAssembler* _masm) { // rbx: methodOop // rcx: receiver method handle (must load from sp[MethodTypeForm.vmslots]) // rsi/r13: sender SP (must preserve; see prepare_to_jump_from_interpreted) // rdx, rdi: garbage temp, blown away Register rbx_method = rbx; Register rcx_recv = rcx; Register rax_mtype = rax; Register rdx_temp = rdx; Register rdi_temp = rdi; // emit WrongMethodType path first, to enable jccb back-branch from main path Label wrong_method_type; __ bind(wrong_method_type); Label invoke_generic_slow_path, invoke_exact_error_path; assert(methodOopDesc::intrinsic_id_size_in_bytes() == sizeof(u1), "");; __ cmpb(Address(rbx_method, methodOopDesc::intrinsic_id_offset_in_bytes()), (int) vmIntrinsics::_invokeExact); __ jcc(Assembler::notEqual, invoke_generic_slow_path); __ jmp(invoke_exact_error_path); // here's where control starts out: __ align(CodeEntryAlignment); address entry_point = __ pc(); // fetch the MethodType from the method handle into rax (the 'check' register) // FIXME: Interpreter should transmit pre-popped stack pointer, to locate base of arg list. // This would simplify several touchy bits of code. // See 6984712: JSR 292 method handle calls need a clean argument base pointer { Register tem = rbx_method; for (jint* pchase = methodOopDesc::method_type_offsets_chain(); (*pchase) != -1; pchase++) { __ movptr(rax_mtype, Address(tem, *pchase)); tem = rax_mtype; // in case there is another indirection } } // given the MethodType, find out where the MH argument is buried __ load_heap_oop(rdx_temp, Address(rax_mtype, __ delayed_value(java_lang_invoke_MethodType::form_offset_in_bytes, rdi_temp))); Register rdx_vmslots = rdx_temp; __ movl(rdx_vmslots, Address(rdx_temp, __ delayed_value(java_lang_invoke_MethodTypeForm::vmslots_offset_in_bytes, rdi_temp))); Address mh_receiver_slot_addr = __ argument_address(rdx_vmslots); __ movptr(rcx_recv, mh_receiver_slot_addr); trace_method_handle(_masm, "invokeExact"); __ check_method_handle_type(rax_mtype, rcx_recv, rdi_temp, wrong_method_type); // Nobody uses the MH receiver slot after this. Make sure. DEBUG_ONLY(__ movptr(mh_receiver_slot_addr, (int32_t)0x999999)); __ jump_to_method_handle_entry(rcx_recv, rdi_temp); // error path for invokeExact (only) __ bind(invoke_exact_error_path); // ensure that the top of stack is properly aligned. __ mov(rdi, rsp); __ andptr(rsp, -StackAlignmentInBytes); // Align the stack for the ABI __ pushptr(Address(rdi, 0)); // Pick up the return address // Stub wants expected type in rax and the actual type in rcx __ jump(ExternalAddress(StubRoutines::throw_WrongMethodTypeException_entry())); // for invokeGeneric (only), apply argument and result conversions on the fly __ bind(invoke_generic_slow_path); #ifdef ASSERT if (VerifyMethodHandles) { Label L; __ cmpb(Address(rbx_method, methodOopDesc::intrinsic_id_offset_in_bytes()), (int) vmIntrinsics::_invokeGeneric); __ jcc(Assembler::equal, L); __ stop("bad methodOop::intrinsic_id"); __ bind(L); } #endif //ASSERT Register rbx_temp = rbx_method; // don't need it now // make room on the stack for another pointer: Register rcx_argslot = rcx_recv; __ lea(rcx_argslot, __ argument_address(rdx_vmslots, 1)); insert_arg_slots(_masm, 2 * stack_move_unit(), rcx_argslot, rbx_temp, rdx_temp); // load up an adapter from the calling type (Java weaves this) Register rdx_adapter = rdx_temp; __ load_heap_oop(rdx_temp, Address(rax_mtype, __ delayed_value(java_lang_invoke_MethodType::form_offset_in_bytes, rdi_temp))); __ load_heap_oop(rdx_adapter, Address(rdx_temp, __ delayed_value(java_lang_invoke_MethodTypeForm::genericInvoker_offset_in_bytes, rdi_temp))); __ verify_oop(rdx_adapter); __ movptr(Address(rcx_argslot, 1 * Interpreter::stackElementSize), rdx_adapter); // As a trusted first argument, pass the type being called, so the adapter knows // the actual types of the arguments and return values. // (Generic invokers are shared among form-families of method-type.) __ movptr(Address(rcx_argslot, 0 * Interpreter::stackElementSize), rax_mtype); // FIXME: assert that rdx_adapter is of the right method-type. __ mov(rcx, rdx_adapter); trace_method_handle(_masm, "invokeGeneric"); __ jump_to_method_handle_entry(rcx, rdi_temp); return entry_point; } // Helper to insert argument slots into the stack. // arg_slots must be a multiple of stack_move_unit() and < 0 // rax_argslot is decremented to point to the new (shifted) location of the argslot // But, rdx_temp ends up holding the original value of rax_argslot. void MethodHandles::insert_arg_slots(MacroAssembler* _masm, RegisterOrConstant arg_slots, Register rax_argslot, Register rbx_temp, Register rdx_temp) { // allow constant zero if (arg_slots.is_constant() && arg_slots.as_constant() == 0) return; assert_different_registers(rax_argslot, rbx_temp, rdx_temp, (!arg_slots.is_register() ? rsp : arg_slots.as_register())); if (VerifyMethodHandles) verify_argslot(_masm, rax_argslot, "insertion point must fall within current frame"); if (VerifyMethodHandles) verify_stack_move(_masm, arg_slots, -1); // Make space on the stack for the inserted argument(s). // Then pull down everything shallower than rax_argslot. // The stacked return address gets pulled down with everything else. // That is, copy [rsp, argslot) downward by -size words. In pseudo-code: // rsp -= size; // for (rdx = rsp + size; rdx < argslot; rdx++) // rdx[-size] = rdx[0] // argslot -= size; BLOCK_COMMENT("insert_arg_slots {"); __ mov(rdx_temp, rsp); // source pointer for copy __ lea(rsp, Address(rsp, arg_slots, Interpreter::stackElementScale())); { Label loop; __ BIND(loop); // pull one word down each time through the loop __ movptr(rbx_temp, Address(rdx_temp, 0)); __ movptr(Address(rdx_temp, arg_slots, Interpreter::stackElementScale()), rbx_temp); __ addptr(rdx_temp, wordSize); __ cmpptr(rdx_temp, rax_argslot); __ jcc(Assembler::below, loop); } // Now move the argslot down, to point to the opened-up space. __ lea(rax_argslot, Address(rax_argslot, arg_slots, Interpreter::stackElementScale())); BLOCK_COMMENT("} insert_arg_slots"); } // Helper to remove argument slots from the stack. // arg_slots must be a multiple of stack_move_unit() and > 0 void MethodHandles::remove_arg_slots(MacroAssembler* _masm, RegisterOrConstant arg_slots, Register rax_argslot, Register rbx_temp, Register rdx_temp) { // allow constant zero if (arg_slots.is_constant() && arg_slots.as_constant() == 0) return; assert_different_registers(rax_argslot, rbx_temp, rdx_temp, (!arg_slots.is_register() ? rsp : arg_slots.as_register())); if (VerifyMethodHandles) verify_argslots(_masm, arg_slots, rax_argslot, false, "deleted argument(s) must fall within current frame"); if (VerifyMethodHandles) verify_stack_move(_masm, arg_slots, +1); BLOCK_COMMENT("remove_arg_slots {"); // Pull up everything shallower than rax_argslot. // Then remove the excess space on the stack. // The stacked return address gets pulled up with everything else. // That is, copy [rsp, argslot) upward by size words. In pseudo-code: // for (rdx = argslot-1; rdx >= rsp; --rdx) // rdx[size] = rdx[0] // argslot += size; // rsp += size; __ lea(rdx_temp, Address(rax_argslot, -wordSize)); // source pointer for copy { Label loop; __ BIND(loop); // pull one word up each time through the loop __ movptr(rbx_temp, Address(rdx_temp, 0)); __ movptr(Address(rdx_temp, arg_slots, Interpreter::stackElementScale()), rbx_temp); __ addptr(rdx_temp, -wordSize); __ cmpptr(rdx_temp, rsp); __ jcc(Assembler::aboveEqual, loop); } // Now move the argslot up, to point to the just-copied block. __ lea(rsp, Address(rsp, arg_slots, Interpreter::stackElementScale())); // And adjust the argslot address to point at the deletion point. __ lea(rax_argslot, Address(rax_argslot, arg_slots, Interpreter::stackElementScale())); BLOCK_COMMENT("} remove_arg_slots"); } // Helper