/* * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_VM_OPTO_MEMNODE_HPP #define SHARE_VM_OPTO_MEMNODE_HPP #include "opto/multnode.hpp" #include "opto/node.hpp" #include "opto/opcodes.hpp" #include "opto/type.hpp" // Portions of code courtesy of Clifford Click class MultiNode; class PhaseCCP; class PhaseTransform; //------------------------------MemNode---------------------------------------- // Load or Store, possibly throwing a NULL pointer exception class MemNode : public Node { protected: #ifdef ASSERT const TypePtr* _adr_type; // What kind of memory is being addressed? #endif virtual uint size_of() const; // Size is bigger (ASSERT only) public: enum { Control, // When is it safe to do this load? Memory, // Chunk of memory is being loaded from Address, // Actually address, derived from base ValueIn, // Value to store OopStore // Preceeding oop store, only in StoreCM }; typedef enum { unordered = 0, acquire, // Load has to acquire or be succeeded by MemBarAcquire. release // Store has to release or be preceded by MemBarRelease. } MemOrd; protected: MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at ) : Node(c0,c1,c2 ) { init_class_id(Class_Mem); debug_only(_adr_type=at; adr_type();) } MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3 ) : Node(c0,c1,c2,c3) { init_class_id(Class_Mem); debug_only(_adr_type=at; adr_type();) } MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3, Node *c4) : Node(c0,c1,c2,c3,c4) { init_class_id(Class_Mem); debug_only(_adr_type=at; adr_type();) } public: // Helpers for the optimizer. Documented in memnode.cpp. static bool detect_ptr_independence(Node* p1, AllocateNode* a1, Node* p2, AllocateNode* a2, PhaseTransform* phase); static bool adr_phi_is_loop_invariant(Node* adr_phi, Node* cast); static Node *optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase); static Node *optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase); // This one should probably be a phase-specific function: static bool all_controls_dominate(Node* dom, Node* sub); // Find any cast-away of null-ness and keep its control. static Node *Ideal_common_DU_postCCP( PhaseCCP *ccp, Node* n, Node* adr ); virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp ); virtual const class TypePtr *adr_type() const; // returns bottom_type of address // Shared code for Ideal methods: Node *Ideal_common(PhaseGVN *phase, bool can_reshape); // Return -1 for short-circuit NULL. // Helper function for adr_type() implementations. static const TypePtr* calculate_adr_type(const Type* t, const TypePtr* cross_check = NULL); // Raw access function, to allow copying of adr_type efficiently in // product builds and retain the debug info for debug builds. const TypePtr *raw_adr_type() const { #ifdef ASSERT return _adr_type; #else return 0; #endif } // Map a load or store opcode to its corresponding store opcode. // (Return -1 if unknown.) virtual int store_Opcode() const { return -1; } // What is the type of the value in memory? (T_VOID mean "unspecified".) virtual BasicType memory_type() const = 0; virtual int memory_size() const { #ifdef ASSERT return type2aelembytes(memory_type(), true); #else return type2aelembytes(memory_type()); #endif } // Search through memory states which precede this node (load or store). // Look for an exact match for the address, with no intervening // aliased stores. Node* find_previous_store(PhaseTransform* phase); // Can this node (load or store) accurately see a stored value in // the given memory state? (The state may or may not be in(Memory).) Node* can_see_stored_value(Node* st, PhaseTransform* phase) const; #ifndef PRODUCT static void dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st); virtual void dump_spec(outputStream *st) const; #endif }; //------------------------------LoadNode--------------------------------------- // Load value; requires Memory and Address class LoadNode : public MemNode { private: // On platforms with weak memory ordering (e.g., PPC, Ia64) we distinguish // loads that can be reordered, and such requiring acquire semantics to // adhere to the Java specification. The required behaviour is stored in // this field. const MemOrd _mo; protected: virtual uint cmp(const Node &n) const; virtual uint size_of() const; // Size is bigger const Type* const _type; // What kind of value is loaded? public: LoadNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *rt, MemOrd mo) : MemNode(c,mem,adr,at), _type(rt), _mo(mo) { init_class_id(Class_Load); } inline bool is_unordered() const { return !is_acquire(); } inline bool is_acquire() const { assert(_mo == unordered || _mo == acquire, "unexpected"); return _mo == acquire; } // Polymorphic factory method: static Node* make(PhaseGVN& gvn, Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *rt, BasicType bt, MemOrd mo); virtual uint hash() const; // Check the type // Handle algebraic identities here. If we have an identity, return the Node // we are equivalent to. We look for Load of a Store. virtual Node *Identity( PhaseTransform *phase ); // If the load is from Field memory and the pointer is non-null, we can // zero out the control input. virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); // Split instance field load through Phi. Node* split_through_phi(PhaseGVN *phase); // Recover original value from boxed values Node *eliminate_autobox(PhaseGVN *phase); // Compute a new Type for this node. Basically we just do the pre-check, // then call the virtual add() to set the type. virtual const Type *Value( PhaseTransform *phase ) const; // Common methods for LoadKlass and LoadNKlass nodes. const Type *klass_value_common( PhaseTransform *phase ) const; Node *klass_identity_common( PhaseTransform *phase ); virtual uint ideal_reg() const; virtual const Type *bottom_type() const; // Following method is copied from TypeNode: void set_type(const Type* t) { assert(t != NULL, "sanity"); debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH); *(const Type**)&_type = t; // cast away const-ness // If this node is in the hash table, make sure it doesn't need a rehash. assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code"); } const Type* type() const { assert(_type != NULL, "sanity"); return _type; }; // Do not match memory edge virtual uint match_edge(uint idx) const; // Map a load opcode to its corresponding store opcode. virtual int store_Opcode() const = 0; // Check if the load's memory input is a Phi node with the same control. bool is_instance_field_load_with_local_phi(Node* ctrl); #ifndef PRODUCT virtual void dump_spec(outputStream *st) const; #endif #ifdef ASSERT // Helper