/* * Copyright 1997-2005 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. * */ // Portions of code courtesy of Clifford Click class PhaseTransform; //------------------------------MulNode---------------------------------------- // Classic MULTIPLY functionality. This covers all the usual 'multiply' // behaviors for an algebraic ring. Multiply-integer, multiply-float, // multiply-double, and binary-and are all inherited from this class. The // various identity values are supplied by virtual functions. class MulNode : public Node { virtual uint hash() const; public: MulNode( Node *in1, Node *in2 ): Node(0,in1,in2) { init_class_id(Class_Mul); } // Handle algebraic identities here. If we have an identity, return the Node // we are equivalent to. We look for "add of zero" as an identity. virtual Node *Identity( PhaseTransform *phase ); // We also canonicalize the Node, moving constants to the right input, // and flatten expressions (so that 1+x+2 becomes x+3). virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); // Compute a new Type for this node. Basically we just do the pre-check, // then call the virtual add() to set the type. virtual const Type *Value( PhaseTransform *phase ) const; // Supplied function returns the product of the inputs. // This also type-checks the inputs for sanity. Guaranteed never to // be passed a TOP or BOTTOM type, these are filtered out by a pre-check. // This call recognizes the multiplicative zero type. virtual const Type *mul_ring( const Type *, const Type * ) const = 0; // Supplied function to return the multiplicative identity type virtual const Type *mul_id() const = 0; // Supplied function to return the additive identity type virtual const Type *add_id() const = 0; // Supplied function to return the additive opcode virtual int add_opcode() const = 0; // Supplied function to return the multiplicative opcode virtual int mul_opcode() const = 0; }; //------------------------------MulINode--------------------------------------- // Multiply 2 integers class MulINode : public MulNode { public: MulINode( Node *in1, Node *in2 ) : MulNode(in1,in2) {} virtual int Opcode() const; virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); virtual const Type *mul_ring( const Type *, const Type * ) const; const Type *mul_id() const { return TypeInt::ONE; } const Type *add_id() const { return TypeInt::ZERO; } int add_opcode() const { return Op_AddI; } int mul_opcode() const { return Op_MulI; } const Type *bottom_type() const { return TypeInt::INT; } virtual uint ideal_reg() const { return Op_RegI; } }; //------------------------------MulLNode--------------------------------------- // Multiply 2 longs class MulLNode : public MulNode { public: MulLNode( Node *in1, Node *in2 ) : MulNode(in1,in2) {} virtual int Opcode() const; virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); virtual const Type *mul_ring( const Type *, const Type * ) const; const Type *mul_id() const { return TypeLong::ONE; } const Type *add_id() const { return TypeLong::ZERO; } int add_opcode() const { return Op_AddL; } int mul_opcode() const { return Op_MulL; } const Type *bottom_type() const { return TypeLong::LONG; } virtual uint ideal_reg() const { return Op_RegL; } }; //------------------------------MulFNode--------------------------------------- // Multiply 2 floats class MulFNode : public MulNode { public: MulFNode( Node *in1, Node *in2 ) : MulNode(in1,in2) {} virtual int Opcode() const; virtual const Type *mul_ring( const Type *, const Type * ) const; const Type *mul_id() const { return TypeF::ONE; } const Type *add_id() const { return TypeF::ZERO; } int add_opcode() const { return Op_AddF; } int mul_opcode() const { return Op_MulF; } const Type *bottom_type() const { return Type::FLOAT; } virtual uint ideal_reg() const { return Op_RegF; } }; //------------------------------MulDNode--------------------------------------- // Multiply 2 doubles class MulDNode : public MulNode { public: MulDNode( Node *in1, Node *in2 ) : MulNode(in1,in2) {} virtual int Opcode() const; virtual const Type *mul_ring( const Type *, const Type * ) const; const Type *mul_id() const { return TypeD::ONE; } const Type *add_id() const { return TypeD::ZERO; } int add_opcode() const { return Op_AddD; } int mul_opcode() const { return Op_MulD; } const Type *bottom_type() const { return Type::DOUBLE; } virtual uint ideal_reg() const { return Op_RegD; } }; //------------------------------AndINode--------------------------------------- // Logically