to copy argument slots to the top of the stack. // The sequence starts with rax_argslot and is counted by slot_count // slot_count must be a multiple of stack_move_unit() and >= 0 // This function blows the temps but does not change rax_argslot. void MethodHandles::push_arg_slots(MacroAssembler* _masm, Register rax_argslot, RegisterOrConstant slot_count, int skip_words_count, Register rbx_temp, Register rdx_temp) { assert_different_registers(rax_argslot, rbx_temp, rdx_temp, (!slot_count.is_register() ? rbp : slot_count.as_register()), rsp); assert(Interpreter::stackElementSize == wordSize, "else change this code"); if (VerifyMethodHandles) verify_stack_move(_masm, slot_count, 0); // allow constant zero if (slot_count.is_constant() && slot_count.as_constant() == 0) return; BLOCK_COMMENT("push_arg_slots {"); Register rbx_top = rbx_temp; // There is at most 1 word to carry down with the TOS. switch (skip_words_count) { case 1: __ pop(rdx_temp); break; case 0: break; default: ShouldNotReachHere(); } if (slot_count.is_constant()) { for (int i = slot_count.as_constant() - 1; i >= 0; i--) { __ pushptr(Address(rax_argslot, i * wordSize)); } } else { Label L_plural, L_loop, L_break; // Emit code to dynamically check for the common cases, zero and one slot. __ cmpl(slot_count.as_register(), (int32_t) 1); __ jccb(Assembler::greater, L_plural); __ jccb(Assembler::less, L_break); __ pushptr(Address(rax_argslot, 0)); __ jmpb(L_break); __ BIND(L_plural); // Loop for 2 or more: // rbx = &rax[slot_count] // while (rbx > rax) *(--rsp) = *(--rbx) __ lea(rbx_top, Address(rax_argslot, slot_count, Address::times_ptr)); __ BIND(L_loop); __ subptr(rbx_top, wordSize); __ pushptr(Address(rbx_top, 0)); __ cmpptr(rbx_top, rax_argslot); __ jcc(Assembler::above, L_loop); __ bind(L_break); } switch (skip_words_count) { case 1: __ push(rdx_temp); break; case 0: break; default: ShouldNotReachHere(); } BLOCK_COMMENT("} push_arg_slots"); } // in-place movement; no change to rsp // blows rax_temp, rdx_temp void MethodHandles::move_arg_slots_up(MacroAssembler* _masm, Register rbx_bottom, // invariant Address top_addr, // can use rax_temp RegisterOrConstant positive_distance_in_slots, Register rax_temp, Register rdx_temp) { BLOCK_COMMENT("move_arg_slots_up {"); assert_different_registers(rbx_bottom, rax_temp, rdx_temp, positive_distance_in_slots.register_or_noreg()); Label L_loop, L_break; Register rax_top = rax_temp; if (!top_addr.is_same_address(Address(rax_top, 0))) __ lea(rax_top, top_addr); // Detect empty (or broken) loop: #ifdef ASSERT if (VerifyMethodHandles) { // Verify that &bottom < &top (non-empty interval) Label L_ok, L_bad; if (positive_distance_in_slots.is_register()) { __ cmpptr(positive_distance_in_slots.as_register(), (int32_t) 0); __ jcc(Assembler::lessEqual, L_bad); } __ cmpptr(rbx_bottom, rax_top); __ jcc(Assembler::below, L_ok); __ bind(L_bad); __ stop("valid bounds (copy up)"); __ BIND(L_ok); } #endif __ cmpptr(rbx_bottom, rax_top); __ jccb(Assembler::aboveEqual, L_break); // work rax down to rbx, copying contiguous data upwards // In pseudo-code: // [rbx, rax) = &[bottom, top) // while (--rax >= rbx) *(rax + distance) = *(rax + 0), rax--; __ BIND(L_loop); __ subptr(rax_top, wordSize); __ movptr(rdx_temp, Address(rax_top, 0)); __ movptr( Address(rax_top, positive_distance_in_slots, Address::times_ptr), rdx_temp); __ cmpptr(rax_top, rbx_bottom); __ jcc(Assembler::above, L_loop); assert(Interpreter::stackElementSize == wordSize, "else change loop"); __ bind(L_break); BLOCK_COMMENT("} move_arg_slots_up"); } // in-place movement; no change to rsp // blows rax_temp, rdx_temp void MethodHandles::move_arg_slots_down(MacroAssembler* _masm, Address bottom_addr, // can use rax_temp Register rbx_top, // invariant RegisterOrConstant negative_distance_in_slots, Register rax_temp, Register rdx_temp) { BLOCK_COMMENT("move_arg_slots_down {"); assert_different_registers(rbx_top, negative_distance_in_slots.register_or_noreg(), rax_temp, rdx_temp); Label L_loop, L_break; Register rax_bottom = rax_temp; if (!bottom_addr.is_same_address(Address(rax_bottom, 0))) __ lea(rax_bottom, bottom_addr); // Detect empty (or broken) loop: #ifdef ASSERT assert(!negative_distance_in_slots.is_constant() || negative_distance_in_slots.as_constant() < 0, ""); if (VerifyMethodHandles) { // Verify that &bottom < &top (non-empty interval) Label L_ok, L_bad; if (negative_distance_in_slots.is_register()) { __ cmpptr(negative_distance_in_slots.as_register(), (int32_t) 0); __ jcc(Assembler::greaterEqual, L_bad); } __ cmpptr(rax_bottom, rbx_top); __ jcc(Assembler::below, L_ok); __ bind(L_bad); __ stop("valid bounds (copy down)"); __ BIND(L_ok); } #endif __ cmpptr(rax_bottom, rbx_top); __ jccb(Assembler::aboveEqual, L_break); // work rax up to rbx, copying contiguous data downwards // In pseudo-code: // [rax, rbx) = &[bottom, top) // while (rax < rbx) *(rax - distance) = *(rax + 0), rax++; __ BIND(L_loop); __ movptr(rdx_temp, Address(rax_bottom, 0)); __ movptr( Address(rax_bottom, negative_distance_in_slots, Address::times_ptr), rdx_temp); __ addptr(rax_bottom, wordSize); __ cmpptr(rax_bottom, rbx_top); __ jcc(Assembler::below, L_loop); assert(Interpreter::stackElementSize == wordSize, "else change loop"); __ bind(L_break); BLOCK_COMMENT("} move_arg_slots_down"); } // Copy from a field or array element to a stacked argument slot. // is_element (ignored) says whether caller is loading an array element instead of an instance field. void MethodHandles::move_typed_arg(MacroAssembler* _masm, BasicType type, bool is_element, Address slot_dest, Address value_src, Register rbx_temp, Register rdx_temp) { BLOCK_COMMENT(!is_element ? "move_typed_arg {" : "move_typed_arg { (array element)"); if (type == T_OBJECT || type == T_ARRAY) { __ load_heap_oop(rbx_temp, value_src); __ movptr(slot_dest, rbx_temp); } else if (type != T_VOID) { int arg_size = type2aelembytes(type); bool arg_is_signed = is_signed_subword_type(type); int slot_size = (arg_size > wordSize) ? arg_size : wordSize; __ load_sized_value( rdx_temp, value_src, arg_size, arg_is_signed, rbx_temp); __ store_sized_value( slot_dest, rdx_temp, slot_size, rbx_temp); } BLOCK_COMMENT("} move_typed_arg"); } void MethodHandles::move_return_value(MacroAssembler* _masm, BasicType type, Address return_slot) { BLOCK_COMMENT("move_return_value {"); // Old versions of the JVM must clean the FPU stack after every return. #ifndef _LP64 #ifdef COMPILER2 // The FPU stack is clean if UseSSE >= 2 but must be cleaned in other cases if ((type == T_FLOAT && UseSSE < 1) || (type == T_DOUBLE && UseSSE < 2)) { for (int i = 1; i < 8; i++) { __ ffree(i); } } else if (UseSSE < 2) { __ empty_FPU_stack(); } #endif //COMPILER2 #endif //!