function to allow a raw load without control edge for some cases static bool is_immutable_value(Node* adr); #endif protected: const Type* load_array_final_field(const TypeKlassPtr *tkls, ciKlass* klass) const; }; //------------------------------LoadBNode-------------------------------------- // Load a byte (8bits signed) from memory class LoadBNode : public LoadNode { public: LoadBNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo) : LoadNode(c, mem, adr, at, ti, mo) {} virtual int Opcode() const; virtual uint ideal_reg() const { return Op_RegI; } virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); virtual const Type *Value(PhaseTransform *phase) const; virtual int store_Opcode() const { return Op_StoreB; } virtual BasicType memory_type() const { return T_BYTE; } }; //------------------------------LoadUBNode------------------------------------- // Load a unsigned byte (8bits unsigned) from memory class LoadUBNode : public LoadNode { public: LoadUBNode(Node* c, Node* mem, Node* adr, const TypePtr* at, const TypeInt* ti, MemOrd mo) : LoadNode(c, mem, adr, at, ti, mo) {} virtual int Opcode() const; virtual uint ideal_reg() const { return Op_RegI; } virtual Node* Ideal(PhaseGVN *phase, bool can_reshape); virtual const Type *Value(PhaseTransform *phase) const; virtual int store_Opcode() const { return Op_StoreB; } virtual BasicType memory_type() const { return T_BYTE; } }; //------------------------------LoadUSNode------------------------------------- // Load an unsigned short/char (16bits unsigned) from memory class LoadUSNode : public LoadNode { public: LoadUSNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo) : LoadNode(c, mem, adr, at, ti, mo) {} virtual int Opcode() const; virtual uint ideal_reg() const { return Op_RegI; } virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); virtual const Type *Value(PhaseTransform *phase) const; virtual int store_Opcode() const { return Op_StoreC; } virtual BasicType memory_type() const { return T_CHAR; } }; //------------------------------LoadSNode-------------------------------------- // Load a short (16bits signed) from memory class LoadSNode : public LoadNode { public: LoadSNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo) : LoadNode(c, mem, adr, at, ti, mo) {} virtual int Opcode() const; virtual uint ideal_reg() const { return Op_RegI; } virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); virtual const Type *Value(PhaseTransform *phase) const; virtual int store_Opcode() const { return Op_StoreC; } virtual BasicType memory_type() const { return T_SHORT; } }; //------------------------------LoadINode-------------------------------------- // Load an integer from memory class LoadINode : public LoadNode { public: LoadINode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo) : LoadNode(c, mem, adr, at, ti, mo) {} virtual int Opcode() const; virtual uint ideal_reg() const { return Op_RegI; } virtual int store_Opcode() const { return Op_StoreI; } virtual BasicType memory_type() const { return T_INT; } }; //------------------------------LoadRangeNode---------------------------------- // Load an array length from the array class LoadRangeNode : public LoadINode { public: LoadRangeNode(Node *c, Node *mem, Node *adr, const TypeInt *ti = TypeInt::POS) : LoadINode(c, mem, adr, TypeAryPtr::RANGE, ti, MemNode::unordered) {} virtual int Opcode() const; virtual const Type *Value( PhaseTransform *phase ) const; virtual Node *Identity( PhaseTransform *phase ); virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); }; //------------------------------LoadLNode-------------------------------------- // Load a long from memory class LoadLNode : public LoadNode { virtual uint hash() const { return LoadNode::hash() + _require_atomic_access; } virtual uint cmp( const Node &n ) const { return _require_atomic_access == ((LoadLNode&)n)._require_atomic_access && LoadNode::cmp(n); } virtual uint size_of() const { return sizeof(*this); } const bool _require_atomic_access; // is piecewise load forbidden? public: LoadLNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeLong *tl, MemOrd mo, bool require_atomic_access = false) : LoadNode(c, mem, adr, at, tl, mo), _require_atomic_access(require_atomic_access) {} virtual int Opcode() const; virtual uint ideal_reg() const { return Op_RegL; } virtual int store_Opcode() const { return Op_StoreL; } virtual BasicType memory_type() const { return T_LONG; } bool require_atomic_access() { return _require_atomic_access; } static LoadLNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, MemOrd mo); #ifndef PRODUCT virtual void dump_spec(outputStream *st) const { LoadNode::dump_spec(st); if (_require_atomic_access) st->print(" Atomic!"); } #endif }; //------------------------------LoadL_unalignedNode---------------------------- // Load a long from unaligned memory class LoadL_unalignedNode : public LoadLNode { public: LoadL_unalignedNode(Node *c, Node *mem, Node *adr, const TypePtr* at, MemOrd mo) : LoadLNode(c, mem, adr, at, TypeLong::LONG, mo) {} virtual int Opcode() const; }; //------------------------------LoadFNode-------------------------------------- // Load a float (64 bits) from memory class LoadFNode : public LoadNode { public: LoadFNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t, MemOrd mo) : LoadNode(c, mem, adr, at, t, mo) {} virtual int Opcode() const; virtual uint ideal_reg() const { return Op_RegF; } virtual int store_Opcode() const { return Op_StoreF; } virtual BasicType memory_type() const { return T_FLOAT; } }; //------------------------------LoadDNode-------------------------------------- // Load a double (64 bits) from memory class LoadDNode : public LoadNode { public: LoadDNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t, MemOrd mo) : LoadNode(c, mem, adr, at, t, mo) {} virtual int Opcode() const; virtual uint ideal_reg() const { return Op_RegD; } virtual int store_Opcode() const { return Op_StoreD; } virtual BasicType memory_type() const { return T_DOUBLE; } }; //------------------------------LoadD_unalignedNode---------------------------- // Load a double from unaligned memory class LoadD_unalignedNode : public LoadDNode { public: LoadD_unalignedNode(Node *c, Node *mem, Node *adr, const TypePtr* at, MemOrd mo) : LoadDNode(c, mem, adr, at, Type::DOUBLE, mo) {} virtual int Opcode() const; }; //------------------------------LoadPNode-------------------------------------- // Load a pointer from memory (either object or array) class LoadPNode : public LoadNode { public: LoadPNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypePtr* t, MemOrd