/* * Copyright (c) 1998, 2014, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "ci/ciCallSite.hpp" #include "ci/ciMethodHandle.hpp" #include "classfile/vmSymbols.hpp" #include "compiler/compileBroker.hpp" #include "compiler/compileLog.hpp" #include "interpreter/linkResolver.hpp" #include "opto/addnode.hpp" #include "opto/callGenerator.hpp" #include "opto/cfgnode.hpp" #include "opto/mulnode.hpp" #include "opto/parse.hpp" #include "opto/rootnode.hpp" #include "opto/runtime.hpp" #include "opto/subnode.hpp" #include "prims/nativeLookup.hpp" #include "runtime/sharedRuntime.hpp" void trace_type_profile(Compile* C, ciMethod *method, int depth, int bci, ciMethod *prof_method, ciKlass *prof_klass, int site_count, int receiver_count) { if (TraceTypeProfile || C->print_inlining()) { outputStream* out = tty; if (!C->print_inlining()) { if (NOT_PRODUCT(!PrintOpto &&) !PrintCompilation) { method->print_short_name(); tty->cr(); } CompileTask::print_inlining(prof_method, depth, bci); } else { out = C->print_inlining_stream(); } CompileTask::print_inline_indent(depth, out); out->print(" \\-> TypeProfile (%d/%d counts) = ", receiver_count, site_count); stringStream ss; prof_klass->name()->print_symbol_on(&ss); out->print("%s", ss.as_string()); out->cr(); } } CallGenerator* Compile::call_generator(ciMethod* callee, int vtable_index, bool call_does_dispatch, JVMState* jvms, bool allow_inline, float prof_factor, ciKlass* speculative_receiver_type, bool allow_intrinsics, bool delayed_forbidden) { ciMethod* caller = jvms->method(); int bci = jvms->bci(); Bytecodes::Code bytecode = caller->java_code_at_bci(bci); guarantee(callee != NULL, "failed method resolution"); // Dtrace currently doesn't work unless all calls are vanilla if (env()->dtrace_method_probes()) { allow_inline = false; } // Note: When we get profiling during stage-1 compiles, we want to pull // from more specific profile data which pertains to this inlining. // Right now, ignore the information in jvms->caller(), and do method[bci]. ciCallProfile profile = caller->call_profile_at_bci(bci); // See how many times this site has been invoked. int site_count = profile.count(); int receiver_count = -1; if (call_does_dispatch && UseTypeProfile && profile.has_receiver(0)) { // Receivers in the profile structure are ordered by call counts // so that the most called (major) receiver is profile.receiver(0). receiver_count = profile.receiver_count(0); } CompileLog* log = this->log(); if (log != NULL) { int rid = (receiver_count >= 0)? log->identify(profile.receiver(0)): -1; int r2id = (rid != -1 && profile.has_receiver(1))? log->identify(profile.receiver(1)):-1; log->begin_elem("call method='%d' count='%d' prof_factor='%g'", log->identify(callee), site_count, prof_factor); if (call_does_dispatch) log->print(" virtual='1'"); if (allow_inline) log->print(" inline='1'"); if (receiver_count >= 0) { log->print(" receiver='%d' receiver_count='%d'", rid, receiver_count); if (profile.has_receiver(1)) { log->print(" receiver2='%d' receiver2_count='%d'", r2id, profile.receiver_count(1)); } } log->end_elem(); } // Special case the handling of certain common, profitable library // methods. If these methods are replaced with specialized code, // then we return it as the inlined version of the call. // We do this before the strict f.p. check below because the // intrinsics handle strict f.p. correctly. CallGenerator* cg_intrinsic = NULL; if (allow_inline && allow_intrinsics) { CallGenerator* cg = find_intrinsic(callee, call_does_dispatch); if (cg != NULL) { if (cg->is_predicated()) { // Code without intrinsic but, hopefully, inlined. CallGenerator* inline_cg = this->call_generator(callee, vtable_index, call_does_dispatch, jvms, allow_inline, prof_factor, speculative_receiver_type, false); if (inline_cg != NULL) { cg = CallGenerator::for_predicated_intrinsic(cg, inline_cg); } } // If intrinsic does the virtual dispatch, we try to use the type profile // first, and hopefully inline it as the regular virtual call below. // We will retry the intrinsic if nothing had claimed it afterwards. if (cg->does_virtual_dispatch()) { cg_intrinsic = cg; cg = NULL; } else { return cg; } } } // Do method handle calls. // NOTE: This must happen before normal inlining logic below since // MethodHandle.invoke* are native methods which obviously don't // have bytecodes and so normal inlining fails. if (callee->is_method_handle_intrinsic()) { CallGenerator* cg = CallGenerator::for_method_handle_call(jvms, caller, callee, delayed_forbidden); assert(cg == NULL || !delayed_forbidden || !cg->is_late_inline() || cg->is_mh_late_inline(), "unexpected CallGenerator"); return cg; } // Do not inline strict fp into non-strict code, or the reverse if (caller->is_strict() ^ callee->is_strict()) { allow_inline = false; } // Attempt to inline... if (allow_inline) { // The profile data is only partly attributable to this caller, // scale back the call site information. float past_uses = jvms->method()->scale_count(site_count, prof_factor); // This is the number of times we expect the call code to be used. float