_LP64 // Look at the type and pull the value out of the corresponding register. if (type == T_VOID) { // nothing to do } else if (type == T_OBJECT) { __ movptr(return_slot, rax); } else if (type == T_INT || is_subword_type(type)) { // write the whole word, even if only 32 bits is significant __ movptr(return_slot, rax); } else if (type == T_LONG) { // store the value by parts // Note: We assume longs are continguous (if misaligned) on the interpreter stack. __ store_sized_value(return_slot, rax, BytesPerLong, rdx); } else if (NOT_LP64((type == T_FLOAT && UseSSE < 1) || (type == T_DOUBLE && UseSSE < 2) ||) false) { // Use old x86 FPU registers: if (type == T_FLOAT) __ fstp_s(return_slot); else __ fstp_d(return_slot); } else if (type == T_FLOAT) { __ movflt(return_slot, xmm0); } else if (type == T_DOUBLE) { __ movdbl(return_slot, xmm0); } else { ShouldNotReachHere(); } BLOCK_COMMENT("} move_return_value"); } #ifndef PRODUCT extern "C" void print_method_handle(oop mh); void trace_method_handle_stub(const char* adaptername, oop mh, intptr_t* saved_regs, intptr_t* entry_sp, intptr_t* saved_sp, intptr_t* saved_bp) { // called as a leaf from native code: do not block the JVM! bool has_mh = (strstr(adaptername, "return/") == NULL); // return adapters don't have rcx_mh intptr_t* last_sp = (intptr_t*) saved_bp[frame::interpreter_frame_last_sp_offset]; intptr_t* base_sp = last_sp; typedef MethodHandles::RicochetFrame RicochetFrame; RicochetFrame* rfp = (RicochetFrame*)((address)saved_bp - RicochetFrame::sender_link_offset_in_bytes()); if (Universe::heap()->is_in((address) rfp->saved_args_base())) { // Probably an interpreter frame. base_sp = (intptr_t*) saved_bp[frame::interpreter_frame_monitor_block_top_offset]; } intptr_t mh_reg = (intptr_t)mh; const char* mh_reg_name = "rcx_mh"; if (!has_mh) mh_reg_name = "rcx"; tty->print_cr("MH %s %s="PTR_FORMAT" sp=("PTR_FORMAT"+"INTX_FORMAT") stack_size="INTX_FORMAT" bp="PTR_FORMAT, adaptername, mh_reg_name, mh_reg, (intptr_t)entry_sp, (intptr_t)(saved_sp - entry_sp), (intptr_t)(base_sp - last_sp), (intptr_t)saved_bp); if (Verbose) { tty->print(" reg dump: "); int saved_regs_count = (entry_sp-1) - saved_regs; // 32 bit: rdi rsi rbp rsp; rbx rdx rcx (*) rax int i; for (i = 0; i <= saved_regs_count; i++) { if (i > 0 && i % 4 == 0 && i != saved_regs_count) { tty->cr(); tty->print(" + dump: "); } tty->print(" %d: "PTR_FORMAT, i, saved_regs[i]); } tty->cr(); if (last_sp != saved_sp && last_sp != NULL) tty->print_cr("*** last_sp="PTR_FORMAT, (intptr_t)last_sp); int stack_dump_count = 16; if (stack_dump_count < (int)(saved_bp + 2 - saved_sp)) stack_dump_count = (int)(saved_bp + 2 - saved_sp); if (stack_dump_count > 64) stack_dump_count = 48; for (i = 0; i < stack_dump_count; i += 4) { tty->print_cr(" dump at SP[%d] "PTR_FORMAT": "PTR_FORMAT" "PTR_FORMAT" "PTR_FORMAT" "PTR_FORMAT, i, (intptr_t) &entry_sp[i+0], entry_sp[i+0], entry_sp[i+1], entry_sp[i+2], entry_sp[i+3]); } if (has_mh) print_method_handle(mh); } } // The stub wraps the arguments in a struct on the stack to avoid // dealing with the different calling conventions for passing 6 // arguments. struct MethodHandleStubArguments { const char* adaptername; oopDesc* mh; intptr_t* saved_regs; intptr_t* entry_sp; intptr_t* saved_sp; intptr_t* saved_bp; }; void trace_method_handle_stub_wrapper(MethodHandleStubArguments* args) { trace_method_handle_stub(args->adaptername, args->mh, args->saved_regs, args->entry_sp, args->saved_sp, args->saved_bp); } void MethodHandles::trace_method_handle(MacroAssembler* _masm, const char* adaptername) { if (!TraceMethodHandles) return; BLOCK_COMMENT("trace_method_handle {"); __ push(rax); __ lea(rax, Address(rsp, wordSize * NOT_LP64(6) LP64_ONLY(14))); // entry_sp __ pusha(); __ pusha(); __ mov(rbx, rsp); __ enter(); // incoming state: // rcx: method handle // r13 or rsi: saved sp // To avoid calling convention issues, build a record on the stack and pass the pointer to that instead. __ push(rbp); // saved_bp __ push(rsi); // saved_sp __ push(rax); // entry_sp __ push(rbx); // pusha saved_regs __ push(rcx); // mh __ push(rcx); // adaptername __ movptr(Address(rsp, 0), (intptr_t) adaptername); __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, trace_method_handle_stub_wrapper), rsp); __ leave(); __ popa(); __ pop(rax); BLOCK_COMMENT("} trace_method_handle"); } #endif //PRODUCT // which conversion op types are implemented here? int MethodHandles::adapter_conversion_ops_supported_mask() { return ((1<from_compiled_entry(), "method must be linked"); const Register rax_pc = rax; __ pop(rax_pc); // caller PC __ mov(rsp, saved_last_sp); // cut the stack back to where the caller started Register rbx_method = rbx_temp; __ movptr(rbx_method, ExternalAddress((address) &_raise_exception_method)); const int jobject_oop_offset = 0; __ movptr(rbx_method, Address(rbx_method, jobject_oop_offset)); // dereference the jobject __ movptr(saved_last_sp, rsp); __ subptr(rsp, 3 * wordSize); __ push(rax_pc); // restore caller PC __ movl (__ argument_address(constant(2)), rarg0_code); __ movptr(__ argument_address(constant(1)), rarg1_actual); __ movptr(__ argument_address(constant(0)), rarg2_required); jump_from_method_handle(_masm, rbx_method, rax); } break; case _invokestatic_mh: case _invokespecial_mh: { Register rbx_method = rbx_temp; __ load_heap_oop(rbx_method, rcx_mh_vmtarget); // target is a methodOop __ verify_oop(rbx_method); // same as TemplateTable::invokestatic or invokespecial, // minus the CP setup and profiling: if (ek == _invokespecial_mh) { // Must load & check the first argument before entering the target method. __ load_method_handle_vmslots(rax_argslot, rcx_recv, rdx_temp); __ movptr(rcx_recv, __ argument_address(rax_argslot, -1)); __ null_check(rcx_recv); __ verify_oop(rcx_recv); } jump_from_method_handle(_masm, rbx_method, rax); } break; case _invokevirtual_mh: { // same as TemplateTable::invokevirtual, // minus the CP setup and profiling: // pick out the vtable index and receiver offset from the MH, // and then we can discard it: __ load_method_handle_vmslots(rax_argslot, rcx_recv, rdx_temp); Register rbx_index = rbx_temp; __ movl(rbx_index, rcx_dmh_vmindex); // Note: The verifier allows us to ignore rcx_mh_vmtarget. __ movptr(rcx_recv, __ argument_address(rax_argslot, -1)); __ null_check(rcx_recv, oopDesc::klass_offset_in_bytes()); // get receiver klass Register rax_klass = rax_argslot; __ load_klass(rax_klass, rcx_recv); __ verify_oop(rax_klass); // get target methodOop & entry point const int base = instanceKlass::vtable_start_offset() * wordSize; assert(vtableEntry::size() * wordSize == wordSize, "adjust the scaling in the code below"); Address vtable_entry_addr(rax_klass, rbx_index, Address::times_ptr, base + vtableEntry::method_offset_in_bytes()); Register rbx_method = rbx_temp; __ movptr(rbx_method, vtable_entry_addr); __ verify_oop(rbx_method); jump_from_method_handle(_masm, rbx_method, rax); } break; case _invokeinterface_mh: { // same as TemplateTable::invokeinterface, // minus the CP setup and profiling: // pick out the interface and itable index from the MH. __ load_method_handle_vmslots(rax_argslot, rcx_recv, rdx_temp); Register rdx_intf = rdx_temp; Register rbx_index = rbx_temp; __ load_heap_oop(rdx_intf, rcx_mh_vmtarget); __ movl(rbx_index, rcx_dmh_vmindex); __ movptr(rcx_recv, __ argument_address(rax_argslot, -1)); __ null_check(rcx_recv, oopDesc::klass_offset_in_bytes()); // get receiver klass Register rax_klass = rax_argslot; __ load_klass(rax_klass, rcx_recv); __ verify_oop(rax_klass); Register rbx_method = rbx_index; // get interface klass Label no_such_interface; __ verify_oop(rdx_intf); __ lookup_interface_method(rax_klass, rdx_intf, // note: next two args must be the same: rbx_index, rbx_method, rdi_temp, no_such_interface); __ verify_oop(rbx_method); jump_from_method_handle(_masm, rbx_method, rax); __ hlt(); __ bind(no_such_interface); // Throw an exception. // For historical reasons, it will be IncompatibleClassChangeError. __ mov(rbx_temp, rcx_recv); // rarg2_required might be RCX assert_different_registers(rarg2_required, rbx_temp); __ movptr(rarg2_required, Address(rdx_intf, java_mirror_offset)); // required interface __ mov( rarg1_actual, rbx_temp); // bad receiver __ movl( rarg0_code, (int) Bytecodes::_invokeinterface); // who is complaining? __ jump(ExternalAddress(from_interpreted_entry(_raise_exception))); } break; case _bound_ref_mh: case _bound_int_mh: case _bound_long_mh: case _bound_ref_direct_mh: case _bound_int_direct_mh: case _bound_long_direct_mh: { const bool direct_to_method = (ek >= _bound_ref_direct_mh); BasicType arg_type = ek_bound_mh_arg_type(ek); int arg_slots = type2size[arg_type]; // make room for the new argument: __ movl(rax_argslot, rcx_bmh_vmargslot); __ lea(rax_argslot, __ argument_address(rax_argslot)); insert_arg_slots(_masm, arg_slots * stack_move_unit(), rax_argslot, rbx_temp, rdx_temp); // store bound argument into the new stack slot: __ load_heap_oop(rbx_temp, rcx_bmh_argument); if (arg_type == T_OBJECT) { __ movptr(Address(rax_argslot, 0), rbx_temp); } else { Address prim_value_addr(rbx_temp, java_lang_boxing_object::value_offset_in_bytes(arg_type)); move_typed_arg(_masm, arg_type, false, Address(rax_argslot, 0), prim_value_addr, rbx_temp, rdx_temp); } if (direct_to_method) { Register rbx_method = rbx_temp; __ load_heap_oop(rbx_method, rcx_mh_vmtarget); __ verify_oop(rbx_method); jump_from_method_handle(_masm, rbx_method, rax); } else { __ load_heap_oop(rcx_recv, rcx_mh_vmtarget); __ verify_oop(rcx_recv); __ jump_to_method_handle_entry(rcx_recv, rdx_temp); } } break; case _adapter_opt_profiling: if (java_lang_invoke_CountingMethodHandle::vmcount_offset_in_bytes() != 0) { Address rcx_mh_vmcount(rcx_recv, java_lang_invoke_CountingMethodHandle::vmcount_offset_in_bytes()); __ incrementl(rcx_mh_vmcount); } // fall through case _adapter_retype_only: case _adapter_retype_raw: // immediately jump to the next MH layer: __ load_heap_oop(rcx_recv, rcx_mh_vmtarget); __ verify_oop(rcx_recv); __ jump_to_method_handle_entry(rcx_recv, rdx_temp); // This is OK when all parameter types widen. // It is also OK when a return type narrows. break; case _adapter_check_cast: { // temps: Register rbx_klass = rbx_temp; // interesting AMH data // check a reference argument before jumping to the next layer of MH: __ movl(rax_argslot, rcx_amh_vmargslot); vmarg = __ argument_address(rax_argslot); // What class are we casting to? __ load_heap_oop(rbx_klass, rcx_amh_argument); // this is a Class object! load_klass_from_Class(_masm, rbx_klass); Label done; __ movptr(rdx_temp, vmarg); __ testptr(rdx_temp, rdx_temp); __ jcc(Assembler::zero, done); // no cast if null __ load_klass(rdx_temp, rdx_temp); // live at this point: // - rbx_klass: klass required by the target method // - rdx_temp: argument klass to test // - rcx_recv: adapter method handle __ check_klass_subtype(rdx_temp, rbx_klass, rax_argslot, done); // If we get here, the type check failed! // Call the wrong_method_type stub, passing the failing argument type in rax. Register rax_mtype = rax_argslot; __ movl(rax_argslot, rcx_amh_vmargslot); // reload argslot field __ movptr(rdx_temp, vmarg); assert_different_registers(rarg2_required, rdx_temp); __ load_heap_oop(rarg2_required, rcx_amh_argument); // required class __ mov( rarg1_actual, rdx_temp); // bad object __ movl( rarg0_code, (int) Bytecodes::_checkcast); // who is complaining? __ jump(ExternalAddress(from_interpreted_entry(_raise_exception))); __ bind(done); // get the new MH: __ load_heap_oop(rcx_recv, rcx_mh_vmtarget); __ jump_to_method_handle_entry(rcx_recv, rdx_temp); } break; case _adapter_prim_to_prim: case _adapter_ref_to_prim: case _adapter_prim_to_ref: // handled completely by optimized cases __ stop("init_AdapterMethodHandle should not issue this"); break; case _adapter_opt_i2i: // optimized subcase of adapt_prim_to_prim //case _adapter_opt_f2i: // optimized subcase of adapt_prim_to_prim case _adapter_opt_l2i: // optimized subcase of adapt_prim_to_prim case _adapter_opt_unboxi: // optimized subcase of adapt_ref_to_prim { // perform an in-place conversion to int or an int subword __ movl(rax_argslot, rcx_amh_vmargslot); vmarg = __ argument_address(rax_argslot); switch (ek) { case _adapter_opt_i2i: __ movl(rdx_temp, vmarg); break; case _adapter_opt_l2i: { // just delete the extra slot; on a little-endian machine we keep the first __ lea(rax_argslot, __ argument_address(rax_argslot, 1)); remove_arg_slots(_masm, -stack_move_unit(), rax_argslot, rbx_temp, rdx_temp); vmarg = Address(rax_argslot, -Interpreter::stackElementSize); __ movl(rdx_temp, vmarg); } break; case _adapter_opt_unboxi: { // Load the value up from the heap. __ movptr(rdx_temp, vmarg); int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_INT); #ifdef ASSERT for (int bt = T_BOOLEAN; bt < T_INT; bt++) { if (is_subword_type(BasicType(bt))) assert(value_offset == java_lang_boxing_object::value_offset_in_bytes(BasicType(bt)), ""); } #endif __ null_check(rdx_temp, value_offset); __ movl(rdx_temp, Address(rdx_temp, value_offset)); // We load this as a word. Because we are little-endian, // the low bits will be correct, but the high bits may need cleaning. // The vminfo will guide us to clean those bits. } break; default: ShouldNotReachHere(); } // Do the requested conversion and store the value. Register rbx_vminfo = rbx_temp; load_conversion_vminfo(_masm, rbx_vminfo, rcx_amh_conversion); // get the new MH: __ load_heap_oop(rcx_recv, rcx_mh_vmtarget); // (now we are done with the old MH) // original 32-bit vmdata word must be of this form: // | MBZ:6 | signBitCount:8 | srcDstTypes:8 | conversionOp:8 | __ xchgptr(rcx, rbx_vminfo); // free rcx for shifts __ shll(rdx_temp /*, rcx*/); Label zero_extend, done; __ testl(rcx, CONV_VMINFO_SIGN_FLAG); __ jccb(Assembler::zero, zero_extend); // this path is taken for int->byte, int->short __ sarl(rdx_temp /*, rcx*/); __ jmpb(done); __ bind(zero_extend); // this is taken for int->char __ shrl(rdx_temp /*, rcx*/); __ bind(done); __ movl(vmarg, rdx_temp); // Store the value. __ xchgptr(rcx, rbx_vminfo); // restore rcx_recv __ jump_to_method_handle_entry(rcx_recv, rdx_temp); } break; case _adapter_opt_i2l: // optimized subcase of adapt_prim_to_prim case _adapter_opt_unboxl: // optimized subcase of adapt_ref_to_prim { // perform an in-place int-to-long or ref-to-long conversion __ movl(rax_argslot, rcx_amh_vmargslot); // on a little-endian machine we keep the first slot and add another after __ lea(rax_argslot, __ argument_address(rax_argslot, 1)); insert_arg_slots(_masm, stack_move_unit(), rax_argslot, rbx_temp, rdx_temp); Address vmarg1(rax_argslot, -Interpreter::stackElementSize); Address vmarg2 = vmarg1.plus_disp(Interpreter::stackElementSize); switch (ek) { case _adapter_opt_i2l: { #ifdef _LP64 __ movslq(rdx_temp, vmarg1); // Load sign-extended __ movq(vmarg1, rdx_temp); // Store into first slot #else __ movl(rdx_temp, vmarg1); __ sarl(rdx_temp, BitsPerInt - 1); // __ extend_sign() __ movl(vmarg2, rdx_temp); // store second word #endif } break; case _adapter_opt_unboxl: { // Load the value up from the heap. __ movptr(rdx_temp, vmarg1); int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_LONG); assert(value_offset == java_lang_boxing_object::value_offset_in_bytes(T_DOUBLE), ""); __ null_check(rdx_temp, value_offset); #ifdef _LP64 __ movq(rbx_temp, Address(rdx_temp, value_offset)); __ movq(vmarg1, rbx_temp); #else __ movl(rbx_temp, Address(rdx_temp, value_offset + 0*BytesPerInt)); __ movl(rdx_temp, Address(rdx_temp, value_offset + 1*BytesPerInt)); __ movl(vmarg1, rbx_temp); __ movl(vmarg2, rdx_temp); #endif } break; default: ShouldNotReachHere(); } __ load_heap_oop(rcx_recv, rcx_mh_vmtarget); __ jump_to_method_handle_entry(rcx_recv, rdx_temp); } break; case _adapter_opt_f2d: // optimized subcase of adapt_prim_to_prim case _adapter_opt_d2f: // optimized subcase of adapt_prim_to_prim { // perform an in-place floating primitive conversion __ movl(rax_argslot, rcx_amh_vmargslot); __ lea(rax_argslot, __ argument_address(rax_argslot, 1)); if (ek == _adapter_opt_f2d) { insert_arg_slots(_masm, stack_move_unit(), rax_argslot, rbx_temp, rdx_temp); } Address vmarg(rax_argslot, -Interpreter::stackElementSize); #ifdef _LP64 if (ek == _adapter_opt_f2d) { __ movflt(xmm0, vmarg); __ cvtss2sd(xmm0, xmm0); __ movdbl(vmarg, xmm0); } else { __ movdbl(xmm0, vmarg); __ cvtsd2ss(xmm0, xmm0); __ movflt(vmarg, xmm0); } #else //_LP64 if (ek == _adapter_opt_f2d) { __ fld_s(vmarg); // load float to ST0 __ fstp_d(vmarg); // store double } else { __ fld_d(vmarg); // load double to ST0 __ fstp_s(vmarg); // store single } #endif //_LP64 if (ek == _adapter_opt_d2f) { remove_arg_slots(_masm, -stack_move_unit(), rax_argslot, rbx_temp, rdx_temp); } __ load_heap_oop(rcx_recv, rcx_mh_vmtarget); __ jump_to_method_handle_entry(rcx_recv, rdx_temp); } break; case _adapter_swap_args: case _adapter_rot_args: // handled completely by optimized cases __ stop("init_AdapterMethodHandle should not issue this"); break; case _adapter_opt_swap_1: case _adapter_opt_swap_2: case _adapter_opt_rot_1_up: case _adapter_opt_rot_1_down: case _adapter_opt_rot_2_up: case _adapter_opt_rot_2_down: { int swap_slots = ek_adapter_opt_swap_slots(ek); int rotate = ek_adapter_opt_swap_mode(ek); // 'argslot' is the position of the first argument to swap __ movl(rax_argslot, rcx_amh_vmargslot); __ lea(rax_argslot, __ argument_address(rax_argslot)); // 'vminfo' is the second Register rbx_destslot = rbx_temp; load_conversion_vminfo(_masm, rbx_destslot, rcx_amh_conversion); __ lea(rbx_destslot, __ argument_address(rbx_destslot)); if (VerifyMethodHandles) verify_argslot(_masm, rbx_destslot, "swap point must fall within current frame"); assert(Interpreter::stackElementSize == wordSize, "else rethink use of wordSize here"); if (!rotate) { // simple swap for (int i = 0; i < swap_slots; i++) { __ movptr(rdi_temp, Address(rax_argslot, i * wordSize)); __ movptr(rdx_temp, Address(rbx_destslot, i * wordSize)); __ movptr(Address(rax_argslot, i * wordSize), rdx_temp); __ movptr(Address(rbx_destslot, i * wordSize), rdi_temp); } } else { // A rotate is actually pair of moves, with an "odd slot" (or pair) // changing place with a series of other slots. // First, push the "odd slot", which is going to get overwritten for (int i = swap_slots - 1; i >= 0; i--) { // handle one with rdi_temp instead of a push: if (i == 0) __ movptr(rdi_temp, Address(rax_argslot, i * wordSize)); else __ pushptr( Address(rax_argslot, i * wordSize)); } if (rotate > 0) { // Here is rotate > 0: // (low mem) (high mem) // | dest: more_slots... | arg: odd_slot :arg+1 | // => // | dest: odd_slot | dest+1: more_slots... :arg+1 | // work argslot down to destslot, copying contiguous data upwards // pseudo-code: // rax = src_addr - swap_bytes // rbx = dest_addr // while (rax >= rbx) *(rax + swap_bytes) = *(rax + 0), rax--; move_arg_slots_up(_masm, rbx_destslot, Address(rax_argslot, 0), swap_slots, rax_argslot, rdx_temp); } else { // Here is the other direction, rotate < 0: // (low mem) (high mem) // | arg: odd_slot | arg+1: more_slots... :dest+1 | // => // | arg: more_slots... | dest: odd_slot :dest+1 | // work argslot up to destslot, copying contiguous data downwards // pseudo-code: // rax = src_addr + swap_bytes // rbx = dest_addr // while (rax <= rbx) *(rax - swap_bytes) = *(rax + 0), rax++; // dest_slot denotes an exclusive upper limit int limit_bias = OP_ROT_ARGS_DOWN_LIMIT_BIAS; if (limit_bias != 0) __ addptr(rbx_destslot, - limit_bias * wordSize); move_arg_slots_down(_masm, Address(rax_argslot, swap_slots * wordSize), rbx_destslot, -swap_slots, rax_argslot, rdx_temp); __ subptr(rbx_destslot, swap_slots * wordSize); } // pop the original first chunk into the destination slot, now free for (int i = 0; i < swap_slots; i++) { if (i == 0) __ movptr(Address(rbx_destslot, i * wordSize), rdi_temp); else __ popptr(Address(rbx_destslot, i * wordSize)); } } __ load_heap_oop(rcx_recv, rcx_mh_vmtarget); __ jump_to_method_handle_entry(rcx_recv, rdx_temp); } break; case _adapter_dup_args: { // 'argslot' is the position of the first argument to duplicate __ movl(rax_argslot, rcx_amh_vmargslot); __ lea(rax_argslot, __ argument_address(rax_argslot)); // 'stack_move' is negative number of words to duplicate Register rdi_stack_move = rdi_temp; load_stack_move(_masm, rdi_stack_move, rcx_recv, true); if (VerifyMethodHandles) { verify_argslots(_masm, rdi_stack_move, rax_argslot, true, "copied argument(s) must fall within current frame"); } // insert location is always the bottom of the argument list: Address insert_location = __ argument_address(constant(0)); int pre_arg_words = insert_location.disp() / wordSize; // return PC is pushed assert(insert_location.base() == rsp, ""); __ negl(rdi_stack_move); push_arg_slots(_masm, rax_argslot, rdi_stack_move, pre_arg_words, rbx_temp, rdx_temp); __ load_heap_oop(rcx_recv, rcx_mh_vmtarget); __ jump_to_method_handle_entry(rcx_recv, rdx_temp); } break; case _adapter_drop_args: { // 'argslot' is the position of the first argument to nuke __ movl(rax_argslot, rcx_amh_vmargslot); __ lea(rax_argslot, __ argument_address(rax_argslot)); // (must do previous push after argslot address is taken) // 'stack_move' is number of words to drop Register rdi_stack_move = rdi_temp; load_stack_move(_masm, rdi_stack_move, rcx_recv, false); remove_arg_slots(_masm, rdi_stack_move, rax_argslot, rbx_temp, rdx_temp); __ load_heap_oop(rcx_recv, rcx_mh_vmtarget); __ jump_to_method_handle_entry(rcx_recv, rdx_temp); } break; case _adapter_collect_args: case _adapter_fold_args: case _adapter_spread_args: // handled completely by optimized cases __ stop("init_AdapterMethodHandle should not issue this"); break; case _adapter_opt_collect_ref: case _adapter_opt_collect_int: case _adapter_opt_collect_long: case _adapter_opt_collect_float: case _adapter_opt_collect_double: case _adapter_opt_collect_void: case _adapter_opt_collect_0_ref: case _adapter_opt_collect_1_ref: case _adapter_opt_collect_2_ref: case _adapter_opt_collect_3_ref: case _adapter_opt_collect_4_ref: case _adapter_opt_collect_5_ref: case _adapter_opt_filter_S0_ref: case _adapter_opt_filter_S1_ref: case _adapter_opt_filter_S2_ref: case _adapter_opt_filter_S3_ref: case _adapter_opt_filter_S4_ref: case _adapter_opt_filter_S5_ref: case _adapter_opt_collect_2_S0_ref: case _adapter_opt_collect_2_S1_ref: case _adapter_opt_collect_2_S2_ref: case _adapter_opt_collect_2_S3_ref: case _adapter_opt_collect_2_S4_ref: case _adapter_opt_collect_2_S5_ref: case _adapter_opt_fold_ref: case _adapter_opt_fold_int: case _adapter_opt_fold_long: case _adapter_opt_fold_float: case _adapter_opt_fold_double: case _adapter_opt_fold_void: case _adapter_opt_fold_1_ref: case _adapter_opt_fold_2_ref: case _adapter_opt_fold_3_ref: case _adapter_opt_fold_4_ref: case _adapter_opt_fold_5_ref: { // Given a fresh incoming stack frame, build a new ricochet frame. // On entry, TOS points at a return PC, and RBP is the callers frame ptr. // RSI/R13 has the caller's exact stack pointer, which we must also preserve. // RCX contains an AdapterMethodHandle of the indicated kind. // Relevant AMH fields: // amh.vmargslot: // points to the trailing edge of the arguments // to filter, collect, or fold. For a boxing operation, // it points just after the single primitive value. // amh.argument: // recursively called MH, on |collect| arguments // amh.vmtarget: // final destination MH, on return value, etc. // amh.conversion.dest: // tells what is the type of the return value // (not needed here, since dest is also derived from ek) // amh.conversion.vminfo: // points to the trailing edge of the return value // when the vmtarget is to be called; this is // equal to vmargslot + (retained ? |collect| : 0) // Pass 0 or more argument slots to the recursive target. int collect_count_constant = ek_adapter_opt_collect_count(ek); // The collected arguments are copied from the saved argument list: int collect_slot_constant = ek_adapter_opt_collect_slot(ek); assert(ek_orig == _adapter_collect_args || ek_orig == _adapter_fold_args, ""); bool retain_original_args = (ek_orig == _adapter_fold_args); // The return value is replaced (or inserted) at the 