/* * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "utilities/globalDefinitions.hpp" #include "prims/jvm.h" #include "runtime/frame.inline.hpp" #include "runtime/os.hpp" #include "utilities/vmError.hpp" #include #include #include #include #include #include // Todo: provide a os::get_max_process_id() or similar. Number of processes // may have been configured, can be read more accurately from proc fs etc. #ifndef MAX_PID #define MAX_PID INT_MAX #endif #define IS_VALID_PID(p) (p > 0 && p < MAX_PID) // Check core dump limit and report possible place where core can be found void os::check_or_create_dump(void* exceptionRecord, void* contextRecord, char* buffer, size_t bufferSize) { int n; struct rlimit rlim; bool success; n = get_core_path(buffer, bufferSize); if (getrlimit(RLIMIT_CORE, &rlim) != 0) { jio_snprintf(buffer + n, bufferSize - n, "/core or core.%d (may not exist)", current_process_id()); success = true; } else { switch(rlim.rlim_cur) { case RLIM_INFINITY: jio_snprintf(buffer + n, bufferSize - n, "/core or core.%d", current_process_id()); success = true; break; case 0: jio_snprintf(buffer, bufferSize, "Core dumps have been disabled. To enable core dumping, try \"ulimit -c unlimited\" before starting Java again"); success = false; break; default: jio_snprintf(buffer + n, bufferSize - n, "/core or core.%d (max size %lu kB). To ensure a full core dump, try \"ulimit -c unlimited\" before starting Java again", current_process_id(), (unsigned long)(rlim.rlim_cur >> 10)); success = true; break; } } VMError::report_coredump_status(buffer, success); } address os::get_caller_pc(int n) { #ifdef _NMT_NOINLINE_ n ++; #endif frame fr = os::current_frame(); while (n > 0 && fr.pc() && !os::is_first_C_frame(&fr) && fr.sender_pc()) { fr = os::get_sender_for_C_frame(&fr); n --; } if (n == 0) { return fr.pc(); } else { return NULL; } } int os::get_last_error() { return errno; } bool os::is_debugger_attached() { // not implemented return false; } void os::wait_for_keypress_at_exit(void) { // don't do anything on posix platforms return; } // Multiple threads can race in this code, and can remap over each other with MAP_FIXED, // so on posix, unmap the section at the start and at the end of the chunk that we mapped // rather than unmapping and remapping the whole chunk to get requested alignment. char* os::reserve_memory_aligned(size_t size, size_t alignment) { assert((alignment & (os::vm_allocation_granularity() - 1)) == 0, "Alignment must be a multiple of allocation granularity (page size)"); assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned"); size_t extra_size = size + alignment; assert(extra_size >= size, "overflow, size is too large to allow alignment"); char* extra_base = os::reserve_memory(extra_size, NULL, alignment); if (extra_base == NULL) { return NULL; } // Do manual alignment char* aligned_base = (char*) align_size_up((uintptr_t) extra_base, alignment); // [ | | ] // ^ extra_base // ^ extra_base + begin_offset == aligned_base // extra_base + begin_offset + size ^ // extra_base + extra_size ^ // |<>| == begin_offset // end_offset == |<>| size_t begin_offset = aligned_base - extra_base; size_t end_offset = (extra_base + extra_size) - (aligned_base + size); if (begin_offset > 0) { os::release_memory(extra_base, begin_offset); } if (end_offset > 0) { os::release_memory(extra_base + begin_offset + size, end_offset); } return