expected_uses = past_uses; // Try inlining a bytecoded method: if (!call_does_dispatch) { InlineTree* ilt = InlineTree::find_subtree_from_root(this->ilt(), jvms->caller(), jvms->method()); WarmCallInfo scratch_ci; bool should_delay = false; WarmCallInfo* ci = ilt->ok_to_inline(callee, jvms, profile, &scratch_ci, should_delay); assert(ci != &scratch_ci, "do not let this pointer escape"); bool allow_inline = (ci != NULL && !ci->is_cold()); bool require_inline = (allow_inline && ci->is_hot()); if (allow_inline) { CallGenerator* cg = CallGenerator::for_inline(callee, expected_uses); if (require_inline && cg != NULL) { // Delay the inlining of this method to give us the // opportunity to perform some high level optimizations // first. if (should_delay_string_inlining(callee, jvms)) { assert(!delayed_forbidden, "strange"); return CallGenerator::for_string_late_inline(callee, cg); } else if (should_delay_boxing_inlining(callee, jvms)) { assert(!delayed_forbidden, "strange"); return CallGenerator::for_boxing_late_inline(callee, cg); } else if ((should_delay || AlwaysIncrementalInline) && !delayed_forbidden) { return CallGenerator::for_late_inline(callee, cg); } } if (cg == NULL || should_delay) { // Fall through. } else if (require_inline || !InlineWarmCalls) { return cg; } else { CallGenerator* cold_cg = call_generator(callee, vtable_index, call_does_dispatch, jvms, false, prof_factor); return CallGenerator::for_warm_call(ci, cold_cg, cg); } } } // Try using the type profile. if (call_does_dispatch && site_count > 0 && receiver_count > 0) { // The major receiver's count >= TypeProfileMajorReceiverPercent of site_count. bool have_major_receiver = (100.*profile.receiver_prob(0) >= (float)TypeProfileMajorReceiverPercent); ciMethod* receiver_method = NULL; int morphism = profile.morphism(); if (speculative_receiver_type != NULL) { // We have a speculative type, we should be able to resolve // the call. We do that before looking at the profiling at // this invoke because it may lead to bimorphic inlining which // a speculative type should help us avoid. receiver_method = callee->resolve_invoke(jvms->method()->holder(), speculative_receiver_type); if (receiver_method == NULL) { speculative_receiver_type = NULL; } else { morphism = 1; } } if (receiver_method == NULL && (have_major_receiver || morphism == 1 || (morphism == 2 && UseBimorphicInlining))) { // receiver_method = profile.method(); // Profiles do not suggest methods now. Look it up in the major receiver. receiver_method = callee->resolve_invoke(jvms->method()->holder(), profile.receiver(0)); } if (receiver_method != NULL) { // The single majority receiver sufficiently outweighs the minority. CallGenerator* hit_cg = this->call_generator(receiver_method, vtable_index, !call_does_dispatch, jvms, allow_inline, prof_factor); if (hit_cg != NULL) { // Look up second receiver. CallGenerator* next_hit_cg = NULL; ciMethod* next_receiver_method = NULL; if (morphism == 2 && UseBimorphicInlining) { next_receiver_method = callee->resolve_invoke(jvms->method()->holder(), profile.receiver(1)); if (next_receiver_method != NULL) { next_hit_cg = this->call_generator(next_receiver_method, vtable_index, !call_does_dispatch, jvms, allow_inline, prof_factor); if (next_hit_cg != NULL && !next_hit_cg->is_inline() && have_major_receiver && UseOnlyInlinedBimorphic) { // Skip if we can't inline second receiver's method next_hit_cg = NULL; } } } CallGenerator* miss_cg; Deoptimization::DeoptReason reason = morphism == 2 ? Deoptimization::Reason_bimorphic : (speculative_receiver_type == NULL ? Deoptimization::Reason_class_check : Deoptimization::Reason_speculate_class_check); if ((morphism == 1 || (morphism == 2 && next_hit_cg != NULL)) && !too_many_traps(jvms->method(), jvms->bci(), reason) ) { // Generate uncommon trap for class check failure path // in case of monomorphic or bimorphic virtual call site. miss_cg = CallGenerator::for_uncommon_trap(callee, reason, Deoptimization::Action_maybe_recompile); } else { // Generate virtual call for class check failure path // in case of polymorphic virtual call site. miss_cg = CallGenerator::for_virtual_call(callee, vtable_index); } if (miss_cg != NULL) { if (next_hit_cg != NULL) { assert(speculative_receiver_type == NULL, "shouldn't end up here if we used speculation"); trace_type_profile(C, jvms->method(), jvms->depth() - 1, jvms->bci(), next_receiver_method, profile.receiver(1), site_count, profile.receiver_count(1)); // We don't need to record dependency on a receiver here and below. // Whenever we inline, the dependency is added by Parse::Parse(). miss_cg = CallGenerator::for_predicted_call(profile.receiver(1), miss_cg, next_hit_cg, PROB_MAX); } if (miss_cg != NULL) { trace_type_profile(C, jvms->method(), jvms->depth() - 1, jvms->bci(), receiver_method, profile.receiver(0), site_count, receiver_count); ciKlass* k = speculative_receiver_type != NULL ? speculative_receiver_type : profile.receiver(0); float hit_prob = speculative_receiver_type != NULL ? 