'vminfo' argslot. // Sometimes we can compute this statically. int dest_slot_constant = -1; if (!retain_original_args) dest_slot_constant = collect_slot_constant; else if (collect_slot_constant >= 0 && collect_count_constant >= 0) // We are preserving all the arguments, and the return value is prepended, // so the return slot is to the left (above) the |collect| sequence. dest_slot_constant = collect_slot_constant + collect_count_constant; // Replace all those slots by the result of the recursive call. // The result type can be one of ref, int, long, float, double, void. // In the case of void, nothing is pushed on the stack after return. BasicType dest = ek_adapter_opt_collect_type(ek); assert(dest == type2wfield[dest], "dest is a stack slot type"); int dest_count = type2size[dest]; assert(dest_count == 1 || dest_count == 2 || (dest_count == 0 && dest == T_VOID), "dest has a size"); // Choose a return continuation. EntryKind ek_ret = _adapter_opt_return_any; if (dest != T_CONFLICT && OptimizeMethodHandles) { switch (dest) { case T_INT : ek_ret = _adapter_opt_return_int; break; case T_LONG : ek_ret = _adapter_opt_return_long; break; case T_FLOAT : ek_ret = _adapter_opt_return_float; break; case T_DOUBLE : ek_ret = _adapter_opt_return_double; break; case T_OBJECT : ek_ret = _adapter_opt_return_ref; break; case T_VOID : ek_ret = _adapter_opt_return_void; break; default : ShouldNotReachHere(); } if (dest == T_OBJECT && dest_slot_constant >= 0) { EntryKind ek_try = EntryKind(_adapter_opt_return_S0_ref + dest_slot_constant); if (ek_try <= _adapter_opt_return_LAST && ek_adapter_opt_return_slot(ek_try) == dest_slot_constant) { ek_ret = ek_try; } } assert(ek_adapter_opt_return_type(ek_ret) == dest, ""); } // Already pushed: ... keep1 | collect | keep2 | sender_pc | // push(sender_pc); // Compute argument base: Register rax_argv = rax_argslot; __ lea(rax_argv, __ argument_address(constant(0))); // Push a few extra argument words, if we need them to store the return value. { int extra_slots = 0; if (retain_original_args) { extra_slots = dest_count; } else if (collect_count_constant == -1) { extra_slots = dest_count; // collect_count might be zero; be generous } else if (dest_count > collect_count_constant) { extra_slots = (dest_count - collect_count_constant); } else { // else we know we have enough dead space in |collect| to repurpose for return values } DEBUG_ONLY(extra_slots += 1); if (extra_slots > 0) { __ pop(rbx_temp); // return value __ subptr(rsp, (extra_slots * Interpreter::stackElementSize)); // Push guard word #2 in debug mode. DEBUG_ONLY(__ movptr(Address(rsp, 0), (int32_t) RicochetFrame::MAGIC_NUMBER_2)); __ push(rbx_temp); } } RicochetFrame::enter_ricochet_frame(_masm, rcx_recv, rax_argv, entry(ek_ret)->from_interpreted_entry(), rbx_temp); // Now pushed: ... keep1 | collect | keep2 | RF | // some handy frame slots: Address exact_sender_sp_addr = RicochetFrame::frame_address(RicochetFrame::exact_sender_sp_offset_in_bytes()); Address conversion_addr = RicochetFrame::frame_address(RicochetFrame::conversion_offset_in_bytes()); Address saved_args_base_addr = RicochetFrame::frame_address(RicochetFrame::saved_args_base_offset_in_bytes()); #ifdef ASSERT if (VerifyMethodHandles && dest != T_CONFLICT) { BLOCK_COMMENT("verify AMH.conv.dest"); load_conversion_dest_type(_masm, rbx_temp, conversion_addr); Label L_dest_ok; __ cmpl(rbx_temp, (int) dest); __ jcc(Assembler::equal, L_dest_ok); if (dest == T_INT) { for (int bt = T_BOOLEAN; bt < T_INT; bt++) { if (is_subword_type(BasicType(bt))) { __ cmpl(rbx_temp, (int) bt); __ jcc(Assembler::equal, L_dest_ok); } } } __ stop("bad dest in AMH.conv"); __ BIND(L_dest_ok); } #endif //ASSERT // Find out where the original copy of the recursive argument sequence begins. Register rax_coll = rax_argv; { RegisterOrConstant collect_slot = collect_slot_constant; if (collect_slot_constant == -1) { __ movl(rdi_temp, rcx_amh_vmargslot); collect_slot = rdi_temp; } if (collect_slot_constant != 0) __ lea(rax_coll, Address(rax_argv, collect_slot, Interpreter::stackElementScale())); // rax_coll now points at the trailing edge of |collect| and leading edge of |keep2| } // Replace the old AMH with the recursive MH. (No going back now.) // In the case of a boxing call, the recursive call is to a 'boxer' method, // such as Integer.valueOf or Long.valueOf. In the case of a filter // or collect call, it will take one or more arguments, transform them, // and return some result, to store back into argument_base[vminfo]. __ load_heap_oop(rcx_recv, rcx_amh_argument); if (VerifyMethodHandles) verify_method_handle(_masm, rcx_recv); // Push a space for the recursively called MH first: __ push((int32_t)NULL_WORD); // Calculate |collect|, the number of arguments we are collecting. Register rdi_collect_count = rdi_temp; RegisterOrConstant collect_count; if (collect_count_constant >= 0) { collect_count = collect_count_constant; } else { __ load_method_handle_vmslots(rdi_collect_count, rcx_recv, rdx_temp); collect_count = rdi_collect_count; } #ifdef ASSERT if (VerifyMethodHandles && collect_count_constant >= 0) { __ load_method_handle_vmslots(rbx_temp, rcx_recv, rdx_temp); Label L_count_ok; __ cmpl(rbx_temp, collect_count_constant); __ jcc(Assembler::equal, L_count_ok); __ stop("bad vminfo in AMH.conv"); __ BIND(L_count_ok); } #endif //ASSERT // copy |collect| slots directly to TOS: push_arg_slots(_masm, rax_coll, collect_count, 0, rbx_temp, rdx_temp); // Now pushed: ... keep1 | collect | keep2 | RF... | collect | // rax_coll still points at the trailing edge of |collect| and leading edge of |keep2| // If necessary, adjust the saved arguments to make room for the eventual return value. // Normal adjustment: ... keep1 | +dest+ | -collect- | keep2 | RF... | collect | // If retaining args: ... keep1 | +dest+ | collect | keep2 | RF... | collect | // In the non-retaining case, this might move keep2 either up or down. // We don't have to copy the whole | RF... collect | complex, // but we must adjust RF.saved_args_base. // Also, from now on, we will forget about the original copy of |collect|. // If we are retaining it, we will treat it as part of |keep2|. // For clarity we will define |keep3| = |collect|keep2| or |keep2|. BLOCK_COMMENT("adjust trailing arguments {"); // Compare the sizes of |+dest+| and |-collect-|, which are opposed opening and closing movements. int open_count = dest_count; RegisterOrConstant close_count = collect_count_constant; Register rdi_close_count = rdi_collect_count; if (retain_original_args) { close_count = constant(0); } else if (collect_count_constant == -1) { close_count = rdi_collect_count; } // How many slots need moving? This is simply dest_slot (0 => no |keep3|). RegisterOrConstant keep3_count; Register rsi_keep3_count = rsi; // can repair from RF.exact_sender_sp if (dest_slot_constant >= 0) { keep3_count = dest_slot_constant; } else { load_conversion_vminfo(_masm, rsi_keep3_count, conversion_addr); keep3_count = rsi_keep3_count; } #ifdef ASSERT if (VerifyMethodHandles && dest_slot_constant >= 0) { load_conversion_vminfo(_masm, rbx_temp, conversion_addr); Label L_vminfo_ok; __ cmpl(rbx_temp, dest_slot_constant); __ jcc(Assembler::equal, L_vminfo_ok); __ stop("bad vminfo in AMH.conv"); __ BIND(L_vminfo_ok); } #endif //ASSERT // tasks remaining: bool move_keep3 = (!keep3_count.is_constant() || keep3_count.as_constant() != 0); bool stomp_dest = (NOT_DEBUG(dest == T_OBJECT) DEBUG_ONLY(dest_count != 0)); bool fix_arg_base = (!close_count.is_constant() || open_count != close_count.as_constant()); if (stomp_dest | fix_arg_base) { // we will probably need an updated rax_argv value if (collect_slot_constant >= 0) { // rax_coll already holds the leading edge of |keep2|, so tweak it assert(rax_coll == rax_argv, "elided a move"); if (collect_slot_constant != 0) __ subptr(rax_argv, collect_slot_constant * Interpreter::stackElementSize); } else { // Just reload from RF.saved_args_base. __ movptr(rax_argv, saved_args_base_addr); } } // Old and new argument locations (based at slot 0). // Net shift (&new_argv - &old_argv) is (close_count - open_count). bool zero_open_count = (open_count == 0); // remember this bit of info if (move_keep3 && fix_arg_base) { // It will be easier to have everything in one register: if (close_count.is_register()) { // Deduct open_count from close_count register to get a clean +/- value. __ subptr(close_count.as_register(), open_count); } else { close_count = close_count.as_constant() - open_count; } open_count = 0; } Address old_argv(rax_argv, 0); Address new_argv(rax_argv, close_count, Interpreter::stackElementScale(), - open_count * Interpreter::stackElementSize); // First decide if any actual data are to be moved. // We can skip if (a) |keep3| is empty, or (b) the argument list size didn't change. // (As it happens, all movements involve an argument list size change.) // If there are variable parameters, use dynamic checks to skip around the whole mess. Label L_done; if (!keep3_count.is_constant()) { __ testl(keep3_count.as_register(), keep3_count.as_register()); __ jcc(Assembler::zero, L_done); } if (!close_count.is_constant()) { __ cmpl(close_count.as_register(), open_count); __ jcc(Assembler::equal, L_done); } if (move_keep3 && fix_arg_base) { bool emit_move_down = false, emit_move_up = false, emit_guard = false; if (!close_count.is_constant()) { emit_move_down = emit_guard = !zero_open_count; emit_move_up = true; } else if (open_count != close_count.as_constant()) { emit_move_down = (open_count > close_count.as_constant()); emit_move_up = !emit_move_down; } Label L_move_up; if (emit_guard) { __ cmpl(close_count.as_register(), open_count); __ jcc(Assembler::greater, L_move_up); } if (emit_move_down) { // Move arguments down if |+dest+| > |-collect-| // (This is rare, except when arguments are retained.) // This opens space for the return value. if (keep3_count.is_constant()) { for (int i = 0; i < keep3_count.as_constant(); i++) { __ movptr(rdx_temp, old_argv.plus_disp(i * Interpreter::stackElementSize)); __ movptr( new_argv.plus_disp(i * Interpreter::stackElementSize), rdx_temp); } } else { Register rbx_argv_top = rbx_temp; __ lea(rbx_argv_top, old_argv.plus_disp(keep3_count, Interpreter::stackElementScale())); move_arg_slots_down(_masm, old_argv, // beginning of old argv rbx_argv_top, // end of old argv close_count, // distance to move down (must be negative) rax_argv, rdx_temp); // Used argv as an iteration variable; reload from RF.saved_args_base. __ movptr(rax_argv, saved_args_base_addr); } } if (emit_guard) { __ jmp(L_done); // assumes emit_move_up is true also __ BIND(L_move_up); } if (emit_move_up) { // Move arguments up if |+dest+| < |-collect-| // (This is usual, except when |keep3| is empty.) // This closes up the space occupied by the now-deleted collect values. if (keep3_count.is_constant()) { for (int i = keep3_count.as_constant() - 1; i >= 0; i--) { __ movptr(rdx_temp, old_argv.plus_disp(i * Interpreter::stackElementSize)); __ movptr( new_argv.plus_disp(i * Interpreter::stackElementSize), rdx_temp); } } else { Address argv_top = old_argv.plus_disp(keep3_count, Interpreter::stackElementScale()); move_arg_slots_up(_masm, rax_argv, // beginning of old argv argv_top, // end of old argv close_count, // distance to move up (must be positive) rbx_temp, rdx_temp); } } } __ BIND(L_done); if (fix_arg_base) { // adjust RF.saved_args_base by adding (close_count - open_count) if (!new_argv.is_same_address(Address(rax_argv, 0))) __ lea(rax_argv, new_argv); __ movptr(saved_args_base_addr, rax_argv); } if (stomp_dest) { // Stomp the return slot, so it doesn't hold garbage. // This isn't strictly necessary, but it may help detect bugs. int forty_two = RicochetFrame::RETURN_VALUE_PLACEHOLDER; __ movptr(Address(rax_argv, keep3_count, Address::times_ptr), (int32_t) forty_two); // uses rsi_keep3_count } BLOCK_COMMENT("} adjust trailing arguments"); BLOCK_COMMENT("do_recursive_call"); __ mov(saved_last_sp, rsp); // set rsi/r13 for callee __ pushptr(ExternalAddress(SharedRuntime::ricochet_blob()->bounce_addr()).addr()); // The globally unique bounce address has two purposes: // 1. It helps the JVM recognize this frame (frame::is_ricochet_frame). // 2. When returned to, it cuts back the stack and redirects control flow // to the return handler. // The return handler will further cut back the stack when it takes // down the RF. Perhaps there is a way to streamline this further. // State during recursive call: // ... keep1 | dest | dest=42 | keep3 | RF... | collect | bounce_pc | __ jump_to_method_handle_entry(rcx_recv, rdx_temp); break; } case _adapter_opt_return_ref: case _adapter_opt_return_int: case _adapter_opt_return_long: case _adapter_opt_return_float: case _adapter_opt_return_double: case _adapter_opt_return_void: case _adapter_opt_return_S0_ref: case _adapter_opt_return_S1_ref: case _adapter_opt_return_S2_ref: case _adapter_opt_return_S3_ref: case _adapter_opt_return_S4_ref: case _adapter_opt_return_S5_ref: { BasicType dest_type_constant = ek_adapter_opt_return_type(ek); int dest_slot_constant = ek_adapter_opt_return_slot(ek); if (VerifyMethodHandles) RicochetFrame::verify_clean(_masm); if (dest_slot_constant == -1) { // The current stub is a general handler for this dest_type. // It can be called from _adapter_opt_return_any below. // Stash the address in a little table. assert((dest_type_constant & CONV_TYPE_MASK) == dest_type_constant, "oob"); address return_handler = __ pc(); _adapter_return_handlers[dest_type_constant] = return_handler; if (dest_type_constant == T_INT) { // do the subword types too for (int bt = T_BOOLEAN; bt < T_INT; bt++) { if (is_subword_type(BasicType(bt)) && _adapter_return_handlers[bt] == NULL) { _adapter_return_handlers[bt] = return_handler; } } } } Register rbx_arg_base = rbx_temp; assert_different_registers(rax, rdx, // possibly live return value registers rdi_temp, rbx_arg_base); Address conversion_addr = RicochetFrame::frame_address(RicochetFrame::conversion_offset_in_bytes()); Address saved_args_base_addr = RicochetFrame::frame_address(RicochetFrame::saved_args_base_offset_in_bytes()); __ movptr(rbx_arg_base, saved_args_base_addr); RegisterOrConstant dest_slot = dest_slot_constant; if (dest_slot_constant == -1) { load_conversion_vminfo(_masm, rdi_temp, conversion_addr); dest_slot = rdi_temp; } // Store the result back into the argslot. // This code uses the interpreter calling sequence, in which the return value // is usually left in the TOS register, as defined by InterpreterMacroAssembler::pop. // There are certain irregularities with floating point values, which can be seen // in TemplateInterpreterGenerator::generate_return_entry_for. move_return_value(_masm, dest_type_constant, Address(rbx_arg_base, dest_slot, Interpreter::stackElementScale())); RicochetFrame::leave_ricochet_frame(_masm, rcx_recv, rbx_arg_base, rdx_temp); __ push(rdx_temp); // repush the return PC // Load the final target and go. if (VerifyMethodHandles) verify_method_handle(_masm, rcx_recv); __ jump_to_method_handle_entry(rcx_recv, rdx_temp); __ hlt(); // -------------------- break; } case _adapter_opt_return_any: { if (VerifyMethodHandles) RicochetFrame::verify_clean(_masm); Register rdi_conv = rdi_temp; assert_different_registers(rax, rdx, // possibly live return value registers rdi_conv, rbx_temp); Address conversion_addr = RicochetFrame::frame_address(RicochetFrame::conversion_offset_in_bytes()); load_conversion_dest_type(_masm, rdi_conv, conversion_addr); __ lea(rbx_temp, ExternalAddress((address) &_adapter_return_handlers[0])); __ movptr(rbx_temp, Address(rbx_temp, rdi_conv, Address::times_ptr)); #ifdef ASSERT { Label L_badconv; __ testptr(rbx_temp, rbx_temp); __ jccb(Assembler::zero, L_badconv); __ jmp(rbx_temp); __ bind(L_badconv); __ stop("bad method handle return"); } #else //ASSERT __ jmp(rbx_temp); #endif //ASSERT break; } case _adapter_opt_spread_0: case _adapter_opt_spread_1_ref: case _adapter_opt_spread_2_ref: case _adapter_opt_spread_3_ref: case _adapter_opt_spread_4_ref: case _adapter_opt_spread_5_ref: case _adapter_opt_spread_ref: case _adapter_opt_spread_byte: case _adapter_opt_spread_char: case _adapter_opt_spread_short: case _adapter_opt_spread_int: case _adapter_opt_spread_long: case _adapter_opt_spread_float: case _adapter_opt_spread_double: { // spread an array out into a group of arguments int length_constant = ek_adapter_opt_spread_count(ek); bool length_can_be_zero = (length_constant == 0); if (length_constant < 0) { // some adapters with variable length must handle the zero case if (!OptimizeMethodHandles || ek_adapter_opt_spread_type(ek) != T_OBJECT) length_can_be_zero = true; } // find the address of the array argument __ movl(rax_argslot, rcx_amh_vmargslot); __ lea(rax_argslot, __ argument_address(rax_argslot)); // grab another temp Register rsi_temp = rsi; { if (rsi_temp == saved_last_sp) __ push(saved_last_sp); } // (preceding push must be done after argslot address is taken!) #define UNPUSH_RSI \ { if (rsi_temp == saved_last_sp) __ pop(saved_last_sp); } // arx_argslot points both to the array and to the first output arg vmarg = Address(rax_argslot, 0); // Get the array value. Register rsi_array = rsi_temp; Register rdx_array_klass = rdx_temp; BasicType elem_type = ek_adapter_opt_spread_type(ek); int elem_slots = type2size[elem_type]; // 1 or 2 int array_slots = 1; // array is always a T_OBJECT int length_offset = arrayOopDesc::length_offset_in_bytes(); int elem0_offset = arrayOopDesc::base_offset_in_bytes(elem_type); __ movptr(rsi_array, vmarg); Label L_array_is_empty, L_insert_arg_space, L_copy_args, L_args_done; if (length_can_be_zero) { // handle the null pointer case, if zero is allowed Label L_skip; if (length_constant < 0) { load_conversion_vminfo(_masm, rbx_temp, rcx_amh_conversion); __ testl(rbx_temp, rbx_temp); __ jcc(Assembler::notZero, L_skip); } __ testptr(rsi_array, rsi_array); __ jcc(Assembler::zero, L_array_is_empty); __ bind(L_skip); } __ null_check(rsi_array, oopDesc::klass_offset_in_bytes()); __ load_klass(rdx_array_klass, rsi_array); // Check the array type. Register rbx_klass = rbx_temp; __ load_heap_oop(rbx_klass, rcx_amh_argument); // this is a Class object! load_klass_from_Class(_masm, rbx_klass); Label ok_array_klass, bad_array_klass, bad_array_length; __ check_klass_subtype(rdx_array_klass, rbx_klass, rdi_temp, ok_array_klass); // If we get here, the type check failed! __ jmp(bad_array_klass); __ BIND(ok_array_klass); // Check length. if (length_constant >= 0) { __ cmpl(Address(rsi_array, length_offset), length_constant); } else { Register rbx_vminfo = rbx_temp; load_conversion_vminfo(_masm, rbx_vminfo, rcx_amh_conversion); __ cmpl(rbx_vminfo, Address(rsi_array, length_offset)); } __ jcc(Assembler::notEqual, bad_array_length); Register rdx_argslot_limit = rdx_temp; // Array length checks out. Now insert any required stack slots. if (length_constant == -1) { // Form a pointer to the end of the affected region. __ lea(rdx_argslot_limit, Address(rax_argslot, Interpreter::stackElementSize)); // 'stack_move' is negative number of words to insert // This number already accounts for elem_slots. Register rdi_stack_move = rdi_temp; load_stack_move(_masm, rdi_stack_move, rcx_recv, true); __ cmpptr(rdi_stack_move, 0); assert(stack_move_unit() < 0, "else change this comparison"); __ jcc(Assembler::less, L_insert_arg_space); __ jcc(Assembler::equal, L_copy_args); // single argument case, with no array movement __ BIND(L_array_is_empty); remove_arg_slots(_masm, -stack_move_unit() * array_slots, rax_argslot, rbx_temp, rdx_temp); __ jmp(L_args_done); // no spreading to do __ BIND(L_insert_arg_space); // come here in the usual case, stack_move < 0 (2 or more spread arguments) Register rsi_temp = rsi_array; // spill this insert_arg_slots(_masm, rdi_stack_move, rax_argslot, rbx_temp, rsi_temp); // reload the array since rsi was killed // reload from rdx_argslot_limit since rax_argslot is now decremented __ movptr(rsi_array, Address(rdx_argslot_limit, -Interpreter::stackElementSize)); } else if (length_constant >= 1) { int new_slots = (length_constant * elem_slots) - array_slots; insert_arg_slots(_masm, new_slots * stack_move_unit(), rax_argslot, rbx_temp, rdx_temp); } else if (length_constant == 0) { __ BIND(L_array_is_empty); remove_arg_slots(_masm, -stack_move_unit() * array_slots, rax_argslot, rbx_temp, rdx_temp); } else { ShouldNotReachHere(); } // Copy from the array to the new slots. // Note: Stack change code preserves integrity of rax_argslot pointer. // So even after slot insertions, rax_argslot still points to first argument. // Beware: Arguments that are shallow on the stack are deep in the array, // and vice versa. So a downward-growing stack (the usual) has to be copied // elementwise in reverse order from the source array. __ BIND(L_copy_args); if (length_constant == -1) { // [rax_argslot, rdx_argslot_limit) is the area we are inserting into. // Array element [0] goes at rdx_argslot_limit[-wordSize]. Register rsi_source = rsi_array; __ lea(rsi_source, Address(rsi_array, elem0_offset)); Register rdx_fill_ptr = rdx_argslot_limit; Label loop; __ BIND(loop); __ addptr(rdx_fill_ptr, -Interpreter::stackElementSize * elem_slots); move_typed_arg(_masm, elem_type, true, Address(rdx_fill_ptr, 0), Address(rsi_source, 0), rbx_temp, rdi_temp); __ addptr(rsi_source, type2aelembytes(elem_type)); __ cmpptr(rdx_fill_ptr, rax_argslot); __ jcc(Assembler::above, loop); } else if (length_constant == 0) { // nothing to copy } else { int elem_offset = elem0_offset; int slot_offset = length_constant * Interpreter::stackElementSize; for (int index = 0; index < length_constant; index++) { slot_offset -= Interpreter::stackElementSize * elem_slots; // fill backward move_typed_arg(_masm, elem_type, true, Address(rax_argslot, slot_offset), Address(rsi_array, elem_offset), rbx_temp, rdi_temp); elem_offset += type2aelembytes(elem_type); } } __ BIND(L_args_done); // Arguments are spread. Move to next method handle. UNPUSH_RSI; __ load_heap_oop(rcx_recv, rcx_mh_vmtarget); __ jump_to_method_handle_entry(rcx_recv, rdx_temp); __ bind(bad_array_klass); UNPUSH_RSI; assert(!vmarg.uses(rarg2_required), "must be different registers"); __ load_heap_oop( rarg2_required, Address(rdx_array_klass, java_mirror_offset)); // required type __ movptr( rarg1_actual, vmarg); // bad array __ movl( rarg0_code, (int) Bytecodes::_aaload); // who is complaining? __ jump(ExternalAddress(from_interpreted_entry(_raise_exception))); __ bind(bad_array_length); UNPUSH_RSI; assert(!vmarg.uses(rarg2_required), "must be different registers"); __ mov( rarg2_required, rcx_recv); // AMH requiring a certain length __ movptr( rarg1_actual, vmarg); // bad array __ movl( rarg0_code, (int) Bytecodes::_arraylength); // who is complaining? __ jump(ExternalAddress(from_interpreted_entry(_raise_exception))); #undef UNPUSH_RSI break; } default: // do not require all platforms to recognize all adapter types __ nop(); return; } BLOCK_COMMENT(err_msg("} Entry %s", entry_name(ek))); __ hlt(); address me_cookie = MethodHandleEntry::start_compiled_entry(_masm, interp_entry); __ unimplemented(entry_name(ek)); // %%% FIXME: NYI init_entry(ek, MethodHandleEntry::finish_compiled_entry(_masm, me_cookie)); }