/* * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_VM_OPTO_PARSE_HPP #define SHARE_VM_OPTO_PARSE_HPP #include "ci/ciMethodData.hpp" #include "ci/ciTypeFlow.hpp" #include "compiler/methodLiveness.hpp" #include "libadt/vectset.hpp" #include "oops/generateOopMap.hpp" #include "opto/graphKit.hpp" #include "opto/subnode.hpp" class BytecodeParseHistogram; class InlineTree; class Parse; class SwitchRange; //------------------------------InlineTree------------------------------------- class InlineTree : public ResourceObj { friend class VMStructs; Compile* C; // cache JVMState* _caller_jvms; // state of caller ciMethod* _method; // method being called by the caller_jvms InlineTree* _caller_tree; uint _count_inline_bcs; // Accumulated count of inlined bytecodes // Call-site count / interpreter invocation count, scaled recursively. // Always between 0.0 and 1.0. Represents the percentage of the method's // total execution time used at this call site. const float _site_invoke_ratio; const int _max_inline_level; // the maximum inline level for this sub-tree (may be adjusted) float compute_callee_frequency( int caller_bci ) const; GrowableArray _subtrees; void print_impl(outputStream* stj, int indent) const PRODUCT_RETURN; const char* _msg; protected: InlineTree(Compile* C, const InlineTree* caller_tree, ciMethod* callee_method, JVMState* caller_jvms, int caller_bci, float site_invoke_ratio, int max_inline_level); InlineTree *build_inline_tree_for_callee(ciMethod* callee_method, JVMState* caller_jvms, int caller_bci); bool try_to_inline(ciMethod* callee_method, ciMethod* caller_method, int caller_bci, JVMState* jvms, ciCallProfile& profile, WarmCallInfo* wci_result, bool& should_delay); bool should_inline(ciMethod* callee_method, ciMethod* caller_method, int caller_bci, ciCallProfile& profile, WarmCallInfo* wci_result); bool should_not_inline(ciMethod* callee_method, ciMethod* caller_method, JVMState* jvms, WarmCallInfo* wci_result); void print_inlining(ciMethod* callee_method, int caller_bci, bool success) const; InlineTree* caller_tree() const { return _caller_tree; } InlineTree* callee_at(int bci, ciMethod* m) const; int inline_level() const { return stack_depth(); } int stack_depth() const { return _caller_jvms ? _caller_jvms->depth() : 0; } const char* msg() const { return _msg; } void set_msg(const char* msg) { _msg = msg; } public: static const char* check_can_parse(ciMethod* callee); static InlineTree* build_inline_tree_root(); static InlineTree* find_subtree_from_root(InlineTree* root, JVMState* jvms, ciMethod* callee); // For temporary (stack-allocated, stateless) ilts: InlineTree(Compile* c, ciMethod* callee_method, JVMState* caller_jvms, float site_invoke_ratio, int max_inline_level); // InlineTree enum enum InlineStyle { Inline_do_not_inline = 0, // Inline_cha_is_monomorphic = 1, // Inline_type_profile_monomorphic = 2 // }; // See if it is OK to inline. // The receiver is the inline tree for the caller. // // The result is a temperature indication. If it is hot or cold, // inlining is immediate or undesirable. Otherwise, the info block // returned is newly allocated and may be enqueued. // // If the method is inlinable, a new inline subtree is created on the fly, // and may be accessed by find_subtree_from_root. // The call_method is the dest_method for a special or static invocation. // The call_method is an optimized virtual method candidate otherwise. WarmCallInfo* ok_to_inline(ciMethod *call_method, JVMState* caller_jvms, ciCallProfile& profile, WarmCallInfo* wci, bool& should_delay); // Information about inlined method JVMState* caller_jvms() const { return _caller_jvms; } ciMethod *method() const { return _method; } int caller_bci() const { return _caller_jvms ? _caller_jvms->bci() : InvocationEntryBci; } uint count_inline_bcs() const { return _count_inline_bcs; } float site_invoke_ratio() const { return _site_invoke_ratio; }; #ifndef PRODUCT private: uint _count_inlines; // Count of inlined methods public: // Debug information collected during parse uint count_inlines() const { return _count_inlines; }; #endif GrowableArray subtrees() { return _subtrees; } void print_value_on(outputStream* st) const PRODUCT_RETURN; bool _forced_inline; // Inlining was forced by CompilerOracle or ciReplay bool forced_inline() const { return _forced_inline; } // Count number of nodes in this subtree