1.0 : profile.receiver_prob(0); CallGenerator* cg = CallGenerator::for_predicted_call(k, miss_cg, hit_cg, hit_prob); if (cg != NULL) return cg; } } } } } } // Nothing claimed the intrinsic, we go with straight-forward inlining // for already discovered intrinsic. if (allow_inline && allow_intrinsics && cg_intrinsic != NULL) { assert(cg_intrinsic->does_virtual_dispatch(), "sanity"); return cg_intrinsic; } // There was no special inlining tactic, or it bailed out. // Use a more generic tactic, like a simple call. if (call_does_dispatch) { return CallGenerator::for_virtual_call(callee, vtable_index); } else { // Class Hierarchy Analysis or Type Profile reveals a unique target, // or it is a static or special call. return CallGenerator::for_direct_call(callee, should_delay_inlining(callee, jvms)); } } // Return true for methods that shouldn't be inlined early so that // they are easier to analyze and optimize as intrinsics. bool Compile::should_delay_string_inlining(ciMethod* call_method, JVMState* jvms) { if (has_stringbuilder()) { if ((call_method->holder() == C->env()->StringBuilder_klass() || call_method->holder() == C->env()->StringBuffer_klass()) && (jvms->method()->holder() == C->env()->StringBuilder_klass() || jvms->method()->holder() == C->env()->StringBuffer_klass())) { // Delay SB calls only when called from non-SB code return false; } switch (call_method->intrinsic_id()) { case vmIntrinsics::_StringBuilder_void: case vmIntrinsics::_StringBuilder_int: case vmIntrinsics::_StringBuilder_String: case vmIntrinsics::_StringBuilder_append_char: case vmIntrinsics::_StringBuilder_append_int: case vmIntrinsics::_StringBuilder_append_String: case vmIntrinsics::_StringBuilder_toString: case vmIntrinsics::_StringBuffer_void: case vmIntrinsics::_StringBuffer_int: case vmIntrinsics::_StringBuffer_String: case vmIntrinsics::_StringBuffer_append_char: case vmIntrinsics::_StringBuffer_append_int: case vmIntrinsics::_StringBuffer_append_String: case vmIntrinsics::_StringBuffer_toString: case vmIntrinsics::_Integer_toString: return true; case vmIntrinsics::_String_String: { Node* receiver = jvms->map()->in(jvms->argoff() + 1); if (receiver->is_Proj() && receiver->in(0)->is_CallStaticJava()) { CallStaticJavaNode* csj = receiver->in(0)->as_CallStaticJava(); ciMethod* m = csj->method(); if (m != NULL && (m->intrinsic_id() == vmIntrinsics::_StringBuffer_toString || m->intrinsic_id() == vmIntrinsics::_StringBuilder_toString)) // Delay String.(new SB()) return true; } return false; } default: return false; } } return false; } bool Compile::should_delay_boxing_inlining(ciMethod* call_method, JVMState* jvms) { if (eliminate_boxing() && call_method->is_boxing_method()) { set_has_boxed_value(true); return aggressive_unboxing(); } return false; } // uncommon-trap call-sites where callee is unloaded, uninitialized or will not link bool Parse::can_not_compile_call_site(ciMethod *dest_method, ciInstanceKlass* klass) { // Additional inputs to consider... // bc = bc() // caller = method() // iter().get_method_holder_index() assert( dest_method->is_loaded(), "ciTypeFlow should not let us get here" ); // Interface classes can be loaded & linked and never get around to // being initialized. Uncommon-trap for not-initialized static or // v-calls. Let interface calls happen. ciInstanceKlass* holder_klass = dest_method->holder(); if (!holder_klass->is_being_initialized() && !holder_klass->is_initialized() && !holder_klass->is_interface()) { uncommon_trap(Deoptimization::Reason_uninitialized, Deoptimization::Action_reinterpret, holder_klass); return true; } assert(dest_method->is_loaded(), "dest_method: typeflow responsibility"); return false; } //------------------------------do_call---------------------------------------- // Handle your basic call. Inline if we can & want to, else just setup call. void Parse::do_call() { // It's likely we are going to add debug info soon. // Also, if we inline a guy who eventually needs debug info for this JVMS, // our contribution to it is cleaned up right here. kill_dead_locals(); // Set frequently used booleans const bool is_virtual = bc() == Bytecodes::_invokevirtual; const bool is_virtual_or_interface = is_virtual || bc() == Bytecodes::_invokeinterface; const bool has_receiver = Bytecodes::has_receiver(bc()); // Find target being called bool will_link; ciSignature* declared_signature = NULL; ciMethod* orig_callee = iter().get_method(will_link, &declared_signature); // callee in the bytecode ciInstanceKlass* holder_klass = orig_callee->holder(); ciKlass* holder = iter().get_declared_method_holder(); ciInstanceKlass* klass = ciEnv::get_instance_klass_for_declared_method_holder(holder); assert(declared_signature != NULL, "cannot be null"); // uncommon-trap when callee is unloaded, uninitialized or will not link // bailout when too many arguments for register representation if (!will_link || can_not_compile_call_site(orig_callee, klass)) { #ifndef PRODUCT if (PrintOpto && (Verbose || WizardMode)) { method()->print_name(); tty->print_cr(" can not compile call at bci %d to:", bci()); orig_callee->print_name(); tty->cr(); } #endif