mo) : LoadNode(c, mem, adr, at, t, mo) {} virtual int Opcode() const; virtual uint ideal_reg() const { return Op_RegP; } virtual int store_Opcode() const { return Op_StoreP; } virtual BasicType memory_type() const { return T_ADDRESS; } // depends_only_on_test is almost always true, and needs to be almost always // true to enable key hoisting & commoning optimizations. However, for the // special case of RawPtr loads from TLS top & end, the control edge carries // the dependence preventing hoisting past a Safepoint instead of the memory // edge. (An unfortunate consequence of having Safepoints not set Raw // Memory; itself an unfortunate consequence of having Nodes which produce // results (new raw memory state) inside of loops preventing all manner of // other optimizations). Basically, it's ugly but so is the alternative. // See comment in macro.cpp, around line 125 expand_allocate_common(). virtual bool depends_only_on_test() const { return adr_type() != TypeRawPtr::BOTTOM; } }; //------------------------------LoadNNode-------------------------------------- // Load a narrow oop from memory (either object or array) class LoadNNode : public LoadNode { public: LoadNNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const Type* t, MemOrd mo) : LoadNode(c, mem, adr, at, t, mo) {} virtual int Opcode() const; virtual uint ideal_reg() const { return Op_RegN; } virtual int store_Opcode() const { return Op_StoreN; } virtual BasicType memory_type() const { return T_NARROWOOP; } // depends_only_on_test is almost always true, and needs to be almost always // true to enable key hoisting & commoning optimizations. However, for the // special case of RawPtr loads from TLS top & end, the control edge carries // the dependence preventing hoisting past a Safepoint instead of the memory // edge. (An unfortunate consequence of having Safepoints not set Raw // Memory; itself an unfortunate consequence of having Nodes which produce // results (new raw memory state) inside of loops preventing all manner of // other optimizations). Basically, it's ugly but so is the alternative. // See comment in macro.cpp, around line 125 expand_allocate_common(). virtual bool depends_only_on_test() const { return adr_type() != TypeRawPtr::BOTTOM; } }; //------------------------------LoadKlassNode---------------------------------- // Load a Klass from an object class LoadKlassNode : public LoadPNode { public: LoadKlassNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeKlassPtr *tk, MemOrd mo) : LoadPNode(c, mem, adr, at, tk, mo) {} virtual int Opcode() const; virtual const Type *Value( PhaseTransform *phase ) const; virtual Node *Identity( PhaseTransform *phase ); virtual bool depends_only_on_test() const { return true; } // Polymorphic factory method: static Node* make( PhaseGVN& gvn, Node *mem, Node *adr, const TypePtr* at, const TypeKlassPtr *tk = TypeKlassPtr::OBJECT ); }; //------------------------------LoadNKlassNode--------------------------------- // Load a narrow Klass from an object. class LoadNKlassNode : public LoadNNode { public: LoadNKlassNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeNarrowKlass *tk, MemOrd mo) : LoadNNode(c, mem, adr, at, tk, mo) {} virtual int Opcode() const; virtual uint ideal_reg() const { return Op_RegN; } virtual int store_Opcode() const { return Op_StoreNKlass; } virtual BasicType memory_type() const { return T_NARROWKLASS; } virtual const Type *Value( PhaseTransform *phase ) const; virtual Node *Identity( PhaseTransform *phase ); virtual bool depends_only_on_test() const { return true; } }; //------------------------------StoreNode-------------------------------------- // Store value; requires Store, Address and Value class StoreNode : public MemNode { private: // On platforms with weak memory ordering (e.g., PPC, Ia64) we distinguish // stores that can be reordered, and such requiring release semantics to // adhere to the Java specification. The required behaviour is stored in // this field. const MemOrd _mo; // Needed for proper cloning. virtual uint size_of() const { return sizeof(*this); } protected: virtual uint cmp( const Node &n ) const; virtual bool depends_only_on_test() const { return false; } Node *Ideal_masked_input (PhaseGVN *phase, uint mask); Node *Ideal_sign_extended_input(PhaseGVN *phase, int num_bits); public: // We must ensure that stores of object references will be visible // only after the object's initialization. So the callers of this // procedure must indicate that the store requires `release' // semantics, if the stored value is an object reference that might // point to a new object and may become externally visible. StoreNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo) : MemNode(c, mem, adr, at, val), _mo(mo) { init_class_id(Class_Store); } StoreNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store, MemOrd mo) : MemNode(c, mem, adr, at, val, oop_store), _mo(mo) { init_class_id(Class_Store); } inline bool is_unordered() const { return !is_release(); } inline bool is_release() const { assert((_mo == unordered || _mo == release), "unexpected"); return _mo == release; } // Conservatively release stores of object references in order to // ensure visibility of object initialization. static inline MemOrd release_if_reference(const BasicType t) { const MemOrd mo = (t == T_ARRAY || t == T_ADDRESS || // Might be the address of an object reference (`boxing'). t == T_OBJECT) ? release : unordered; return mo; } // Polymorphic factory method // // We must ensure that stores of object references will be visible // only after the object's initialization. So the callers of this // procedure must indicate that the store requires `release' // semantics, if the stored value is an object reference that might // point to a new object and may become externally visible. static StoreNode* make(PhaseGVN& gvn, Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, BasicType bt, MemOrd mo); virtual uint hash() const; // Check the type // If the store is to Field memory and the pointer is non-null, we can // zero out the control input. virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); // Compute a new Type for this node. Basically we just do the pre-check, // then call the virtual add() to set the type. virtual const Type *Value( PhaseTransform *phase ) const; // Check for identity function on memory (Load then Store at same address) virtual Node *Identity( PhaseTransform *phase ); // Do not match memory edge virtual uint match_edge(uint idx) const; virtual const Type *bottom_type() const; // returns Type::MEMORY // Map a store opcode to its corresponding own