/* * Copyright 1997-2007 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. * */ // A frame represents a physical stack frame (an activation). Frames can be // C or Java frames, and the Java frames can be interpreted or compiled. // In contrast, vframes represent source-level activations, so that one physical frame // can correspond to multiple source level frames because of inlining. // A frame is comprised of {pc, fp, sp} // ------------------------------ Asm interpreter ---------------------------------------- // Layout of asm interpreter frame: // [expression stack ] * <- sp // [monitors ] \ // ... | monitor block size // [monitors ] / // [monitor block size ] // [byte code index/pointr] = bcx() bcx_offset // [pointer to locals ] = locals() locals_offset // [constant pool cache ] = cache() cache_offset // [methodData ] = mdp() mdx_offset // [methodOop ] = method() method_offset // [last sp ] = last_sp() last_sp_offset // [old stack pointer ] (sender_sp) sender_sp_offset // [old frame pointer ] <- fp = link() // [return pc ] // [oop temp ] (only for native calls) // [locals and parameters ] // <- sender sp // ------------------------------ Asm interpreter ---------------------------------------- // ------------------------------ C++ interpreter ---------------------------------------- // // Layout of C++ interpreter frame: (While executing in BytecodeInterpreter::run) // // <- SP (current esp/rsp) // [local variables ] BytecodeInterpreter::run local variables // ... BytecodeInterpreter::run local variables // [local variables ] BytecodeInterpreter::run local variables // [old frame pointer ] fp [ BytecodeInterpreter::run's ebp/rbp ] // [return pc ] (return to frame manager) // [interpreter_state* ] (arg to BytecodeInterpreter::run) -------------- // [expression stack ] <- last_Java_sp | // [... ] * <- interpreter_state.stack | // [expression stack ] * <- interpreter_state.stack_base | // [monitors ] \ | // ... | monitor block size | // [monitors ] / <- interpreter_state.monitor_base | // [struct interpretState ] <-----------------------------------------| // [return pc ] (return to callee of frame manager [1] // [locals and parameters ] // <- sender sp // [1] When the c++ interpreter calls a new method it returns to the frame // manager which allocates a new frame on the stack. In that case there // is no real callee of this newly allocated frame. The frame manager is // aware of the additional frame(s) and will pop them as nested calls // complete. Howevers tTo make it look good in the debugger the frame // manager actually installs a dummy pc pointing to RecursiveInterpreterActivation // with a fake interpreter_state* parameter to make it easy to debug // nested calls. // Note that contrary to the layout for the assembly interpreter the // expression stack allocated for the C++ interpreter is full sized. // However this is not as bad as it seems as the interpreter frame_manager // will truncate the unused space on succesive method calls. // // ------------------------------ C++ interpreter ---------------------------------------- public: enum { pc_return_offset = 0, // All frames link_offset = 0, return_addr_offset = 1, // non-interpreter frames sender_sp_offset = 2, #ifndef CC_INTERP // Interpreter frames interpreter_frame_result_handler_offset = 3, // for native calls only interpreter_frame_oop_temp_offset = 2, // for native calls only interpreter_frame_sender_sp_offset = -1, // outgoing sp before a call to an invoked method interpreter_frame_last_sp_offset = interpreter_frame_sender_sp_offset - 1, interpreter_frame_method_offset = interpreter_frame_last_sp_offset - 1, interpreter_frame_mdx_offset = interpreter_frame_method_offset - 1, interpreter_frame_cache_offset = interpreter_frame_mdx_offset - 1, interpreter_frame_locals_offset = interpreter_frame_cache_offset - 1, interpreter_frame_bcx_offset = interpreter_frame_locals_offset - 1, interpreter_frame_initial_sp_offset = interpreter_frame_bcx_offset - 1, interpreter_frame_monitor_block_top_offset = interpreter_frame_initial_sp_offset, interpreter_frame_monitor_block_bottom_offset = interpreter_frame_initial_sp_offset, #endif // CC_INTERP // Entry frames #ifdef AMD64 #ifdef _WIN64 entry_frame_after_call_words = 8, entry_frame_call_wrapper_offset = 2, arg_reg_save_area_bytes = 32, // Register argument save area #else entry_frame_after_call_words = 13, entry_frame_call_wrapper_offset = -6, arg_reg_save_area_bytes = 0, #endif // _WIN64 #else entry_frame_call_wrapper_offset = 2, #endif // AMD64 // Native frames native_frame_initial_param_offset = 2 }; intptr_t ptr_at(int offset) const { return *ptr_at_addr(offset); } void ptr_at_put(int offset, intptr_t value) { *ptr_at_addr(offset) = value; } private: // an additional field beyond _sp and _pc: intptr_t* _fp; // frame pointer // The interpreter and adapters will extend the frame of the caller. // Since oopMaps are based on the sp of the caller before extension // we need to know that value. However in order to compute the address // of the return address we need the real "raw" sp. Since sparc already // uses sp() to mean "raw" sp and unextended_sp() to mean the caller's // original sp we use that convention. intptr_t* _unextended_sp; intptr_t* ptr_at_addr(int offset) const { return (intptr_t*) addr_at(offset); } #if ASSERT // Used in frame::sender_for_{interpreter,compiled}_frame static void verify_deopt_original_pc( nmethod* nm, intptr_t* unextended_sp, bool is_method_handle_return = false); static void verify_deopt_mh_original_pc(nmethod* nm, intptr_t* unextended_sp) { verify_deopt_original_pc(nm, unextended_sp, true); } #endif public: // Constructors frame(intptr_t* sp, intptr_t* fp, address pc); frame(intptr_t* sp, intptr_t* unextended_sp, intptr_t* fp, address pc); frame(intptr_t* sp, intptr_t* fp); // accessors for the instance variables intptr_t* fp() const { return _fp; } inline address* sender_pc_addr() const; // return address of param, zero origin index. inline address* native_param_addr(int idx) const; // expression stack tos if we are nested in a java call intptr_t* interpreter_frame_last_sp() const; #ifndef CC_INTERP // deoptimization support void interpreter_frame_set_last_sp(intptr_t* sp); #endif // CC_INTERP #ifdef CC_INTERP inline interpreterState get_interpreterState() const; #endif // CC_INTERP