return; } assert(holder_klass->is_loaded(), ""); //assert((bc_callee->is_static() || is_invokedynamic) == !has_receiver , "must match bc"); // XXX invokehandle (cur_bc_raw) // Note: this takes into account invokeinterface of methods declared in java/lang/Object, // which should be invokevirtuals but according to the VM spec may be invokeinterfaces assert(holder_klass->is_interface() || holder_klass->super() == NULL || (bc() != Bytecodes::_invokeinterface), "must match bc"); // Note: In the absence of miranda methods, an abstract class K can perform // an invokevirtual directly on an interface method I.m if K implements I. // orig_callee is the resolved callee which's signature includes the // appendix argument. const int nargs = orig_callee->arg_size(); const bool is_signature_polymorphic = MethodHandles::is_signature_polymorphic(orig_callee->intrinsic_id()); // Push appendix argument (MethodType, CallSite, etc.), if one. if (iter().has_appendix()) { ciObject* appendix_arg = iter().get_appendix(); const TypeOopPtr* appendix_arg_type = TypeOopPtr::make_from_constant(appendix_arg); Node* appendix_arg_node = _gvn.makecon(appendix_arg_type); push(appendix_arg_node); } // --------------------- // Does Class Hierarchy Analysis reveal only a single target of a v-call? // Then we may inline or make a static call, but become dependent on there being only 1 target. // Does the call-site type profile reveal only one receiver? // Then we may introduce a run-time check and inline on the path where it succeeds. // The other path may uncommon_trap, check for another receiver, or do a v-call. // Try to get the most accurate receiver type ciMethod* callee = orig_callee; int vtable_index = Method::invalid_vtable_index; bool call_does_dispatch = false; // Speculative type of the receiver if any ciKlass* speculative_receiver_type = NULL; if (is_virtual_or_interface) { Node* receiver_node = stack(sp() - nargs); const TypeOopPtr* receiver_type = _gvn.type(receiver_node)->isa_oopptr(); // call_does_dispatch and vtable_index are out-parameters. They might be changed. // For arrays, klass below is Object. When vtable calls are used, // resolving the call with Object would allow an illegal call to // finalize() on an array. We use holder instead: illegal calls to // finalize() won't be compiled as vtable calls (IC call // resolution will catch the illegal call) and the few legal calls // on array types won't be either. callee = C->optimize_virtual_call(method(), bci(), klass, holder, orig_callee, receiver_type, is_virtual, call_does_dispatch, vtable_index); // out-parameters speculative_receiver_type = receiver_type != NULL ? receiver_type->speculative_type() : NULL; } // Note: It's OK to try to inline a virtual call. // The call generator will not attempt to inline a polymorphic call // unless it knows how to optimize the receiver dispatch. bool try_inline = (C->do_inlining() || InlineAccessors); // --------------------- dec_sp(nargs); // Temporarily pop args for JVM state of call JVMState* jvms = sync_jvms(); // --------------------- // Decide call tactic. // This call checks with CHA, the interpreter profile, intrinsics table, etc. // It decides whether inlining is desirable or not. CallGenerator* cg = C->call_generator(callee, vtable_index, call_does_dispatch, jvms, try_inline, prof_factor(), speculative_receiver_type); // NOTE: Don't use orig_callee and callee after this point! Use cg->method() instead. orig_callee = callee = NULL; // --------------------- // Round double arguments before call round_double_arguments(cg->method()); // Feed profiling data for arguments to the type system so it can // propagate it as speculative types record_profiled_arguments_for_speculation(cg->method(), bc()); #ifndef PRODUCT // bump global counters for calls count_compiled_calls(/*at_method_entry*/ false, cg->is_inline()); // Record first part of parsing work for this call parse_histogram()->record_change(); #endif // not PRODUCT assert(jvms == this->jvms(), "still operating on the right JVMS"); assert(jvms_in_sync(), "jvms must carry full info into CG"); // save across call, for a subsequent cast_not_null. Node* receiver = has_receiver ? argument(0) : NULL; // The extra CheckCastPP for speculative types mess with PhaseStringOpts if (receiver != NULL && !call_does_dispatch && !cg->is_string_late_inline()) { // Feed profiling data for a single receiver to the type system so // it can propagate it as a speculative type receiver = record_profiled_receiver_for_speculation(receiver); } // Bump method data counters (We profile *before* the call is made // because exceptions don't return to the call site.) profile_call(receiver); JVMState* new_jvms = cg->generate(jvms); if (new_jvms == NULL) { // When inlining attempt fails (e.g., too many arguments), // it may contaminate the current compile state, making it // impossible to pull back and try again. Once we call // cg->generate(), we are committed. If it fails, the whole // compilation task is compromised. if (failing()) return; // This can happen if a library intrinsic is available, but refuses // the call site, perhaps because it