opcode, trivially. virtual int store_Opcode() const { return Opcode(); } // have all possible loads of the value stored been optimized away? bool value_never_loaded(PhaseTransform *phase) const; }; //------------------------------StoreBNode------------------------------------- // Store byte to memory class StoreBNode : public StoreNode { public: StoreBNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo) : StoreNode(c, mem, adr, at, val, mo) {} virtual int Opcode() const; virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); virtual BasicType memory_type() const { return T_BYTE; } }; //------------------------------StoreCNode------------------------------------- // Store char/short to memory class StoreCNode : public StoreNode { public: StoreCNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo) : StoreNode(c, mem, adr, at, val, mo) {} virtual int Opcode() const; virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); virtual BasicType memory_type() const { return T_CHAR; } }; //------------------------------StoreINode------------------------------------- // Store int to memory class StoreINode : public StoreNode { public: StoreINode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo) : StoreNode(c, mem, adr, at, val, mo) {} virtual int Opcode() const; virtual BasicType memory_type() const { return T_INT; } }; //------------------------------StoreLNode------------------------------------- // Store long to memory class StoreLNode : public StoreNode { virtual uint hash() const { return StoreNode::hash() + _require_atomic_access; } virtual uint cmp( const Node &n ) const { return _require_atomic_access == ((StoreLNode&)n)._require_atomic_access && StoreNode::cmp(n); } virtual uint size_of() const { return sizeof(*this); } const bool _require_atomic_access; // is piecewise store forbidden? public: StoreLNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo, bool require_atomic_access = false) : StoreNode(c, mem, adr, at, val, mo), _require_atomic_access(require_atomic_access) {} virtual int Opcode() const; virtual BasicType memory_type() const { return T_LONG; } bool require_atomic_access() { return _require_atomic_access; } static StoreLNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo); #ifndef PRODUCT virtual void dump_spec(outputStream *st) const { StoreNode::dump_spec(st); if (_require_atomic_access) st->print(" Atomic!"); } #endif }; //------------------------------StoreFNode------------------------------------- // Store float to memory class StoreFNode : public StoreNode { public: StoreFNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo) : StoreNode(c, mem, adr, at, val, mo) {} virtual int Opcode() const; virtual BasicType memory_type() const { return T_FLOAT; } }; //------------------------------StoreDNode------------------------------------- // Store double to memory class StoreDNode : public StoreNode { public: StoreDNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo) : StoreNode(c, mem, adr, at, val, mo) {} virtual int Opcode() const; virtual BasicType memory_type() const { return T_DOUBLE; } }; //------------------------------StorePNode------------------------------------- // Store pointer to memory class StorePNode : public StoreNode { public: StorePNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo) : StoreNode(c, mem, adr, at, val, mo) {} virtual int Opcode() const; virtual BasicType memory_type() const { return T_ADDRESS; } }; //------------------------------StoreNNode------------------------------------- // Store narrow oop to memory class StoreNNode : public StoreNode { public: StoreNNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo) : StoreNode(c, mem, adr, at, val, mo) {} virtual int Opcode() const; virtual BasicType memory_type() const { return T_NARROWOOP; } }; //------------------------------StoreNKlassNode-------------------------------------- // Store narrow klass to memory class StoreNKlassNode : public StoreNNode { public: StoreNKlassNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo) : StoreNNode(c, mem, adr, at, val, mo) {} virtual int Opcode() const; virtual BasicType memory_type() const { return T_NARROWKLASS; } }; //------------------------------StoreCMNode----------------------------------- // Store card-mark byte to memory for CM // The last StoreCM before a SafePoint must be preserved and occur after its "oop" store // Preceeding equivalent StoreCMs may be eliminated. class StoreCMNode : public StoreNode { private: virtual uint hash() const { return StoreNode::hash() + _oop_alias_idx; } virtual uint cmp( const Node &n ) const { return _oop_alias_idx == ((StoreCMNode&)n)._oop_alias_idx && StoreNode::cmp(n); } virtual uint size_of() const { return sizeof(*this); } int _oop_alias_idx; // The alias_idx of OopStore public: StoreCMNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store, int oop_alias_idx ) : StoreNode(c, mem, adr, at, val, oop_store, MemNode::release), _oop_alias_idx(oop_alias_idx) { assert(_oop_alias_idx >= Compile::AliasIdxRaw || _oop_alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0, "bad oop alias idx"); } virtual int Opcode() const; virtual Node *Identity( PhaseTransform *phase ); virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); virtual const Type *Value( PhaseTransform *phase ) const; virtual BasicType memory_type() const { return T_VOID; } // unspecific int oop_alias_idx() const { return _oop_alias_idx; } }; //------------------------------LoadPLockedNode--------------------------------- // Load-locked a pointer from memory (either object or array). // On Sparc & Intel this is implemented as a normal pointer load. // On PowerPC and friends it's a real load-locked. class LoadPLockedNode : public LoadPNode { public: LoadPLockedNode(Node *c, Node *mem, Node *adr, MemOrd mo) : LoadPNode(c, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, mo) {} virtual int Opcode() const; virtual int store_Opcode() const { return Op_StorePConditional; } virtual bool depends_only_on_test() const { return true; } }; //------------------------------SCMemProjNode--------------------------------------- // This class defines a projection of the memory state of a store conditional node. // These nodes return a value, but also update memory. class SCMemProjNode : public ProjNode { public: enum {SCMEMPROJCON = (uint)-2}; SCMemProjNode( Node *src) : ProjNode( src, SCMEMPROJCON) { } virtual int Opcode() const; virtual bool is_CFG() const { return false; } virtual const Type *bottom_type() const {return Type::MEMORY;} virtual const TypePtr *adr_type() const { return in(0)->in(MemNode::Memory)->adr_type();} virtual