/* * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "asm/assembler.hpp" #include "interpreter/bytecodeHistogram.hpp" #include "interpreter/interpreter.hpp" #include "interpreter/interpreterGenerator.hpp" #include "interpreter/interpreterRuntime.hpp" #include "interpreter/templateTable.hpp" #include "oops/arrayOop.hpp" #include "oops/methodData.hpp" #include "oops/method.hpp" #include "oops/oop.inline.hpp" #include "prims/jvmtiExport.hpp" #include "prims/jvmtiThreadState.hpp" #include "prims/methodHandles.hpp" #include "runtime/arguments.hpp" #include "runtime/deoptimization.hpp" #include "runtime/frame.inline.hpp" #include "runtime/sharedRuntime.hpp" #include "runtime/stubRoutines.hpp" #include "runtime/synchronizer.hpp" #include "runtime/timer.hpp" #include "runtime/vframeArray.hpp" #include "utilities/debug.hpp" #ifdef COMPILER1 #include "c1/c1_Runtime1.hpp" #endif // Generation of Interpreter // // The InterpreterGenerator generates the interpreter into Interpreter::_code. #define __ _masm-> //---------------------------------------------------------------------------------------------------- int AbstractInterpreter::BasicType_as_index(BasicType type) { int i = 0; switch (type) { case T_BOOLEAN: i = 0; break; case T_CHAR : i = 1; break; case T_BYTE : i = 2; break; case T_SHORT : i = 3; break; case T_INT : i = 4; break; case T_LONG : i = 5; break; case T_VOID : i = 6; break; case T_FLOAT : i = 7; break; case T_DOUBLE : i = 8; break; case T_OBJECT : i = 9; break; case T_ARRAY : i = 9; break; default : ShouldNotReachHere(); } assert(0 <= i && i < AbstractInterpreter::number_of_result_handlers, "index out of bounds"); return i; } #ifndef _LP64 address AbstractInterpreterGenerator::generate_slow_signature_handler() { address entry = __ pc(); Argument argv(0, true); // We are in the jni transition frame. Save the last_java_frame corresponding to the // outer interpreter frame // __ set_last_Java_frame(FP, noreg); // make sure the interpreter frame we've pushed has a valid return pc __ mov(O7, I7); __ mov(Lmethod, G3_scratch); __ mov(Llocals, G4_scratch); __ save_frame(0); __ mov(G2_thread, L7_thread_cache); __ add(argv.address_in_frame(), O3); __ mov(G2_thread, O0); __ mov(G3_scratch, O1); __ call(CAST_FROM_FN_PTR(address, InterpreterRuntime::slow_signature_handler), relocInfo::runtime_call_type); __ delayed()->mov(G4_scratch, O2); __ mov(L7_thread_cache, G2_thread); __ reset_last_Java_frame(); // load the register arguments (the C code packed them as varargs) for (Argument ldarg = argv.successor(); ldarg.is_register(); ldarg = ldarg.successor()) { __ ld_ptr(ldarg.address_in_frame(), ldarg.as_register()); } __ ret(); __ delayed()-> restore(O0, 0, Lscratch); // caller's Lscratch gets the result handler return entry; } #else // LP64 passes floating point arguments in F1, F3, F5, etc. instead of // O0, O1, O2 etc.. // Doubles are passed in D0, D2, D4 // We store the signature of the first 16 arguments in the first argument // slot because it will be overwritten prior to calling the native // function, with the pointer to the JNIEnv. // If LP64 there can be up to 16 floating point arguments in registers // or 6 integer registers. address AbstractInterpreterGenerator::generate_slow_signature_handler() { enum { non_float = 0, float_sig = 1, double_sig = 2, sig_mask = 3 }; address entry = __ pc(); Argument argv(0, true); // We are in the jni transition frame. Save the last_java_frame corresponding to the // outer interpreter frame // __ set_last_Java_frame(FP, noreg); // make sure the interpreter frame we've pushed has a valid return pc __ mov(O7, I7); __ mov(Lmethod, G3_scratch); __ mov(Llocals, G4_scratch); __ save_frame(0); __ mov(G2_thread, L7_thread_cache); __ add(argv.address_in_frame(), O3); __ mov(G2_thread, O0); __ mov(G3_scratch, O1); __ call(CAST_FROM_FN_PTR(address, InterpreterRuntime::slow_signature_handler), relocInfo::runtime_call_type); __ delayed()->mov(G4_scratch, O2); __ mov(L7_thread_cache, G2_thread); __ reset_last_Java_frame(); // load the register arguments (the C code packed them as varargs) Address Sig = argv.address_in_frame(); // Argument 0 holds the signature __ ld_ptr( Sig, G3_scratch ); // Get register argument signature word into G3_scratch __ mov( G3_scratch, G4_scratch); __ srl( G4_scratch, 2, G4_scratch); // Skip Arg 0 Label