int count() const; // Dump inlining replay data to the stream. void dump_replay_data(outputStream* out); }; //----------------------------------------------------------------------------- //------------------------------Parse------------------------------------------ // Parse bytecodes, build a Graph class Parse : public GraphKit { public: // Per-block information needed by the parser: class Block { private: ciTypeFlow::Block* _flow; int _pred_count; // how many predecessors in CFG? int _preds_parsed; // how many of these have been parsed? uint _count; // how many times executed? Currently only set by _goto's bool _is_parsed; // has this block been parsed yet? bool _is_handler; // is this block an exception handler? bool _has_merged_backedge; // does this block have merged backedge? SafePointNode* _start_map; // all values flowing into this block MethodLivenessResult _live_locals; // lazily initialized liveness bitmap int _num_successors; // Includes only normal control flow. int _all_successors; // Include exception paths also. Block** _successors; // Use init_node/init_graph to initialize Blocks. // Block() : _live_locals((uintptr_t*)NULL,0) { ShouldNotReachHere(); } Block() : _live_locals(NULL,0) { ShouldNotReachHere(); } public: // Set up the block data structure itself. void init_node(Parse* outer, int po); // Set up the block's relations to other blocks. void init_graph(Parse* outer); ciTypeFlow::Block* flow() const { return _flow; } int pred_count() const { return _pred_count; } int preds_parsed() const { return _preds_parsed; } bool is_parsed() const { return _is_parsed; } bool is_handler() const { return _is_handler; } void set_count( uint x ) { _count = x; } uint count() const { return _count; } SafePointNode* start_map() const { assert(is_merged(),""); return _start_map; } void set_start_map(SafePointNode* m) { assert(!is_merged(), ""); _start_map = m; } // True after any predecessor flows control into this block bool is_merged() const { return _start_map != NULL; } #ifdef ASSERT // True after backedge predecessor flows control into this block bool has_merged_backedge() const { return _has_merged_backedge; } void mark_merged_backedge(Block* pred) { assert(is_SEL_head(), "should be loop head"); if (pred != NULL && is_SEL_backedge(pred)) { assert(is_parsed(), "block should be parsed before merging backedges"); _has_merged_backedge = true; } } #endif // True when all non-exception predecessors have been parsed. bool is_ready() const { return preds_parsed() == pred_count(); } int num_successors() const { return _num_successors; } int all_successors() const { return _all_successors; } Block* successor_at(int i) const { assert((uint)i < (uint)all_successors(), ""); return _successors[i]; } Block* successor_for_bci(int bci); int start() const { return flow()->start(); } int limit() const { return flow()->limit(); } int rpo() const { return flow()->rpo(); } int start_sp() const { return flow()->stack_size(); } bool is_loop_head() const { return flow()->is_loop_head(); } bool is_SEL_head() const { return flow()->is_single_entry_loop_head(); } bool is_SEL_backedge(Block* pred) const{ return is_SEL_head() && pred->rpo() >= rpo(); } bool is_invariant_local(uint i) const { const JVMState* jvms = start_map()->jvms(); if (!jvms->is_loc(i) || flow()->outer()->has_irreducible_entry()) return false; return flow()->is_invariant_local(i - jvms->locoff()); } bool can_elide_SEL_phi(uint i) const { assert(is_SEL_head(),""); return is_invariant_local(i); } const Type* peek(int off=0) const { return stack_type_at(start_sp() - (off+1)); } const Type* stack_type_at(int i) const; const Type* local_type_at(int i) const; static const Type* get_type(ciType* t) { return Type::get_typeflow_type(t); } bool has_trap_at(int bci) const { return flow()->has_trap() && flow()->trap_bci() == bci; } // Call this just before parsing a block. void mark_parsed() { assert(!