uint ideal_reg() const { return 0;} // memory projections don't have a register virtual const Type *Value( PhaseTransform *phase ) const; #ifndef PRODUCT virtual void dump_spec(outputStream *st) const {}; #endif }; //------------------------------LoadStoreNode--------------------------- // Note: is_Mem() method returns 'true' for this class. class LoadStoreNode : public Node { private: const Type* const _type; // What kind of value is loaded? const TypePtr* _adr_type; // What kind of memory is being addressed? virtual uint size_of() const; // Size is bigger public: LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required ); virtual bool depends_only_on_test() const { return false; } virtual uint match_edge(uint idx) const { return idx == MemNode::Address || idx == MemNode::ValueIn; } virtual const Type *bottom_type() const { return _type; } virtual uint ideal_reg() const; virtual const class TypePtr *adr_type() const { return _adr_type; } // returns bottom_type of address bool result_not_used() const; }; class LoadStoreConditionalNode : public LoadStoreNode { public: enum { ExpectedIn = MemNode::ValueIn+1 // One more input than MemNode }; LoadStoreConditionalNode(Node *c, Node *mem, Node *adr, Node *val, Node *ex); }; //------------------------------StorePConditionalNode--------------------------- // Conditionally store pointer to memory, if no change since prior // load-locked. Sets flags for success or failure of the store. class StorePConditionalNode : public LoadStoreConditionalNode { public: StorePConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreConditionalNode(c, mem, adr, val, ll) { } virtual int Opcode() const; // Produces flags virtual uint ideal_reg() const { return Op_RegFlags; } }; //------------------------------StoreIConditionalNode--------------------------- // Conditionally store int to memory, if no change since prior // load-locked. Sets flags for success or failure of the store. class StoreIConditionalNode : public LoadStoreConditionalNode { public: StoreIConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ii ) : LoadStoreConditionalNode(c, mem, adr, val, ii) { } virtual int Opcode() const; // Produces flags virtual uint ideal_reg() const { return Op_RegFlags; } }; //------------------------------StoreLConditionalNode--------------------------- // Conditionally store long to memory, if no change since prior // load-locked. Sets flags for success or failure of the store. class StoreLConditionalNode : public LoadStoreConditionalNode { public: StoreLConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreConditionalNode(c, mem, adr, val, ll) { } virtual int Opcode() const; // Produces flags virtual uint ideal_reg() const { return Op_RegFlags; } }; //------------------------------CompareAndSwapLNode--------------------------- class CompareAndSwapLNode : public LoadStoreConditionalNode { public: CompareAndSwapLNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { } virtual int Opcode() const; }; //------------------------------CompareAndSwapINode--------------------------- class CompareAndSwapINode : public LoadStoreConditionalNode { public: CompareAndSwapINode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { } virtual int Opcode() const; }; //------------------------------CompareAndSwapPNode--------------------------- class CompareAndSwapPNode : public LoadStoreConditionalNode { public: CompareAndSwapPNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { } virtual int Opcode() const; }; //------------------------------CompareAndSwapNNode--------------------------- class CompareAndSwapNNode : public LoadStoreConditionalNode { public: CompareAndSwapNNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { } virtual int Opcode() const; }; //------------------------------GetAndAddINode--------------------------- class GetAndAddINode : public LoadStoreNode { public: GetAndAddINode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::INT, 4) { } virtual int Opcode() const; }; //------------------------------GetAndAddLNode--------------------------- class GetAndAddLNode : public LoadStoreNode { public: GetAndAddLNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeLong::LONG, 4) { } virtual int Opcode() const; }; //------------------------------GetAndSetINode--------------------------- class GetAndSetINode : public LoadStoreNode { public: GetAndSetINode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::INT, 4) { } virtual int Opcode() const; }; //------------------------------GetAndSetINode--------------------------- class GetAndSetLNode : public LoadStoreNode { public: GetAndSetLNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeLong::LONG, 4) { } virtual int Opcode() const; }; //------------------------------GetAndSetPNode--------------------------- class GetAndSetPNode : public LoadStoreNode { public: GetAndSetPNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* t ) : LoadStoreNode(c, mem, adr, val, at, t, 4) { } virtual int Opcode() const; }; //------------------------------GetAndSetNNode--------------------------- class GetAndSetNNode : public LoadStoreNode { public: GetAndSetNNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* t ) : LoadStoreNode(c, mem, adr, val, at, t, 4) { } virtual int Opcode() const; }; //------------------------------ClearArray------------------------------------- class ClearArrayNode: public Node { public: ClearArrayNode( Node *ctrl, Node *arymem, Node *word_cnt, Node *base ) : Node(ctrl,arymem,word_cnt,base) { init_class_id(Class_ClearArray); } virtual int Opcode() const; virtual const Type *bottom_type() const { return Type::MEMORY; } // ClearArray modifies array elements, and so affects only the // array memory addressed by the bottom_type of its base address. virtual const class TypePtr *adr_type() const; virtual Node *Identity( PhaseTransform *phase ); virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); virtual uint match_edge(uint idx) const; // Clear the given area of an object or array. // The start offset must always be aligned mod BytesPerInt. // The end offset must always be aligned mod BytesPerLong. // Return the new memory. static Node* clear_memory(Node* control, Node* mem, Node* dest, intptr_t start_offset, intptr_t end_offset, PhaseGVN* phase); static Node* clear_memory(Node* control, Node* mem, Node* dest, intptr_t start_offset, Node* end_offset, PhaseGVN* phase); static Node* clear_memory(Node* control, Node* mem, Node* dest, Node* start_offset, Node* end_offset, PhaseGVN* phase); // Return allocation input memory edge if it is different instance // or itself if it