aligned_base; } void os::Posix::print_load_average(outputStream* st) { st->print("load average:"); double loadavg[3]; os::loadavg(loadavg, 3); st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]); st->cr(); } void os::Posix::print_rlimit_info(outputStream* st) { st->print("rlimit:"); struct rlimit rlim; st->print(" STACK "); getrlimit(RLIMIT_STACK, &rlim); if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity"); else st->print("%uk", rlim.rlim_cur >> 10); st->print(", CORE "); getrlimit(RLIMIT_CORE, &rlim); if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity"); else st->print("%uk", rlim.rlim_cur >> 10); // Isn't there on solaris #if !defined(TARGET_OS_FAMILY_solaris) && !defined(TARGET_OS_FAMILY_aix) st->print(", NPROC "); getrlimit(RLIMIT_NPROC, &rlim); if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity"); else st->print("%d", rlim.rlim_cur); #endif st->print(", NOFILE "); getrlimit(RLIMIT_NOFILE, &rlim); if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity"); else st->print("%d", rlim.rlim_cur); st->print(", AS "); getrlimit(RLIMIT_AS, &rlim); if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity"); else st->print("%uk", rlim.rlim_cur >> 10); st->cr(); } void os::Posix::print_uname_info(outputStream* st) { // kernel st->print("uname:"); struct utsname name; uname(&name); st->print(name.sysname); st->print(" "); st->print(name.release); st->print(" "); st->print(name.version); st->print(" "); st->print(name.machine); st->cr(); } bool os::has_allocatable_memory_limit(julong* limit) { struct rlimit rlim; int getrlimit_res = getrlimit(RLIMIT_AS, &rlim); // if there was an error when calling getrlimit, assume that there is no limitation // on virtual memory. bool result; if ((getrlimit_res != 0) || (rlim.rlim_cur == RLIM_INFINITY)) { result = false; } else { *limit = (julong)rlim.rlim_cur; result = true; } #ifdef _LP64 return result; #else // arbitrary virtual space limit for 32 bit Unices found by testing. If // getrlimit above returned a limit, bound it with this limit. Otherwise // directly use it. const julong max_virtual_limit = (julong)3800*M; if (result) { *limit = MIN2(*limit, max_virtual_limit); } else { *limit = max_virtual_limit; } // bound by actually allocatable memory. The algorithm uses two bounds, an // upper and a lower limit. The upper limit is the current highest amount of // memory that could not be allocated, the lower limit is the current highest // amount of memory that could be allocated. // The algorithm iteratively refines the result by halving the difference // between these limits, updating either the upper limit (if that value could // not be allocated) or the lower limit (if the that value could be allocated) // until the difference between these limits is "small". // the minimum amount of memory we care about allocating. const julong min_allocation_size = M; julong upper_limit = *limit; // first check a few trivial cases if (is_allocatable(upper_limit) || (upper_limit <= min_allocation_size)) { *limit = upper_limit; } else if (!is_allocatable(min_allocation_size)) { // we found that not even min_allocation_size is allocatable. Return it // anyway. There is no point to search for a better value any more. *limit = min_allocation_size; } else { // perform the binary search. julong lower_limit = min_allocation_size; while ((upper_limit - lower_limit) > min_allocation_size) { julong