_is_parsed, "must parse each block exactly once"); _is_parsed = true; } // Return the phi/region input index for the "current" pred, // and bump the pred number. For historical reasons these index // numbers are handed out in descending order. The last index is // always PhiNode::Input (i.e., 1). The value returned is known // as a "path number" because it distinguishes by which path we are // entering the block. int next_path_num() { assert(preds_parsed() < pred_count(), "too many preds?"); return pred_count() - _preds_parsed++; } // Add a previously unaccounted predecessor to this block. // This operates by increasing the size of the block's region // and all its phi nodes (if any). The value returned is a // path number ("pnum"). int add_new_path(); // Initialize me by recording the parser's map. My own map must be NULL. void record_state(Parse* outer); }; #ifndef PRODUCT // BytecodeParseHistogram collects number of bytecodes parsed, nodes constructed, and transformations. class BytecodeParseHistogram : public ResourceObj { private: enum BPHType { BPH_transforms, BPH_values }; static bool _initialized; static uint _bytecodes_parsed [Bytecodes::number_of_codes]; static uint _nodes_constructed[Bytecodes::number_of_codes]; static uint _nodes_transformed[Bytecodes::number_of_codes]; static uint _new_values [Bytecodes::number_of_codes]; Bytecodes::Code _initial_bytecode; int _initial_node_count; int _initial_transforms; int _initial_values; Parse *_parser; Compile *_compiler; // Initialization static void reset(); // Return info being collected, select with global flag 'BytecodeParseInfo' int current_count(BPHType info_selector); public: BytecodeParseHistogram(Parse *p, Compile *c); static bool initialized(); // Record info when starting to parse one bytecode void set_initial_state( Bytecodes::Code bc ); // Record results of parsing one bytecode void record_change(); // Profile printing static void print(float cutoff = 0.01F); // cutoff in percent }; public: // Record work done during parsing BytecodeParseHistogram* _parse_histogram; void set_parse_histogram(BytecodeParseHistogram *bph) { _parse_histogram = bph; } BytecodeParseHistogram* parse_histogram() { return _parse_histogram; } #endif private: friend class Block; // Variables which characterize this compilation as a whole: JVMState* _caller; // JVMS which carries incoming args & state. float _expected_uses; // expected number of calls to this code float _prof_factor; // discount applied to my profile counts int _depth; // Inline tree depth, for debug printouts const TypeFunc*_tf; // My kind of function type int _entry_bci; // the osr bci or InvocationEntryBci ciTypeFlow* _flow; // Results of previous flow pass. Block* _blocks; // Array of basic-block structs. int _block_count; // Number of elements in _blocks. GraphKit _exits; // Record all normal returns and throws here. bool _wrote_final; // Did we write a final field? bool _wrote_volatile; // Did we write a volatile field? bool _count_invocations; // update and test invocation counter bool _method_data_update; // update method data oop Node* _alloc_with_final; // An allocation node with final field // Variables which track Java semantics during bytecode parsing: Block* _block; // block currently getting parsed ciBytecodeStream _iter; // stream of this method's bytecodes int _blocks_merged; // Progress meter: state merges from BB preds int _blocks_parsed; // Progress meter: BBs actually parsed const FastLockNode* _synch_lock; // FastLockNode for synchronized method #ifndef PRODUCT int _max_switch_depth; // Debugging SwitchRanges. int _est_switch_depth; // Debugging SwitchRanges. #endif bool _first_return; // true if return is the first to be parsed bool _replaced_nodes_for_exceptions; // needs processing of replaced nodes in exception paths? uint _new_idx; // any node with _idx above were new during this parsing. Used to trim the replaced nodes list. public: // Constructor Parse(JVMState* caller, ciMethod* parse_method, float expected_uses); virtual Parse* is_Parse() const { return (Parse*)this; } // Accessors. JVMState* caller() const { return _caller; } float expected_uses() const { return _expected_uses; } float prof_factor() const { return _prof_factor; } int depth() const { return _depth; } const TypeFunc* tf() const { return _tf; } // entry_bci() -- see osr_bci, etc. ciTypeFlow* flow() const { return _flow; } // blocks() -- see rpo_at, start_block, etc. int block_count() const { return _block_count; } GraphKit& exits() { return _exits; } bool wrote_final() const { return _wrote_final; } void set_wrote_final(bool z) { _wrote_final = z; } bool wrote_volatile() const { return _wrote_volatile; } void set_wrote_volatile(bool z) { _wrote_volatile = z; } bool count_invocations() const { return _count_invocations; } bool method_data_update() const { return _method_data_update; } Node* alloc_with_final() const { return _alloc_with_final; } void set_alloc_with_final(Node* n) { assert((_alloc_with_final == NULL) || (_alloc_with_final == n), "different init objects?"); _alloc_with_final = n; } Block* block() const { return _block; } ciBytecodeStream& iter() { return _iter; } Bytecodes::Code bc() const { return _iter.cur_bc(); } void set_block(Block* b) { _block = b; } // Derived accessors: bool is_normal_parse() const { return _entry_bci == InvocationEntryBci; } bool is_osr_parse() const { return _entry_bci != InvocationEntryBci; } int osr_bci() const { assert(is_osr_parse(),""); return _entry_bci; } void set_parse_bci(int bci); // Must this parse be aborted? bool failing() { return C->failing(); } Block* rpo_at(int rpo) { assert(0 <= rpo && rpo < _block_count, "oob"); return &_blocks[rpo]; } Block* start_block() { return rpo_at(flow()->start_block()->rpo()); } // Can return NULL if the flow pass did not complete a block. Block* successor_for_bci(int bci) { return block()->successor_for_bci(bci); } private: // Create a JVMS & map for the initial state of this method. SafePointNode* create_entry_map(); // OSR helpers Node *fetch_interpreter_state(int index, BasicType bt, Node *local_addrs, Node *local_addrs_base); Node* check_interpreter_type(Node* l, const Type* type, SafePointNode* &bad_type_exit); void load_interpreter_state(Node* osr_buf); // Functions for managing basic blocks: void init_blocks(); void load_state_from(Block* b); void store_state_to(Block* b) { b->record_state(this); } // Parse all the basic blocks. void do_all_blocks(); // Parse the current basic block void do_one_block(); // Raise an error if we get a bad ciTypeFlow CFG. void handle_missing_successor(int bci); // first actions (before BCI 0) void do_method_entry(); // implementation of monitorenter/monitorexit void do_monitor_enter(); void do_monitor_exit(); // Eagerly create phie throughout the state, to cope with back edges. void ensure_phis_everywhere(); // Merge the current mapping into the basic block starting at bci void merge( int target_bci); // Same as plain merge, except that it allocates a new path number. void merge_new_path( int target_bci); // Merge the current mapping into an exception handler. void merge_exception(int target_bci); // Helper: Merge the current mapping into the given basic block void merge_common(Block* target, int pnum); // Helper functions for merging individual cells. PhiNode *ensure_phi( int idx, bool nocreate = false); PhiNode *ensure_memory_phi(int idx, bool nocreate = false); // Helper to merge the current memory state into the given basic block void merge_memory_edges(MergeMemNode* n, int pnum, bool nophi); // Parse this bytecode, and alter the Parsers JVM->Node mapping void do_one_bytecode(); // helper function to generate array store check void array_store_check(); // Helper function to generate array load void array_load(BasicType etype); // Helper function to generate array store void array_store(BasicType etype); // Helper function to compute array addressing Node* array_addressing(BasicType type, int vals, const Type* *result2=NULL); void rtm_deopt(); // Pass current map to exits void return_current(Node* value); // Register finalizers on return from Object. void call_register_finalizer(); // Insert a compiler safepoint into the graph void add_safepoint(); // Insert a compiler safepoint into the graph, if there is a back-branch. void maybe_add_safepoint(int target_bci) { if (UseLoopSafepoints && target_bci <= bci()) { add_safepoint(); } } // Note: Intrinsic generation routines may be found in library_call.cpp. // Helper function to setup Ideal Call nodes void do_call(); // Helper function to uncommon-trap or bailout for non-compilable call-sites bool can_not_compile_call_site(ciMethod *dest_method, ciInstanceKlass *klass); // Helper function to setup for type-profile based inlining bool prepare_type_profile_inline(ciInstanceKlass* prof_klass, ciMethod* prof_method); // Helper functions for type checking bytecodes: void do_checkcast(); void do_instanceof(); // Helper functions for shifting & arithmetic void modf(); void modd(); void l2f(); void do_irem(); // implementation of _get* and _put* bytecodes void do_getstatic() { do_field_access(true, false); } void do_getfield () { do_field_access(true, true); } void