is the one we are looking for. static bool step_through(Node** np, uint instance_id, PhaseTransform* phase); }; //------------------------------StrIntrinsic------------------------------- // Base class for Ideal nodes used in String instrinsic code. class StrIntrinsicNode: public Node { public: StrIntrinsicNode(Node* control, Node* char_array_mem, Node* s1, Node* c1, Node* s2, Node* c2): Node(control, char_array_mem, s1, c1, s2, c2) { } StrIntrinsicNode(Node* control, Node* char_array_mem, Node* s1, Node* s2, Node* c): Node(control, char_array_mem, s1, s2, c) { } StrIntrinsicNode(Node* control, Node* char_array_mem, Node* s1, Node* s2): Node(control, char_array_mem, s1, s2) { } virtual bool depends_only_on_test() const { return false; } virtual const TypePtr* adr_type() const { return TypeAryPtr::CHARS; } virtual uint match_edge(uint idx) const; virtual uint ideal_reg() const { return Op_RegI; } virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); virtual const Type *Value(PhaseTransform *phase) const; }; //------------------------------StrComp------------------------------------- class StrCompNode: public StrIntrinsicNode { public: StrCompNode(Node* control, Node* char_array_mem, Node* s1, Node* c1, Node* s2, Node* c2): StrIntrinsicNode(control, char_array_mem, s1, c1, s2, c2) {}; virtual int Opcode() const; virtual const Type* bottom_type() const { return TypeInt::INT; } }; //------------------------------StrEquals------------------------------------- class StrEqualsNode: public StrIntrinsicNode { public: StrEqualsNode(Node* control, Node* char_array_mem, Node* s1, Node* s2, Node* c): StrIntrinsicNode(control, char_array_mem, s1, s2, c) {}; virtual int Opcode() const; virtual const Type* bottom_type() const { return TypeInt::BOOL; } }; //------------------------------StrIndexOf------------------------------------- class StrIndexOfNode: public StrIntrinsicNode { public: StrIndexOfNode(Node* control, Node* char_array_mem, Node* s1, Node* c1, Node* s2, Node* c2): StrIntrinsicNode(control, char_array_mem, s1, c1, s2, c2) {}; virtual int Opcode() const; virtual const Type* bottom_type() const { return TypeInt::INT; } }; //------------------------------AryEq--------------------------------------- class AryEqNode: public StrIntrinsicNode { public: AryEqNode(Node* control, Node* char_array_mem, Node* s1, Node* s2): StrIntrinsicNode(control, char_array_mem, s1, s2) {}; virtual int Opcode() const; virtual const Type* bottom_type() const { return TypeInt::BOOL; } }; //------------------------------EncodeISOArray-------------------------------- // encode char[] to byte[] in ISO_8859_1 class EncodeISOArrayNode: public Node { public: EncodeISOArrayNode(Node *control, Node* arymem, Node* s1, Node* s2, Node* c): Node(control, arymem, s1, s2, c) {}; virtual int Opcode() const; virtual bool depends_only_on_test() const { return false; } virtual const Type* bottom_type() const { return TypeInt::INT; } virtual const TypePtr* adr_type() const { return TypePtr::BOTTOM; } virtual uint match_edge(uint idx) const; virtual uint ideal_reg() const { return Op_RegI; } virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); virtual const Type *Value(PhaseTransform *phase) const; }; //------------------------------MemBar----------------------------------------- // There are different flavors of Memory Barriers to match the Java Memory // Model. Monitor-enter and volatile-load act as Aquires: no following ref // can be moved to before them. We insert a MemBar-Acquire after a FastLock or // volatile-load. Monitor-exit and volatile-store act as Release: no // preceding ref can be moved to after them. We insert a MemBar-Release // before a FastUnlock or volatile-store. All volatiles need to be // serialized, so we follow all volatile-stores with a MemBar-Volatile to // separate it from any following volatile-load. class MemBarNode: public MultiNode { virtual uint hash() const ; // { return NO_HASH; } virtual uint cmp( const Node &n ) const ; // Always fail, except on self virtual uint size_of() const { return sizeof(*this); } // Memory type this node is serializing. Usually either rawptr or bottom. const TypePtr* _adr_type; public: enum { Precedent = TypeFunc::Parms // optional edge to force precedence }; MemBarNode(Compile* C, int alias_idx, Node* precedent); virtual int Opcode() const = 0; virtual const class TypePtr *adr_type() const { return _adr_type; } virtual const Type *Value( PhaseTransform *phase ) const; virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); virtual uint match_edge(uint idx) const { return 0; } virtual const Type *bottom_type() const { return TypeTuple::MEMBAR; } virtual Node *match( const ProjNode *proj, const Matcher *m ); // Factory method. Builds a wide or narrow membar. // Optional 'precedent' becomes an extra edge if not null. static MemBarNode* make(Compile* C, int opcode, int alias_idx = Compile::AliasIdxBot, Node* precedent = NULL); }; // "Acquire" - no following ref can move before (but earlier refs can // follow, like an early Load stalled in cache). Requires multi-cpu // visibility. Inserted after a volatile load. class MemBarAcquireNode: public MemBarNode { public: MemBarAcquireNode(Compile* C, int alias_idx, Node* precedent) : MemBarNode(C, alias_idx, precedent) {} virtual int Opcode() const; }; // "Release" - no earlier ref can move after (but later refs can move // up, like a speculative pipelined cache-hitting Load). Requires // multi-cpu visibility. Inserted before a volatile store. class MemBarReleaseNode: public MemBarNode { public: MemBarReleaseNode(Compile* C, int alias_idx, Node* precedent) : MemBarNode(C, alias_idx, precedent) {} virtual int Opcode() const; }; // "Acquire" - no following ref can move before (but earlier refs can // follow, like an early Load stalled in cache). Requires multi-cpu // visibility. Inserted after a FastLock. class MemBarAcquireLockNode: public MemBarNode { public: MemBarAcquireLockNode(Compile* C, int alias_idx, Node* precedent) : MemBarNode(C, alias_idx, precedent) {} virtual int Opcode() const; }; // "Release" - no earlier ref can move after (but later refs can move // up, like a speculative pipelined cache-hitting Load). Requires // multi-cpu visibility. Inserted before a FastUnLock. class MemBarReleaseLockNode: public MemBarNode { public: MemBarReleaseLockNode(Compile* C, int alias_idx, Node* precedent) : MemBarNode(C, alias_idx, precedent) {} virtual int Opcode() const; }; class MemBarStoreStoreNode: public MemBarNode { public: MemBarStoreStoreNode(Compile* C, int