/* * Copyright (c) 2005, 2013, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_VM_OPTO_IDEALKIT_HPP #define SHARE_VM_OPTO_IDEALKIT_HPP #include "opto/addnode.hpp" #include "opto/cfgnode.hpp" #include "opto/connode.hpp" #include "opto/divnode.hpp" #include "opto/graphKit.hpp" #include "opto/mulnode.hpp" #include "opto/phaseX.hpp" #include "opto/subnode.hpp" #include "opto/type.hpp" //----------------------------------------------------------------------------- //----------------------------IdealKit----------------------------------------- // Set of utilities for creating control flow and scalar SSA data flow. // Control: // if_then(left, relop, right) // else_ (optional) // end_if // loop(iv variable, initial, relop, limit) // - sets iv to initial for first trip // - exits when relation on limit is true // - the values of initial and limit should be loop invariant // - no increment, must be explicitly coded // - final value of iv is available after end_loop (until dead()) // end_loop // make_label(number of gotos) // goto_(label) // bind(label) // Data: // ConI(integer constant) - create an integer constant // set(variable, value) - assignment // value(variable) - reference value // dead(variable) - variable's value is no longer live // increment(variable, value) - increment variable by value // simple operations: AddI, SubI, AndI, LShiftI, etc. // Example: // Node* limit = ?? // IdealVariable i(kit), j(kit); // declarations_done(); // Node* exit = make_label(1); // 1 goto // set(j, ConI(0)); // loop(i, ConI(0), BoolTest::lt, limit); { // if_then(value(i), BoolTest::gt, ConI(5)) { // set(j, ConI(1)); // goto_(exit); dead(i); // } end_if(); // increment(i, ConI(1)); // } end_loop(); dead(i); // bind(exit); // // See string_indexOf for a more complete example. class IdealKit; // Variable definition for IdealKit class IdealVariable: public StackObj { friend class IdealKit; private: int _id; void set_id(int id) { _id = id; } public: IdealVariable(IdealKit &k); int id() { assert(has_id(),"uninitialized id"); return _id; } bool has_id() { return _id >= 0; } }; class IdealKit: public StackObj { friend class IdealVariable; // The main state (called a cvstate for Control and Variables) // contains both the current values of the variables and the // current set of predecessor control edges. The variable values // are managed via a Node [in(1)..in(_var_ct)], and the predecessor // control edges managed via a RegionNode. The in(0) of the Node // for variables points to the RegionNode for the control edges. protected: Compile * const C; PhaseGVN &_gvn; GrowableArray* _pending_cvstates; // stack of cvstates Node* _cvstate; // current cvstate (control, memory and variables) uint _var_ct; // number of variables bool _delay_all_transforms; // flag forcing all transforms to be delayed Node* _initial_ctrl; // saves initial control until variables declared Node* _initial_memory; // saves initial memory until variables declared Node* _initial_i_o; // saves initial i_o until variables declared PhaseGVN& gvn() const { return _gvn; } // Create a new cvstate filled with nulls Node* new_cvstate(); // Create a new cvstate Node* cvstate() { return _cvstate; } // current cvstate Node* copy_cvstate(); // copy current cvstate void set_memory(Node* mem, uint alias_idx ); void do_memory_merge(Node* merging, Node* join); void clear(Node* m); // clear a cvstate void stop() { clear(_cvstate); } // clear current cvstate Node* delay_transform(Node* n); Node* transform(Node* n); // gvn.transform or skip it Node* promote_to_phi(Node* n, Node* reg);// Promote "n" to a phi on region "reg" bool was_promoted_to_phi(Node* n, Node* reg) { return (n->is_Phi() && n->in(0) == reg); } void declare(IdealVariable* v) { v->set_id(_var_ct++); } // This declares the position where vars are kept in the cvstate // For some degree of consistency we use the TypeFunc enum to // soak up spots in the inputs even though we only use early Control // and Memory slots. (So far.) static const uint first_var; // = TypeFunc::Parms + 1; #ifdef ASSERT enum State { NullS=0, BlockS=1, LoopS=2, IfThenS=4, ElseS=8, EndifS= 16 }; GrowableArray* _state; State state() { return (State)(_state->top()); } #endif // Users should not care about slices only MergedMem so no access for them. Node* memory(uint alias_idx); public: IdealKit(GraphKit* gkit, bool delay_all_transforms = false, bool has_declarations = false); ~IdealKit() { stop(); } void sync_kit(GraphKit* gkit); // Control Node* ctrl() { return _cvstate->in(TypeFunc::Control); } void set_ctrl(Node* ctrl) { _cvstate->set_req(TypeFunc::Control, ctrl); } Node* top() { return C->top(); } MergeMemNode* merged_memory() { return _cvstate->in(TypeFunc::Memory)->as_MergeMem(); } void set_all_memory(Node* mem) { _cvstate->set_req(TypeFunc::Memory, mem); } Node* i_o() { return _cvstate->in(TypeFunc::I_O); } void set_i_o(Node* c) { _cvstate->set_req(TypeFunc::I_O, c); } void set(IdealVariable& v, Node* rhs) { _cvstate->set_req(first_var + v.id(), rhs); } Node* value(IdealVariable& v) { return _cvstate->in(first_var + v.id()); } void dead(IdealVariable& v) { set(v, (Node*)NULL); } void if_then(Node* left, BoolTest::mask relop, Node* right, float prob = PROB_FAIR, float cnt = COUNT_UNKNOWN, bool push_new_state = true); void else_(); void end_if(); void loop(GraphKit* gkit, int nargs, IdealVariable& iv, Node* init, BoolTest::mask cmp, Node* limit, float prob = PROB_LIKELY(0.9), float cnt = COUNT_UNKNOWN); void end_loop(); Node* make_label(int goto_ct); void bind(Node* lab); void goto_(Node* lab, bool bind = false); void declarations_done(); Node* IfTrue(IfNode* iff) { return transform(new (C) IfTrueNode(iff)); } Node* IfFalse(IfNode* iff) { return transform(new (C) IfFalseNode(iff)); } // Data Node* ConI(jint k) { return (Node*)gvn().intcon(k); } Node* makecon(const Type *t) const { return _gvn.makecon(t); } Node* AddI(Node* l, Node* r) { return transform(new (C) AddINode(l, r)); } Node* SubI(Node* l, Node* r) { return transform(new (C) SubINode(l, r)); } Node* AndI(Node* l, Node* r) { return transform(new (C) AndINode(l, r)); } Node* MaxI(Node* l, Node* r) { return transform(new (C) MaxINode(l, r)); } Node* LShiftI(Node* l, Node* r) { return transform(new (C) LShiftINode(l, r)); } Node* CmpI(Node* l, Node* r) { return transform(new (C) CmpINode(l, r)); } Node* Bool(Node* cmp, BoolTest::mask relop) { return transform(new (C) BoolNode(cmp, relop)); } void increment(IdealVariable& v, Node* j) { set(v, AddI(value(v), j)); } void decrement(IdealVariable& v, Node* j) { set(v, SubI(value(v), j)); } Node* CmpL(Node* l, Node* r) { return transform(new (C) CmpLNode(l, r)); } // TLS Node* thread() { return gvn().transform(new (C) ThreadLocalNode()); } // Pointers // Raw address should be transformed regardless 'delay_transform' flag // to produce canonical form CastX2P(offset). Node* AddP(Node *base, Node *ptr, Node *off) { return _gvn.transform(new (C) AddPNode(base, ptr, off)); } Node* CmpP(Node* l, Node* r) { return transform(new (C) CmpPNode(l, r)); } #ifdef _LP64 Node* XorX(Node* l, Node* r) { return transform(new (C) XorLNode(l, r)); } #else // _LP64 Node* XorX(Node* l, Node* r) { return transform(new (C) XorINode(l, r)); } #endif // _LP64 Node* URShiftX(Node* l, Node* r) { return transform(new (C) URShiftXNode(l, r)); } Node* ConX(jint k) { return (Node*)gvn().MakeConX(k); } Node* CastPX(Node* ctl, Node* p) { return transform(new (C) CastP2XNode(ctl, p)); } // Memory operations // This is the base version which is given an alias index. Node* load(Node* ctl, Node* adr, const Type* t, BasicType bt, int adr_idx, bool require_atomic_access = false); // Return the new StoreXNode Node* store(Node* ctl, Node* adr, Node* val, BasicType bt, int adr_idx, MemNode::MemOrd mo, bool require_atomic_access = false, bool mismatched = false ); // Store a card mark ordered after store_oop Node* storeCM(Node* ctl, Node* adr, Node* val, Node* oop_store, int oop_adr_idx, BasicType bt, int adr_idx); // Trivial call void make_leaf_call(const TypeFunc *slow_call_type, address slow_call, const char *leaf_name, Node* parm0, Node* parm1 = NULL, Node* parm2 = NULL, Node* parm3 = NULL); void make_leaf_call_no_fp(const TypeFunc *slow_call_type, address slow_call, const char *leaf_name, const TypePtr* adr_type, Node* parm0, Node* parm1, Node* parm2, Node* parm3); }; #endif // SHARE_VM_OPTO_IDEALKIT_HPP