do_putstatic() { do_field_access(false, false); } void do_putfield () { do_field_access(false, true); } // common code for making initial checks and forming addresses void do_field_access(bool is_get, bool is_field); bool static_field_ok_in_clinit(ciField *field, ciMethod *method); // common code for actually performing the load or store void do_get_xxx(Node* obj, ciField* field, bool is_field); void do_put_xxx(Node* obj, ciField* field, bool is_field); // loading from a constant field or the constant pool // returns false if push failed (non-perm field constants only, not ldcs) bool push_constant(ciConstant con, bool require_constant = false, bool is_autobox_cache = false, const Type* basic_type = NULL); // implementation of object creation bytecodes void emit_guard_for_new(ciInstanceKlass* klass); void do_new(); void do_newarray(BasicType elemtype); void do_anewarray(); void do_multianewarray(); Node* expand_multianewarray(ciArrayKlass* array_klass, Node* *lengths, int ndimensions, int nargs); // implementation of jsr/ret void do_jsr(); void do_ret(); float dynamic_branch_prediction(float &cnt); float branch_prediction(float &cnt, BoolTest::mask btest, int target_bci); bool seems_never_taken(float prob) const; bool path_is_suitable_for_uncommon_trap(float prob) const; bool seems_stable_comparison() const; void do_ifnull(BoolTest::mask btest, Node* c); void do_if(BoolTest::mask btest, Node* c); int repush_if_args(); void adjust_map_after_if(BoolTest::mask btest, Node* c, float prob, Block* path, Block* other_path); void sharpen_type_after_if(BoolTest::mask btest, Node* con, const Type* tcon, Node* val, const Type* tval); IfNode* jump_if_fork_int(Node* a, Node* b, BoolTest::mask mask); Node* jump_if_join(Node* iffalse, Node* iftrue); void jump_if_true_fork(IfNode *ifNode, int dest_bci_if_true, int prof_table_index); void jump_if_false_fork(IfNode *ifNode, int dest_bci_if_false, int prof_table_index); void jump_if_always_fork(int dest_bci_if_true, int prof_table_index); friend class SwitchRange; void do_tableswitch(); void do_lookupswitch(); void jump_switch_ranges(Node* a, SwitchRange* lo, SwitchRange* hi, int depth = 0); bool create_jump_tables(Node* a, SwitchRange* lo, SwitchRange* hi); // helper functions for methodData style profiling void test_counter_against_threshold(Node* cnt, int limit); void increment_and_test_invocation_counter(int limit); void test_for_osr_md_counter_at(ciMethodData* md, ciProfileData* data, ByteSize offset, int limit); Node* method_data_addressing(ciMethodData* md, ciProfileData* data, ByteSize offset, Node* idx = NULL, uint stride = 0); void increment_md_counter_at(ciMethodData* md, ciProfileData* data, ByteSize offset, Node* idx = NULL, uint stride = 0); void set_md_flag_at(ciMethodData* md, ciProfileData* data, int flag_constant); void profile_method_entry(); void profile_taken_branch(int target_bci, bool force_update = false); void profile_not_taken_branch(bool force_update = false); void profile_call(Node* receiver); void profile_generic_call(); void profile_receiver_type(Node* receiver); void profile_ret(int target_bci); void profile_null_checkcast(); void profile_switch_case(int table_index); // helper function for call statistics void count_compiled_calls(bool at_method_entry, bool is_inline) PRODUCT_RETURN; Node_Notes* make_node_notes(Node_Notes* caller_nn); // Helper functions for handling normal and abnormal exits. void build_exits(); // Fix up all exceptional control flow exiting a single bytecode. void do_exceptions(); // Fix up all exiting control flow at the end of the parse. void do_exits(); // Add Catch/CatchProjs // The call is either a Java call or the VM's rethrow stub void catch_call_exceptions(ciExceptionHandlerStream&); // Handle all exceptions thrown by the inlined method. // Also handles exceptions for individual bytecodes. void catch_inline_exceptions(SafePointNode* ex_map); // Merge the given map into correct exceptional exit state. // Assumes that there is no applicable local handler. void throw_to_exit(SafePointNode* ex_map); // Use speculative type to optimize CmpP node Node* optimize_cmp_with_klass(Node* c); public: #ifndef PRODUCT // Handle PrintOpto, etc. void show_parse_info(); void dump_map_adr_mem() const; static void print_statistics(); // Print some performance counters void dump(); void dump_bci(int bci); #endif }; #endif // SHARE_VM_OPTO_PARSE_HPP