temp_limit = ((upper_limit - lower_limit) / 2) + lower_limit; temp_limit = align_size_down_(temp_limit, min_allocation_size); if (is_allocatable(temp_limit)) { lower_limit = temp_limit; } else { upper_limit = temp_limit; } } *limit = lower_limit; } return true; #endif } const char* os::get_current_directory(char *buf, size_t buflen) { return getcwd(buf, buflen); } FILE* os::open(int fd, const char* mode) { return ::fdopen(fd, mode); } // Builds a platform dependent Agent_OnLoad_ function name // which is used to find statically linked in agents. // Parameters: // sym_name: Symbol in library we are looking for // lib_name: Name of library to look in, NULL for shared libs. // is_absolute_path == true if lib_name is absolute path to agent // such as "/a/b/libL.so" // == false if only the base name of the library is passed in // such as "L" char* os::build_agent_function_name(const char *sym_name, const char *lib_name, bool is_absolute_path) { char *agent_entry_name; size_t len; size_t name_len; size_t prefix_len = strlen(JNI_LIB_PREFIX); size_t suffix_len = strlen(JNI_LIB_SUFFIX); const char *start; if (lib_name != NULL) { len = name_len = strlen(lib_name); if (is_absolute_path) { // Need to strip path, prefix and suffix if ((start = strrchr(lib_name, *os::file_separator())) != NULL) { lib_name = ++start; } if (len <= (prefix_len + suffix_len)) { return NULL; } lib_name += prefix_len; name_len = strlen(lib_name) - suffix_len; } } len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2; agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread); if (agent_entry_name == NULL) { return NULL; } strcpy(agent_entry_name, sym_name); if (lib_name != NULL) { strcat(agent_entry_name, "_"); strncat(agent_entry_name, lib_name, name_len); } return agent_entry_name; } // Returned string is a constant. For unknown signals "UNKNOWN" is returned. const char* os::Posix::get_signal_name(int sig, char* out, size_t outlen) { static const struct { int sig; const char* name; } info[] = { { SIGABRT, "SIGABRT" }, #ifdef SIGAIO { SIGAIO, "SIGAIO" }, #endif { SIGALRM, "SIGALRM" }, #ifdef SIGALRM1 { SIGALRM1, "SIGALRM1" }, #endif { SIGBUS, "SIGBUS" }, #ifdef SIGCANCEL { SIGCANCEL, "SIGCANCEL" }, #endif { SIGCHLD, "SIGCHLD" }, #ifdef SIGCLD { SIGCLD, "SIGCLD" }, #endif { SIGCONT, "SIGCONT" }, #ifdef SIGCPUFAIL { SIGCPUFAIL, "SIGCPUFAIL" }, #endif #ifdef SIGDANGER { SIGDANGER, "SIGDANGER" }, #endif #ifdef SIGDIL { SIGDIL, "SIGDIL" }, #endif #ifdef SIGEMT { SIGEMT, "SIGEMT" }, #endif { SIGFPE, "SIGFPE" }, #ifdef SIGFREEZE { SIGFREEZE, "SIGFREEZE" }, #endif #ifdef SIGGFAULT { SIGGFAULT, "SIGGFAULT" }, #endif #ifdef SIGGRANT { SIGGRANT, "SIGGRANT" }, #endif { SIGHUP, "SIGHUP" }, { SIGILL, "SIGILL" }, { SIGINT, "SIGINT" }, #ifdef SIGIO { SIGIO, "SIGIO" }, #endif #ifdef SIGIOINT { SIGIOINT, "SIGIOINT" }, #endif #ifdef SIGIOT // SIGIOT is there for BSD compatibility, but on most Unices just a // synonym for SIGABRT. The result should be "SIGABRT", not // "SIGIOT". #if (SIGIOT != SIGABRT ) { SIGIOT, "SIGIOT" }, #endif #endif #ifdef SIGKAP { SIGKAP, "SIGKAP" }, #endif { SIGKILL, "SIGKILL" }, #ifdef SIGLOST { SIGLOST, "SIGLOST" }, #endif #ifdef SIGLWP { SIGLWP, "SIGLWP" }, #endif #ifdef SIGLWPTIMER { SIGLWPTIMER, "SIGLWPTIMER" }, #endif #ifdef SIGMIGRATE { SIGMIGRATE, "SIGMIGRATE" }, #endif #ifdef SIGMSG { SIGMSG, "SIGMSG" }, #endif { SIGPIPE, "SIGPIPE" }, #ifdef