AND 2 integers. Included with the MUL nodes because it inherits // all the behavior of multiplication on a ring. class AndINode : public MulINode { public: AndINode( Node *in1, Node *in2 ) : MulINode(in1,in2) {} virtual int Opcode() const; virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); virtual Node *Identity( PhaseTransform *phase ); virtual const Type *mul_ring( const Type *, const Type * ) const; const Type *mul_id() const { return TypeInt::MINUS_1; } const Type *add_id() const { return TypeInt::ZERO; } int add_opcode() const { return Op_OrI; } int mul_opcode() const { return Op_AndI; } virtual uint ideal_reg() const { return Op_RegI; } }; //------------------------------AndINode--------------------------------------- // Logically AND 2 longs. Included with the MUL nodes because it inherits // all the behavior of multiplication on a ring. class AndLNode : public MulLNode { public: AndLNode( Node *in1, Node *in2 ) : MulLNode(in1,in2) {} virtual int Opcode() const; virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); virtual Node *Identity( PhaseTransform *phase ); virtual const Type *mul_ring( const Type *, const Type * ) const; const Type *mul_id() const { return TypeLong::MINUS_1; } const Type *add_id() const { return TypeLong::ZERO; } int add_opcode() const { return Op_OrL; } int mul_opcode() const { return Op_AndL; } virtual uint ideal_reg() const { return Op_RegL; } }; //------------------------------LShiftINode------------------------------------ // Logical shift left class LShiftINode : public Node { public: LShiftINode( Node *in1, Node *in2 ) : Node(0,in1,in2) {} virtual int Opcode() const; virtual Node *Identity( PhaseTransform *phase ); virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); virtual const Type *Value( PhaseTransform *phase ) const; const Type *bottom_type() const { return TypeInt::INT; } virtual uint ideal_reg() const { return Op_RegI; } }; //------------------------------LShiftLNode------------------------------------ // Logical shift left class LShiftLNode : public Node { public: LShiftLNode( Node *in1, Node *in2 ) : Node(0,in1,in2) {} virtual int Opcode() const; virtual Node *Identity( PhaseTransform *phase ); virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); virtual const Type *Value( PhaseTransform *phase ) const; const Type *bottom_type() const { return TypeLong::LONG; } virtual uint ideal_reg() const { return Op_RegL; } }; //------------------------------RShiftINode------------------------------------ // Signed shift right class RShiftINode : public Node { public: RShiftINode( Node *in1, Node *in2 ) : Node(0,in1,in2) {} virtual int Opcode() const; virtual Node *Identity( PhaseTransform *phase ); virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); virtual const Type *Value( PhaseTransform *phase ) const; const Type *bottom_type() const { return TypeInt::INT; } virtual uint ideal_reg() const { return Op_RegI; } }; //------------------------------RShiftLNode------------------------------------ // Signed shift right class RShiftLNode : public Node { public: RShiftLNode( Node *in1, Node *in2 ) : Node(0,in1,in2) {} virtual int Opcode() const; virtual Node *Identity( PhaseTransform *phase ); virtual const Type *Value( PhaseTransform *phase ) const; const Type *bottom_type() const { return TypeLong::LONG; } virtual uint ideal_reg() const { return Op_RegL; } }; //------------------------------URShiftINode----------------------------------- // Logical shift right class URShiftINode : public Node { public: URShiftINode( Node *in1, Node *in2 ) : Node(0,in1,in2) {} virtual int Opcode() const; virtual Node *Identity( PhaseTransform *phase ); virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); virtual const Type *Value( PhaseTransform *phase ) const; const Type *bottom_type() const { return TypeInt::INT; } virtual uint ideal_reg() const { return Op_RegI; } }; //------------------------------URShiftLNode----------------------------------- // Logical shift right class URShiftLNode : public Node { public: URShiftLNode( Node *in1, Node *in2 ) : Node(0,in1,in2) {} virtual int Opcode() const; virtual Node *Identity( PhaseTransform *phase ); virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); virtual const Type *Value( PhaseTransform *phase ) const; const Type *bottom_type() const { return TypeLong::LONG; } virtual uint ideal_reg() const { return Op_RegL; } };