done; for (Argument ldarg = argv.successor(); ldarg.is_float_register(); ldarg = ldarg.successor()) { Label NonFloatArg; Label LoadFloatArg; Label LoadDoubleArg; Label NextArg; Address a = ldarg.address_in_frame(); __ andcc(G4_scratch, sig_mask, G3_scratch); __ br(Assembler::zero, false, Assembler::pt, NonFloatArg); __ delayed()->nop(); __ cmp(G3_scratch, float_sig ); __ br(Assembler::equal, false, Assembler::pt, LoadFloatArg); __ delayed()->nop(); __ cmp(G3_scratch, double_sig ); __ br(Assembler::equal, false, Assembler::pt, LoadDoubleArg); __ delayed()->nop(); __ bind(NonFloatArg); // There are only 6 integer register arguments! if ( ldarg.is_register() ) __ ld_ptr(ldarg.address_in_frame(), ldarg.as_register()); else { // Optimization, see if there are any more args and get out prior to checking // all 16 float registers. My guess is that this is rare. // If is_register is false, then we are done the first six integer args. __ br_null_short(G4_scratch, Assembler::pt, done); } __ ba(NextArg); __ delayed()->srl( G4_scratch, 2, G4_scratch ); __ bind(LoadFloatArg); __ ldf( FloatRegisterImpl::S, a, ldarg.as_float_register(), 4); __ ba(NextArg); __ delayed()->srl( G4_scratch, 2, G4_scratch ); __ bind(LoadDoubleArg); __ ldf( FloatRegisterImpl::D, a, ldarg.as_double_register() ); __ ba(NextArg); __ delayed()->srl( G4_scratch, 2, G4_scratch ); __ bind(NextArg); } __ bind(done); __ ret(); __ delayed()-> restore(O0, 0, Lscratch); // caller's Lscratch gets the result handler return entry; } #endif void InterpreterGenerator::generate_counter_overflow(Label& Lcontinue) { // Generate code to initiate compilation on the counter overflow. // InterpreterRuntime::frequency_counter_overflow takes two arguments, // the first indicates if the counter overflow occurs at a backwards branch (NULL bcp) // and the second is only used when the first is true. We pass zero for both. // The call returns the address of the verified entry point for the method or NULL // if the compilation did not complete (either went background or bailed out). __ set((int)false, O2); __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), O2, O2, true); // returns verified_entry_point or NULL // we ignore it in any case __ ba_short(Lcontinue); } // End of helpers // Various method entries // Abstract method entry // Attempt to execute abstract method. Throw exception // address InterpreterGenerator::generate_abstract_entry(void) { address entry = __ pc(); // abstract method entry // throw exception __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError)); // the call_VM checks for exception, so we should never return here. __ should_not_reach_here(); return entry; } //---------------------------------------------------------------------------------------------------- // Entry points & stack frame layout // // Here we generate the various kind of entries into the interpreter. // The two main entry type are generic bytecode methods and native call method. // These both come in synchronized and non-synchronized versions but the // frame layout they create is very similar. The other method entry // types are really just special purpose entries that are really entry // and interpretation all in one. These are for trivial methods like // accessor, empty, or special math methods. // // When control flow reaches any of the entry types for the interpreter // the following holds -> // // C2 Calling Conventions: // // The entry code below assumes that the following registers are set // when coming in: // G5_method: holds the Method* of the method to call // Lesp: points to the TOS of the callers expression stack // after having pushed all the parameters // // The entry code does the following to setup an interpreter frame // pop parameters from the callers stack by adjusting Lesp // set O0 to Lesp // compute X = (max_locals - num_parameters) // bump SP up by X to accomadate the extra locals // compute X = max_expression_stack // + vm_local_words // + 16 words of register save area // save frame doing a save sp, -X, sp growing towards lower addresses // set Lbcp, Lmethod, LcpoolCache // set Llocals to i0 // set Lmonitors to FP - rounded_vm_local_words // set Lesp to Lmonitors - 4 // // The frame has now been setup to do the rest of the entry code // Try this optimization: Most method entries could live