SIGPOLL { SIGPOLL, "SIGPOLL" }, #endif #ifdef SIGPRE { SIGPRE, "SIGPRE" }, #endif { SIGPROF, "SIGPROF" }, #ifdef SIGPTY { SIGPTY, "SIGPTY" }, #endif #ifdef SIGPWR { SIGPWR, "SIGPWR" }, #endif { SIGQUIT, "SIGQUIT" }, #ifdef SIGRECONFIG { SIGRECONFIG, "SIGRECONFIG" }, #endif #ifdef SIGRECOVERY { SIGRECOVERY, "SIGRECOVERY" }, #endif #ifdef SIGRESERVE { SIGRESERVE, "SIGRESERVE" }, #endif #ifdef SIGRETRACT { SIGRETRACT, "SIGRETRACT" }, #endif #ifdef SIGSAK { SIGSAK, "SIGSAK" }, #endif { SIGSEGV, "SIGSEGV" }, #ifdef SIGSOUND { SIGSOUND, "SIGSOUND" }, #endif { SIGSTOP, "SIGSTOP" }, { SIGSYS, "SIGSYS" }, #ifdef SIGSYSERROR { SIGSYSERROR, "SIGSYSERROR" }, #endif #ifdef SIGTALRM { SIGTALRM, "SIGTALRM" }, #endif { SIGTERM, "SIGTERM" }, #ifdef SIGTHAW { SIGTHAW, "SIGTHAW" }, #endif { SIGTRAP, "SIGTRAP" }, #ifdef SIGTSTP { SIGTSTP, "SIGTSTP" }, #endif { SIGTTIN, "SIGTTIN" }, { SIGTTOU, "SIGTTOU" }, #ifdef SIGURG { SIGURG, "SIGURG" }, #endif { SIGUSR1, "SIGUSR1" }, { SIGUSR2, "SIGUSR2" }, #ifdef SIGVIRT { SIGVIRT, "SIGVIRT" }, #endif { SIGVTALRM, "SIGVTALRM" }, #ifdef SIGWAITING { SIGWAITING, "SIGWAITING" }, #endif #ifdef SIGWINCH { SIGWINCH, "SIGWINCH" }, #endif #ifdef SIGWINDOW { SIGWINDOW, "SIGWINDOW" }, #endif { SIGXCPU, "SIGXCPU" }, { SIGXFSZ, "SIGXFSZ" }, #ifdef SIGXRES { SIGXRES, "SIGXRES" }, #endif { -1, NULL } }; const char* ret = NULL; #ifdef SIGRTMIN if (sig >= SIGRTMIN && sig <= SIGRTMAX) { if (sig == SIGRTMIN) { ret = "SIGRTMIN"; } else if (sig == SIGRTMAX) { ret = "SIGRTMAX"; } else { jio_snprintf(out, outlen, "SIGRTMIN+%d", sig - SIGRTMIN); return out; } } #endif if (sig > 0) { for (int idx = 0; info[idx].sig != -1; idx ++) { if (info[idx].sig == sig) { ret = info[idx].name; break; } } } if (!ret) { if (!is_valid_signal(sig)) { ret = "INVALID"; } else { ret = "UNKNOWN"; } } jio_snprintf(out, outlen, ret); return out; } // Returns true if signal number is valid. bool os::Posix::is_valid_signal(int sig) { // MacOS not really POSIX compliant: sigaddset does not return // an error for invalid signal numbers. However, MacOS does not // support real time signals and simply seems to have just 33 // signals with no holes in the signal range. #ifdef __APPLE__ return sig >= 1 && sig < NSIG; #else // Use sigaddset to check for signal validity. sigset_t set; if (sigaddset(&set, sig) == -1 && errno == EINVAL) { return false; } return true; #endif } #define NUM_IMPORTANT_SIGS 32 // Returns one-line short description of a signal set in a user provided buffer. const char* os::Posix::describe_signal_set_short(const sigset_t* set, char* buffer, size_t buf_size) { assert(buf_size == (NUM_IMPORTANT_SIGS + 1), "wrong buffer size"); // Note: for shortness, just print out the first 32. That should // cover most of the useful ones, apart from realtime signals. for (int sig = 1; sig <= NUM_IMPORTANT_SIGS; sig++) { const int rc = sigismember(set, sig); if (rc == -1 && errno == EINVAL) { buffer[sig-1] = '?'; } else { buffer[sig-1] = rc == 0 ? '0' : '1'; } } buffer[NUM_IMPORTANT_SIGS] = 0; return buffer; } // Prints one-line description of a signal set. void os::Posix::print_signal_set_short(outputStream* st, const sigset_t* set) { char buf[NUM_IMPORTANT_SIGS + 1]; os::Posix::describe_signal_set_short(set, buf, sizeof(buf)); st->print(buf); } // Writes one-line description of a combination of sigaction.sa_flags into a user // provided buffer. Returns that