did not match a pattern the // intrinsic was expecting to optimize. Should always be possible to // get a normal java call that may inline in that case cg = C->call_generator(cg->method(), vtable_index, call_does_dispatch, jvms, try_inline, prof_factor(), speculative_receiver_type, /* allow_intrinsics= */ false); if ((new_jvms = cg->generate(jvms)) == NULL) { guarantee(failing(), "call failed to generate: calls should work"); return; } } if (cg->is_inline()) { // Accumulate has_loops estimate C->set_has_loops(C->has_loops() || cg->method()->has_loops()); C->env()->notice_inlined_method(cg->method()); } // Reset parser state from [new_]jvms, which now carries results of the call. // Return value (if any) is already pushed on the stack by the cg. add_exception_states_from(new_jvms); if (new_jvms->map()->control() == top()) { stop_and_kill_map(); } else { assert(new_jvms->same_calls_as(jvms), "method/bci left unchanged"); set_jvms(new_jvms); } if (!stopped()) { // This was some sort of virtual call, which did a null check for us. // Now we can assert receiver-not-null, on the normal return path. if (receiver != NULL && cg->is_virtual()) { Node* cast = cast_not_null(receiver); // %%% assert(receiver == cast, "should already have cast the receiver"); } // Round double result after a call from strict to non-strict code round_double_result(cg->method()); ciType* rtype = cg->method()->return_type(); ciType* ctype = declared_signature->return_type(); if (Bytecodes::has_optional_appendix(iter().cur_bc_raw()) || is_signature_polymorphic) { // Be careful here with return types. if (ctype != rtype) { BasicType rt = rtype->basic_type(); BasicType ct = ctype->basic_type(); if (ct == T_VOID) { // It's OK for a method to return a value that is discarded. // The discarding does not require any special action from the caller. // The Java code knows this, at VerifyType.isNullConversion. pop_node(rt); // whatever it was, pop it } else if (rt == T_INT || is_subword_type(rt)) { // Nothing. These cases are handled in lambda form bytecode. assert(ct == T_INT || is_subword_type(ct), err_msg_res("must match: rt=%s, ct=%s", type2name(rt), type2name(ct))); } else if (rt == T_OBJECT || rt == T_ARRAY) { assert(ct == T_OBJECT || ct == T_ARRAY, err_msg_res("rt=%s, ct=%s", type2name(rt), type2name(ct))); if (ctype->is_loaded()) { const TypeOopPtr* arg_type = TypeOopPtr::make_from_klass(rtype->as_klass()); const Type* sig_type = TypeOopPtr::make_from_klass(ctype->as_klass()); if (arg_type != NULL && !arg_type->higher_equal(sig_type)) { Node* retnode = pop(); Node* cast_obj = _gvn.transform(new (C) CheckCastPPNode(control(), retnode, sig_type)); push(cast_obj); } } } else { assert(rt == ct, err_msg_res("unexpected mismatch: rt=%s, ct=%s", type2name(rt), type2name(ct))); // push a zero; it's better than getting an oop/int mismatch pop_node(rt); Node* retnode = zerocon(ct); push_node(ct, retnode); } // Now that the value is well-behaved, continue with the call-site type. rtype = ctype; } } else { // Symbolic resolution enforces the types to be the same. // NOTE: We must relax the assert for unloaded types because two // different ciType instances of the same unloaded class type // can appear to be "loaded" by different loaders (depending on // the accessing class). assert(!rtype->is_loaded() || !ctype->is_loaded() || rtype == ctype, err_msg_res("mismatched return types: rtype=%s, ctype=%s", rtype->name(), ctype->name())); } // If the return type of the method is not loaded, assert that the // value we got is a null. Otherwise, we need to recompile. if (!rtype->is_loaded()) { #ifndef PRODUCT if (PrintOpto && (Verbose || WizardMode)) { method()->print_name(); tty->print_cr(" asserting nullness of result at bci: %d", bci()); cg->method()->print_name(); tty->cr(); } #endif if (C->log() != NULL) { C->log()->elem("assert_null reason='return' klass='%d'", C->log()->identify(rtype)); } // If there is going to be a trap, put it at the next bytecode: set_bci(iter().next_bci()); null_assert(peek()); set_bci(iter().cur_bci()); // put it back } BasicType ct = ctype->basic_type(); if (ct == T_OBJECT || ct == T_ARRAY) { ciKlass* better_type = method()->return_profiled_type(bci()); if (UseTypeSpeculation && better_type != NULL) { // If profiling reports a single type for the return value, // feed it to the type system so it can propagate it as a // speculative type record_profile_for_speculation(stack(sp()-1), better_type); } } } // Restart record of parsing work after possible inlining of call #ifndef PRODUCT parse_histogram()->set_initial_state(bc()); #endif } //---------------------------catch_call_exceptions----------------------------- // Put a Catch and CatchProj nodes behind a just-created call. // Send their caught exceptions to the proper handler. // This may be used after a call to the rethrow VM stub, // when it is needed to process unloaded exception classes. void Parse::catch_call_exceptions(ciExceptionHandlerStream& handlers) { // Exceptions are delivered through this channel: Node* i_o = this->i_o(); // Add a CatchNode. GrowableArray* bcis = new (C->node_arena()) GrowableArray(C->node_arena(), 8, 0, -1); GrowableArray* extypes = new (C->node_arena()) GrowableArray(C->node_arena(), 8, 0, NULL); GrowableArray* saw_unloaded = new (C->node_arena()) GrowableArray(C->node_arena(), 8, 0, 0); for (; !handlers.is_done(); handlers.next()) { ciExceptionHandler* h = handlers.handler(); int h_bci = h->handler_bci(); ciInstanceKlass* h_klass = h->is_catch_all() ? env()->Throwable_klass() : h->catch_klass(); // Do not introduce unloaded exception types into the graph: if (!h_klass->is_loaded()) { if (saw_unloaded->contains(h_bci)) { /* We've already seen an unloaded exception with h_bci, so don't duplicate. Duplication will cause the CatchNode to be unnecessarily large. See 4713716. */ continue; } else { saw_unloaded->append(h_bci); } } const Type* h_extype = TypeOopPtr::make_from_klass(h_klass); // (We use make_from_klass because it respects UseUniqueSubclasses.) h_extype = h_extype->join(TypeInstPtr::NOTNULL); assert(!h_extype->empty(), "sanity"); // Note: It's OK if the BCIs repeat themselves. bcis->append(h_bci); extypes->append(h_extype); } int len = bcis->length(); CatchNode *cn = new (C) CatchNode(control(), i_o, len+1); Node *catch_ = _gvn.transform(cn); // now branch with the exception state to each of the (potential) // handlers for(int i=0; i < len; i++) { // Setup JVM state to enter the handler. PreserveJVMState pjvms(this); // Locals are just copied from before the call. // Get control from the CatchNode. int handler_bci = bcis->at(i); Node* ctrl = _gvn.transform( new (C) CatchProjNode(catch_, i+1,handler_bci)); // This handler cannot happen? if (ctrl == top()) continue; set_control(ctrl); // Create exception oop const TypeInstPtr* extype = extypes->at(i)->is_instptr(); Node *ex_oop = _gvn.transform(new (C) CreateExNode(extypes->at(i), ctrl, i_o)); // Handle unloaded exception classes. if (saw_unloaded->contains(handler_bci)) { // An unloaded exception type is coming here. Do an uncommon trap. #ifndef PRODUCT // We do not expect the same handler bci to take both cold unloaded // and hot loaded exceptions. But, watch for it. if ((Verbose || WizardMode) && extype->is_loaded()) { tty->print("Warning: Handler @%d takes mixed loaded/unloaded exceptions in ", bci()); method()->print_name(); tty->cr(); } else if (PrintOpto && (Verbose || WizardMode)) { tty->print("Bailing out on unloaded exception type "); extype->klass()->print_name(); tty->print(" at bci:%d in ", bci()); method()->print_name(); tty->cr(); } #endif // Emit an uncommon trap instead of processing the block. set_bci(handler_bci); push_ex_oop(ex_oop); uncommon_trap(Deoptimization::Reason_unloaded, Deoptimization::Action_reinterpret, extype->klass(), "!loaded exception"); set_bci(iter().cur_bci()); // put it back continue; } // go to the exception handler if (handler_bci < 0) { // merge with corresponding rethrow node throw_to_exit(make_exception_state(ex_oop)); } else { // Else jump to corresponding handle push_ex_oop(ex_oop); // Clear stack and push just the oop. merge_exception(handler_bci); } } // The first CatchProj is for the normal return. // (Note: If this is a call to rethrow_Java, this node goes dead.) set_control(_gvn.transform( new (C) CatchProjNode(catch_, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci))); } //----------------------------catch_inline_exceptions-------------------------- // Handle all exceptions thrown by an inlined method or individual bytecode. // Common case 1: we have no handler, so all exceptions merge right into // the rethrow case. // Case 2: we have some handlers, with loaded exception klasses that have // no subklasses. We do a Deutsch-Shiffman style type-check on the incoming // exception oop and branch to the handler directly. // Case 3: We have some handlers with subklasses or are not loaded at // compile-time. We have to call the runtime to resolve the exception. // So we insert a RethrowCall and all the logic that goes with it. void Parse::catch_inline_exceptions(SafePointNode* ex_map) { // Caller is responsible for saving away the map for normal control flow! assert(stopped(), "call set_map(NULL) first"); assert(method()->has_exception_handlers(), "don't come here w/o work to do"); Node* ex_node = saved_ex_oop(ex_map); if (ex_node == top()) { // No action needed. return; } const TypeInstPtr* ex_type = _gvn.type(ex_node)->isa_instptr(); NOT_PRODUCT(if (ex_type==NULL) tty->print_cr("*** Exception not InstPtr")); if (ex_type == NULL) ex_type = TypeOopPtr::make_from_klass(env()->Throwable_klass())->is_instptr(); // determine potential exception handlers ciExceptionHandlerStream handlers(method(), bci(), ex_type->klass()->as_instance_klass(), ex_type->klass_is_exact()); // Start executing from the given throw state. (Keep its stack, for now.) // Get the exception oop as known at compile time. ex_node = use_exception_state(ex_map); // Get the exception oop klass from its header Node* ex_klass_node = NULL; if (has_ex_handler() && !ex_type->klass_is_exact()) { Node* p = basic_plus_adr( ex_node, ex_node, oopDesc::klass_offset_in_bytes()); ex_klass_node = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeInstPtr::KLASS, TypeKlassPtr::OBJECT) ); // Compute the exception klass a little more cleverly. // Obvious solution is to simple do a LoadKlass from the 'ex_node'. // However, if the ex_node is a PhiNode, I'm going to do a LoadKlass for // each arm of the Phi. If I know something clever about the exceptions // I'm loading the class from, I can replace the LoadKlass with the // klass constant for the exception oop. if (ex_node->is_Phi()) { ex_klass_node = new (C) PhiNode(ex_node->in(0), TypeKlassPtr::OBJECT); for (uint i = 1; i < ex_node->req(); i++) { Node* ex_in = ex_node->in(i); if (ex_in == top() || ex_in == NULL) { // This path was not taken. ex_klass_node->init_req(i, top()); continue; } Node* p = basic_plus_adr(ex_in, ex_in, oopDesc::klass_offset_in_bytes()); Node* k = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeInstPtr::KLASS, TypeKlassPtr::OBJECT) ); ex_klass_node->init_req( i, k ); } _gvn.set_type(ex_klass_node, TypeKlassPtr::OBJECT); } } // Scan the exception table for applicable handlers. // If none, we can call rethrow() and be done! // If precise (loaded with no subklasses), insert a D.S. style // pointer compare to the correct handler and loop back. // If imprecise, switch to the Rethrow VM-call style handling. int remaining = handlers.count_remaining(); // iterate through all entries sequentially for (;!handlers.is_done(); handlers.next()) { ciExceptionHandler* handler = handlers.handler(); if (handler->is_rethrow()) { // If we fell off the end of the table without finding an imprecise // exception klass (and without finding a generic handler) then we // know this exception is not handled in this method. We just rethrow // the exception into the caller. throw_to_exit(make_exception_state(ex_node)); return; } // exception handler bci range covers throw_bci => investigate further int handler_bci = handler->handler_bci(); if (remaining == 1) { push_ex_oop(ex_node); // Push exception oop for handler #ifndef PRODUCT if (PrintOpto && WizardMode) { tty->print_cr(" Catching every inline exception bci:%d -> handler_bci:%d", bci(), handler_bci); } #endif merge_exception(handler_bci); // jump to handler return; // No more handling to be done here! } // Get the handler's klass ciInstanceKlass* klass = handler->catch_klass(); if (!klass->is_loaded()) { // klass is not loaded? // fall through into catch_call_exceptions which will emit a // handler with an uncommon trap. break; } if (klass->is_interface()) // should not happen, but... break; // bail out // Check the type of the exception against the catch type const TypeKlassPtr *tk = TypeKlassPtr::make(klass); Node* con = _gvn.makecon(tk); Node* not_subtype_ctrl = gen_subtype_check(ex_klass_node, con); if (!stopped()) { PreserveJVMState pjvms(this); const TypeInstPtr* tinst = TypeOopPtr::make_from_klass_unique(klass)->cast_to_ptr_type(TypePtr::NotNull)->is_instptr(); assert(klass->has_subklass() || tinst->klass_is_exact(), "lost exactness"); Node* ex_oop = _gvn.transform(new (C) CheckCastPPNode(control(), ex_node, tinst)); push_ex_oop(ex_oop); // Push exception oop for handler #ifndef PRODUCT if (PrintOpto && WizardMode) { tty->print(" Catching inline exception bci:%d -> handler_bci:%d -- ", bci(), handler_bci); klass->print_name(); tty->cr(); } #endif merge_exception(handler_bci); } set_control(not_subtype_ctrl); // Come here if exception does not match handler. // Carry on with more handler checks. --remaining; } assert(!stopped(), "you should return if you finish the chain"); // Oops, need to call into the VM to resolve the klasses at runtime. // Note: This call must not deoptimize, since it is not a real at this bci! kill_dead_locals(); make_runtime_call(RC_NO_LEAF | RC_MUST_THROW, OptoRuntime::rethrow_Type(), OptoRuntime::rethrow_stub(), NULL, NULL, ex_node); // Rethrow is a pure call, no side effects, only a result. // The result cannot be allocated, so we use I_O // Catch exceptions from the rethrow catch_call_exceptions(handlers); } // (Note: Moved add_debug_info into GraphKit::add_safepoint_edges.) #ifndef PRODUCT void Parse::count_compiled_calls(bool at_method_entry, bool is_inline) { if( CountCompiledCalls ) { if( at_method_entry ) { // bump invocation counter if top method (for statistics) if (CountCompiledCalls && depth() == 1) { const TypePtr* addr_type = TypeMetadataPtr::make(method()); Node* adr1 = makecon(addr_type); Node* adr2 = basic_plus_adr(adr1, adr1, in_bytes(Method::compiled_invocation_counter_offset())); increment_counter(adr2); } } else if (is_inline) { switch (bc()) { case Bytecodes::_invokevirtual: increment_counter(SharedRuntime::nof_inlined_calls_addr()); break; case Bytecodes::_invokeinterface: increment_counter(SharedRuntime::nof_inlined_interface_calls_addr()); break; case Bytecodes::_invokestatic: case Bytecodes::_invokedynamic: case Bytecodes::_invokespecial: increment_counter(SharedRuntime::nof_inlined_static_calls_addr()); break; default: fatal("unexpected call bytecode"); } } else { switch (bc()) { case