in a // "one size fits all" stack frame without all the dynamic size // calculations. It might be profitable to do all this calculation // statically and approximately for "small enough" methods. //----------------------------------------------------------------------------------------------- // C1 Calling conventions // // Upon method entry, the following registers are setup: // // g2 G2_thread: current thread // g5 G5_method: method to activate // g4 Gargs : pointer to last argument // // // Stack: // // +---------------+ <--- sp // | | // : reg save area : // | | // +---------------+ <--- sp + 0x40 // | | // : extra 7 slots : note: these slots are not really needed for the interpreter (fix later) // | | // +---------------+ <--- sp + 0x5c // | | // : free : // | | // +---------------+ <--- Gargs // | | // : arguments : // | | // +---------------+ // | | // // // // AFTER FRAME HAS BEEN SETUP for method interpretation the stack looks like: // // +---------------+ <--- sp // | | // : reg save area : // | | // +---------------+ <--- sp + 0x40 // | | // : extra 7 slots : note: these slots are not really needed for the interpreter (fix later) // | | // +---------------+ <--- sp + 0x5c // | | // : : // | | <--- Lesp // +---------------+ <--- Lmonitors (fp - 0x18) // | VM locals | // +---------------+ <--- fp // | | // : reg save area : // | | // +---------------+ <--- fp + 0x40 // | | // : extra 7 slots : note: these slots are not really needed for the interpreter (fix later) // | | // +---------------+ <--- fp + 0x5c // | | // : free : // | | // +---------------+ // | | // : nonarg locals : // | | // +---------------+ // | | // : arguments : // | | <--- Llocals // +---------------+ <--- Gargs // | | address AbstractInterpreterGenerator::generate_method_entry(AbstractInterpreter::MethodKind kind) { // determine code generation flags bool synchronized = false; address entry_point = NULL; switch (kind) { case Interpreter::zerolocals : break; case Interpreter::zerolocals_synchronized: synchronized = true; break; case Interpreter::native : entry_point = ((InterpreterGenerator*)this)->generate_native_entry(false); break; case Interpreter::native_synchronized : entry_point = ((InterpreterGenerator*)this)->generate_native_entry(true); break; case Interpreter::empty : entry_point = ((InterpreterGenerator*)this)->generate_empty_entry(); break; case Interpreter::accessor : entry_point = ((InterpreterGenerator*)this)->generate_accessor_entry(); break; case Interpreter::abstract : entry_point = ((InterpreterGenerator*)this)->generate_abstract_entry(); break; case Interpreter::java_lang_math_sin : break; case Interpreter::java_lang_math_cos : break; case Interpreter::java_lang_math_tan : break; case Interpreter::java_lang_math_sqrt : break; case Interpreter::java_lang_math_abs : break; case Interpreter::java_lang_math_log : break; case Interpreter::java_lang_math_log10 : break; case Interpreter::java_lang_math_pow : break; case Interpreter::java_lang_math_exp : break; case Interpreter::java_lang_ref_reference_get : entry_point = ((InterpreterGenerator*)this)->generate_Reference_get_entry(); break; default: fatal(err_msg("unexpected method kind: %d", kind)); break; } if (entry_point) return entry_point; return ((InterpreterGenerator*)this)->generate_normal_entry(synchronized); } bool AbstractInterpreter::can_be_compiled(methodHandle m) { // No special entry points that preclude compilation return true; } void Deoptimization::unwind_callee_save_values(frame* f, vframeArray* vframe_array) { // This code is sort of the equivalent of C2IAdapter::setup_stack_frame back in // the days we had adapter frames. When we deoptimize a situation where a // compiled caller calls a compiled caller will have registers it expects // to survive the call to the callee. If we deoptimize the callee the only // way we can restore these registers is to have the oldest interpreter // frame that we create restore these values. That is what this routine // will accomplish. // At the moment we have modified c2 to not have any callee save registers // so this problem does not exist and this routine is just a place holder. assert(f->is_interpreted_frame(), "must be interpreted"); } //---------------------------------------------------------------------------------------------------- // Exceptions