alias_idx, Node* precedent) : MemBarNode(C, alias_idx, precedent) { init_class_id(Class_MemBarStoreStore); } virtual int Opcode() const; }; // Ordering between a volatile store and a following volatile load. // Requires multi-CPU visibility? class MemBarVolatileNode: public MemBarNode { public: MemBarVolatileNode(Compile* C, int alias_idx, Node* precedent) : MemBarNode(C, alias_idx, precedent) {} virtual int Opcode() const; }; // Ordering within the same CPU. Used to order unsafe memory references // inside the compiler when we lack alias info. Not needed "outside" the // compiler because the CPU does all the ordering for us. class MemBarCPUOrderNode: public MemBarNode { public: MemBarCPUOrderNode(Compile* C, int alias_idx, Node* precedent) : MemBarNode(C, alias_idx, precedent) {} virtual int Opcode() const; virtual uint ideal_reg() const { return 0; } // not matched in the AD file }; // Isolation of object setup after an AllocateNode and before next safepoint. // (See comment in memnode.cpp near InitializeNode::InitializeNode for semantics.) class InitializeNode: public MemBarNode { friend class AllocateNode; enum { Incomplete = 0, Complete = 1, WithArraycopy = 2 }; int _is_complete; bool _does_not_escape; public: enum { Control = TypeFunc::Control, Memory = TypeFunc::Memory, // MergeMem for states affected by this op RawAddress = TypeFunc::Parms+0, // the newly-allocated raw address RawStores = TypeFunc::Parms+1 // zero or more stores (or TOP) }; InitializeNode(Compile* C, int adr_type, Node* rawoop); virtual int Opcode() const; virtual uint size_of() const { return sizeof(*this); } virtual uint ideal_reg() const { return 0; } // not matched in the AD file virtual const RegMask &in_RegMask(uint) const; // mask for RawAddress // Manage incoming memory edges via a MergeMem on in(Memory): Node* memory(uint alias_idx); // The raw memory edge coming directly from the Allocation. // The contents of this memory are *always* all-zero-bits. Node* zero_memory() { return memory(Compile::AliasIdxRaw); } // Return the corresponding allocation for this initialization (or null if none). // (Note: Both InitializeNode::allocation and AllocateNode::initialization // are defined in graphKit.cpp, which sets up the bidirectional relation.) AllocateNode* allocation(); // Anything other than zeroing in this init? bool is_non_zero(); // An InitializeNode must completed before macro expansion is done. // Completion requires that the AllocateNode must be followed by // initialization of the new memory to zero, then to any initializers. bool is_complete() { return _is_complete != Incomplete; } bool is_complete_with_arraycopy() { return (_is_complete & WithArraycopy) != 0; } // Mark complete. (Must not yet be complete.) void set_complete(PhaseGVN* phase); void set_complete_with_arraycopy() { _is_complete = Complete | WithArraycopy; } bool does_not_escape() { return _does_not_escape; } void set_does_not_escape() { _does_not_escape = true; } #ifdef ASSERT // ensure all non-degenerate stores are ordered and non-overlapping bool stores_are_sane(PhaseTransform* phase); #endif //ASSERT // See if this store can be captured; return offset where it initializes. // Return 0 if the store cannot be moved (any sort of problem). intptr_t can_capture_store(StoreNode* st, PhaseTransform* phase, bool can_reshape); // Capture another store; reformat it to write my internal raw memory. // Return the captured copy, else NULL if there is some sort of problem. Node* capture_store(StoreNode* st, intptr_t start, PhaseTransform* phase, bool can_reshape); // Find captured store which corresponds to the range [start..start+size). // Return my own memory projection (meaning the initial zero bits) // if there is no such store. Return NULL if there is a problem. Node* find_captured_store(intptr_t start, int size_in_bytes, PhaseTransform* phase); // Called when the associated AllocateNode is expanded into CFG. Node* complete_stores(Node* rawctl, Node* rawmem, Node* rawptr, intptr_t header_size, Node* size_in_bytes, PhaseGVN* phase); private: void remove_extra_zeroes(); // Find out where a captured store should be placed (or already is placed). int captured_store_insertion_point(intptr_t start, int size_in_bytes, PhaseTransform* phase); static intptr_t get_store_offset(Node* st, PhaseTransform* phase); Node* make_raw_address(intptr_t offset, PhaseTransform* phase); bool detect_init_independence(Node* n, int& count); void coalesce_subword_stores(intptr_t header_size, Node* size_in_bytes, PhaseGVN* phase); intptr_t find_next_fullword_store(uint i, PhaseGVN* phase); }; //------------------------------MergeMem--------------------------------------- // (See comment in memnode.cpp near MergeMemNode::MergeMemNode for semantics.) class MergeMemNode: public Node { virtual uint hash() const ; // { return NO_HASH; } virtual uint cmp( const Node &n ) const ; // Always fail, except on self friend class MergeMemStream; MergeMemNode(Node* def); // clients use MergeMemNode::make public: // If the input is a whole memory state, clone it with all its slices intact. // Otherwise, make a new memory state with just that base memory input. // In either case, the result is a newly created MergeMem. static MergeMemNode* make(Compile* C, Node* base_memory); virtual int Opcode() const; virtual Node *Identity( PhaseTransform *phase ); virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); virtual uint ideal_reg() const { return NotAMachineReg; } virtual uint match_edge(uint idx) const { return 0; } virtual const RegMask &out_RegMask() const; virtual const Type *bottom_type() const { return Type::MEMORY; } virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; } // sparse accessors // Fetch the previously stored "set_memory_at", or else the base memory. // (Caller should clone it if it is a phi-nest.) Node* memory_at(uint alias_idx) const; // set the memory, regardless of its previous value void set_memory_at(uint alias_idx, Node* n); // the "base" is the memory that provides the non-finite support Node* base_memory() const { return in(Compile::AliasIdxBot); } // warning: setting the base can implicitly set any of the other slices too void set_base_memory(Node* def); // sentinel value which denotes a copy of the base memory: Node* empty_memory() const { return in(Compile::AliasIdxTop); } static Node* make_empty_memory(); // where the sentinel comes from bool is_empty_memory(Node* n) const { assert((n == empty_memory()) == n->is_top(), "sanity"); return n->is_top(); } // hook for the iterator, to perform any necessary setup void iteration_setup(const MergeMemNode* other = NULL); // push sentinels until I am at least as