Bytecodes::_invokevirtual: increment_counter(SharedRuntime::nof_normal_calls_addr()); break; case Bytecodes::_invokeinterface: increment_counter(SharedRuntime::nof_interface_calls_addr()); break; case Bytecodes::_invokestatic: case Bytecodes::_invokedynamic: case Bytecodes::_invokespecial: increment_counter(SharedRuntime::nof_static_calls_addr()); break; default: fatal("unexpected call bytecode"); } } } } #endif //PRODUCT ciMethod* Compile::optimize_virtual_call(ciMethod* caller, int bci, ciInstanceKlass* klass, ciKlass* holder, ciMethod* callee, const TypeOopPtr* receiver_type, bool is_virtual, bool& call_does_dispatch, int& vtable_index) { // Set default values for out-parameters. call_does_dispatch = true; vtable_index = Method::invalid_vtable_index; // Choose call strategy. ciMethod* optimized_virtual_method = optimize_inlining(caller, bci, klass, callee, receiver_type); // Have the call been sufficiently improved such that it is no longer a virtual? if (optimized_virtual_method != NULL) { callee = optimized_virtual_method; call_does_dispatch = false; } else if (!UseInlineCaches && is_virtual && callee->is_loaded()) { // We can make a vtable call at this site vtable_index = callee->resolve_vtable_index(caller->holder(), holder); } return callee; } // Identify possible target method and inlining style ciMethod* Compile::optimize_inlining(ciMethod* caller, int bci, ciInstanceKlass* klass, ciMethod* callee, const TypeOopPtr* receiver_type) { // only use for virtual or interface calls // If it is obviously final, do not bother to call find_monomorphic_target, // because the class hierarchy checks are not needed, and may fail due to // incompletely loaded classes. Since we do our own class loading checks // in this module, we may confidently bind to any method. if (callee->can_be_statically_bound()) { return callee; } // Attempt to improve the receiver bool actual_receiver_is_exact = false; ciInstanceKlass* actual_receiver = klass; if (receiver_type != NULL) { // Array methods are all inherited from Object, and are monomorphic. // finalize() call on array is not allowed. if (receiver_type->isa_aryptr() && callee->holder() == env()->Object_klass() && callee->name() != ciSymbol::finalize_method_name()) { return callee; } // All other interesting cases are instance klasses. if (!receiver_type->isa_instptr()) { return NULL; } ciInstanceKlass *ikl = receiver_type->klass()->as_instance_klass(); if (ikl->is_loaded() && ikl->is_initialized() && !ikl->is_interface() && (ikl == actual_receiver || ikl->is_subtype_of(actual_receiver))) { // ikl is a same or better type than the original actual_receiver, // e.g. static receiver from bytecodes. actual_receiver = ikl; // Is the actual_receiver exact? actual_receiver_is_exact = receiver_type->klass_is_exact(); } } ciInstanceKlass* calling_klass = caller->holder(); ciMethod* cha_monomorphic_target = callee->find_monomorphic_target(calling_klass, klass, actual_receiver); if (cha_monomorphic_target != NULL) { assert(!cha_monomorphic_target->is_abstract(), ""); // Look at the method-receiver type. Does it add "too much information"? ciKlass* mr_klass = cha_monomorphic_target->holder(); const Type* mr_type = TypeInstPtr::make(TypePtr::BotPTR, mr_klass); if (receiver_type == NULL || !receiver_type->higher_equal(mr_type)) { // Calling this method would include an implicit cast to its holder. // %%% Not yet implemented. Would throw minor asserts at present. // %%% The most common wins are already gained by +UseUniqueSubclasses. // To fix, put the higher_equal check at the call of this routine, // and add a CheckCastPP to the receiver. if (TraceDependencies) { tty->print_cr("found unique CHA method, but could not cast up"); tty->print(" method = "); cha_monomorphic_target->print(); tty->cr(); } if (log() != NULL) { log()->elem("missed_CHA_opportunity klass='%d' method='%d'", log()->identify(klass), log()->identify(cha_monomorphic_target)); } cha_monomorphic_target = NULL; } } if (cha_monomorphic_target != NULL) { // Hardwiring a virtual. // If we inlined because CHA revealed only a single target method, // then we are dependent on that target method not getting overridden // by dynamic class loading. Be sure to test the "static" receiver // dest_method here, as opposed to the actual receiver, which may // falsely lead us to believe that the receiver is final or private. dependencies()->assert_unique_concrete_method(actual_receiver, cha_monomorphic_target); return cha_monomorphic_target; } // If the type is exact, we can still bind the method w/o a vcall. // (This case comes after CHA so we can see how much extra work it does.) if (actual_receiver_is_exact) { // In case of evolution, there is a dependence on every inlined method, since each // such method can be changed when its class is redefined. ciMethod* exact_method = callee->resolve_invoke(calling_klass, actual_receiver); if (exact_method != NULL) { #ifndef PRODUCT if (PrintOpto) { tty->print(" Calling method via exact type @%d --- ", bci); exact_method->print_name(); tty->cr(); } #endif return exact_method; } } return NULL; }