long as the other (semantic no-op) void grow_to_match(const MergeMemNode* other); bool verify_sparse() const PRODUCT_RETURN0; #ifndef PRODUCT virtual void dump_spec(outputStream *st) const; #endif }; class MergeMemStream : public StackObj { private: MergeMemNode* _mm; const MergeMemNode* _mm2; // optional second guy, contributes non-empty iterations Node* _mm_base; // loop-invariant base memory of _mm int _idx; int _cnt; Node* _mem; Node* _mem2; int _cnt2; void init(MergeMemNode* mm, const MergeMemNode* mm2 = NULL) { // subsume_node will break sparseness at times, whenever a memory slice // folds down to a copy of the base ("fat") memory. In such a case, // the raw edge will update to base, although it should be top. // This iterator will recognize either top or base_memory as an // "empty" slice. See is_empty, is_empty2, and next below. // // The sparseness property is repaired in MergeMemNode::Ideal. // As long as access to a MergeMem goes through this iterator // or the memory_at accessor, flaws in the sparseness will // never be observed. // // Also, iteration_setup repairs sparseness. assert(mm->verify_sparse(), "please, no dups of base"); assert(mm2==NULL || mm2->verify_sparse(), "please, no dups of base"); _mm = mm; _mm_base = mm->base_memory(); _mm2 = mm2; _cnt = mm->req(); _idx = Compile::AliasIdxBot-1; // start at the base memory _mem = NULL; _mem2 = NULL; } #ifdef ASSERT Node* check_memory() const { if (at_base_memory()) return _mm->base_memory(); else if ((uint)_idx < _mm->req() && !_mm->in(_idx)->is_top()) return _mm->memory_at(_idx); else return _mm_base; } Node* check_memory2() const { return at_base_memory()? _mm2->base_memory(): _mm2->memory_at(_idx); } #endif static bool match_memory(Node* mem, const MergeMemNode* mm, int idx) PRODUCT_RETURN0; void assert_synch() const { assert(!_mem || _idx >= _cnt || match_memory(_mem, _mm, _idx), "no side-effects except through the stream"); } public: // expected usages: // for (MergeMemStream mms(mem->is_MergeMem()); next_non_empty(); ) { ... } // for (MergeMemStream mms(mem1, mem2); next_non_empty2(); ) { ... } // iterate over one merge MergeMemStream(MergeMemNode* mm) { mm->iteration_setup(); init(mm); debug_only(_cnt2 = 999); } // iterate in parallel over two merges // only iterates through non-empty elements of mm2 MergeMemStream(MergeMemNode* mm, const MergeMemNode* mm2) { assert(mm2, "second argument must be a MergeMem also"); ((MergeMemNode*)mm2)->iteration_setup(); // update hidden state mm->iteration_setup(mm2); init(mm, mm2); _cnt2 = mm2->req(); } #ifdef ASSERT ~MergeMemStream() { assert_synch(); } #endif MergeMemNode* all_memory() const { return _mm; } Node* base_memory() const { assert(_mm_base == _mm->base_memory(), "no update to base memory, please"); return _mm_base; } const MergeMemNode* all_memory2() const { assert(_mm2 != NULL, ""); return _mm2; } bool at_base_memory() const { return _idx == Compile::AliasIdxBot; } int alias_idx() const { assert(_mem, "must call next 1st"); return _idx; } const TypePtr* adr_type() const { return Compile::current()->get_adr_type(alias_idx()); } const TypePtr* adr_type(Compile* C) const { return C->get_adr_type(alias_idx()); } bool is_empty() const { assert(_mem, "must call next 1st"); assert(_mem->is_top() == (_mem==_mm->empty_memory()), "correct sentinel"); return _mem->is_top(); } bool is_empty2() const { assert(_mem2, "must call next 1st"); assert(_mem2->is_top() == (_mem2==_mm2->empty_memory()), "correct sentinel"); return _mem2->is_top(); } Node* memory() const { assert(!is_empty(), "must not be empty"); assert_synch(); return _mem; } // get the current memory, regardless of empty or non-empty status Node* force_memory() const { assert(!is_empty() || !at_base_memory(), ""); // Use _mm_base to defend against updates to _mem->base_memory(). Node *mem = _mem->is_top() ? _mm_base : _mem; assert(mem == check_memory(), ""); return mem; } Node* memory2() const { assert(_mem2 == check_memory2(), ""); return _mem2; } void set_memory(Node* mem) { if (at_base_memory()) { // Note that this does not change the invariant _mm_base. _mm->set_base_memory(mem); } else { _mm->set_memory_at(_idx, mem); } _mem = mem; assert_synch(); } // Recover from a side effect to the MergeMemNode. void set_memory() { _mem = _mm->in(_idx); } bool next() { return next(false); } bool next2() { return next(true); } bool next_non_empty() { return next_non_empty(false); } bool next_non_empty2() { return next_non_empty(true); } // next_non_empty2 can yield states where is_empty() is true private: // find the next item, which might be empty bool next(bool have_mm2) { assert((_mm2 != NULL) == have_mm2, "use other next"); assert_synch(); if (++_idx < _cnt) { // Note: This iterator allows _mm to be non-sparse. // It behaves the same whether _mem is top or base_memory. _mem = _mm->in(_idx); if (have_mm2) _mem2 = _mm2->in((_idx < _cnt2) ? _idx : Compile::AliasIdxTop); return true; } return false; } // find the next non-empty item bool next_non_empty(bool have_mm2) { while (next(have_mm2)) { if (!is_empty()) { // make sure _mem2 is filled in sensibly if (have_mm2 && _mem2->is_top()) _mem2 = _mm2->base_memory(); return true; } else if (have_mm2 && !is_empty2()) { return true; // is_empty() == true } } return false; } }; //------------------------------Prefetch--------------------------------------- // Non-faulting prefetch load. Prefetch for many reads. class PrefetchReadNode : public Node { public: PrefetchReadNode(Node *abio, Node *adr) : Node(0,abio,adr) {} virtual int Opcode() const; virtual uint ideal_reg() const { return NotAMachineReg; } virtual uint match_edge(uint idx) const { return idx==2; } virtual const Type *bottom_type() const { return Type::ABIO; } }; // Non-faulting prefetch load. Prefetch for many reads & many writes. class PrefetchWriteNode : public Node { public: PrefetchWriteNode(Node *abio, Node *adr) : Node(0,abio,adr) {} virtual int Opcode() const; virtual uint ideal_reg() const { return NotAMachineReg; } virtual uint match_edge(uint idx) const { return idx==2; } virtual const Type *bottom_type() const { return Type::ABIO; } }; // Allocation prefetch which may fault, TLAB size have to be adjusted. class PrefetchAllocationNode : public Node { public: PrefetchAllocationNode(Node *mem, Node *adr) : Node(0,mem,adr) {} virtual int Opcode() const; virtual uint ideal_reg() const { return NotAMachineReg; } virtual uint match_edge(uint idx) const { return idx==2; } virtual const Type *bottom_type() const { return ( AllocatePrefetchStyle == 3 ) ? Type::MEMORY : Type::ABIO; } }; #endif // SHARE_VM_OPTO_MEMNODE_HPP