buffer. const char* os::Posix::describe_sa_flags(int flags, char* buffer, size_t size) { char* p = buffer; size_t remaining = size; bool first = true; int idx = 0; assert(buffer, "invalid argument"); if (size == 0) { return buffer; } strncpy(buffer, "none", size); const struct { int i; const char* s; } flaginfo [] = { { SA_NOCLDSTOP, "SA_NOCLDSTOP" }, { SA_ONSTACK, "SA_ONSTACK" }, { SA_RESETHAND, "SA_RESETHAND" }, { SA_RESTART, "SA_RESTART" }, { SA_SIGINFO, "SA_SIGINFO" }, { SA_NOCLDWAIT, "SA_NOCLDWAIT" }, { SA_NODEFER, "SA_NODEFER" }, #ifdef AIX { SA_ONSTACK, "SA_ONSTACK" }, { SA_OLDSTYLE, "SA_OLDSTYLE" }, #endif { 0, NULL } }; for (idx = 0; flaginfo[idx].s && remaining > 1; idx++) { if (flags & flaginfo[idx].i) { if (first) { jio_snprintf(p, remaining, "%s", flaginfo[idx].s); first = false; } else { jio_snprintf(p, remaining, "|%s", flaginfo[idx].s); } const size_t len = strlen(p); p += len; remaining -= len; } } buffer[size - 1] = '\0'; return buffer; } // Prints one-line description of a combination of sigaction.sa_flags. void os::Posix::print_sa_flags(outputStream* st, int flags) { char buffer[0x100]; os::Posix::describe_sa_flags(flags, buffer, sizeof(buffer)); st->print(buffer); } // Helper function for os::Posix::print_siginfo_...(): // return a textual description for signal code. struct enum_sigcode_desc_t { const char* s_name; const char* s_desc; }; static bool get_signal_code_description(const siginfo_t* si, enum_sigcode_desc_t* out) { const struct { int sig; int code; const char* s_code; const char* s_desc; } t1 [] = { { SIGILL, ILL_ILLOPC, "ILL_ILLOPC", "Illegal opcode." }, { SIGILL, ILL_ILLOPN, "ILL_ILLOPN", "Illegal operand." }, { SIGILL, ILL_ILLADR, "ILL_ILLADR", "Illegal addressing mode." }, { SIGILL, ILL_ILLTRP, "ILL_ILLTRP", "Illegal trap." }, { SIGILL, ILL_PRVOPC, "ILL_PRVOPC", "Privileged opcode." }, { SIGILL, ILL_PRVREG, "ILL_PRVREG", "Privileged register." }, { SIGILL, ILL_COPROC, "ILL_COPROC", "Coprocessor error." }, { SIGILL, ILL_BADSTK, "ILL_BADSTK", "Internal stack error." }, #if defined(IA64) && defined(LINUX) { SIGILL, ILL_BADIADDR, "ILL_BADIADDR", "Unimplemented instruction address" }, { SIGILL, ILL_BREAK, "ILL_BREAK", "Application Break instruction" }, #endif { SIGFPE, FPE_INTDIV, "FPE_INTDIV", "Integer divide by zero." }, { SIGFPE, FPE_INTOVF, "FPE_INTOVF", "Integer overflow." }, { SIGFPE, FPE_FLTDIV, "FPE_FLTDIV", "Floating-point divide by zero." }, { SIGFPE, FPE_FLTOVF, "FPE_FLTOVF", "Floating-point overflow." }, { SIGFPE, FPE_FLTUND, "FPE_FLTUND", "Floating-point underflow." }, { SIGFPE, FPE_FLTRES, "FPE_FLTRES", "Floating-point inexact result." }, { SIGFPE, FPE_FLTINV, "FPE_FLTINV", "Invalid floating-point operation." }, { SIGFPE, FPE_FLTSUB, "FPE_FLTSUB", "Subscript out of range." }, { SIGSEGV, SEGV_MAPERR, "SEGV_MAPERR", "Address not mapped to object." }, { SIGSEGV, SEGV_ACCERR, "SEGV_ACCERR", "Invalid permissions for mapped object." }, #ifdef AIX // no explanation found what keyerr would be { SIGSEGV, SEGV_KEYERR, "SEGV_KEYERR", "key error" }, #endif #if defined(IA64) && !defined(AIX) { SIGSEGV, SEGV_PSTKOVF, "SEGV_PSTKOVF", "Paragraph stack overflow" }, #endif { SIGBUS, BUS_ADRALN, "BUS_ADRALN", "Invalid address alignment." }, { SIGBUS, BUS_ADRERR, "BUS_ADRERR", "Nonexistent physical address." }, { SIGBUS, BUS_OBJERR, "BUS_OBJERR", "Object-specific hardware error." }, { SIGTRAP, TRAP_BRKPT, "TRAP_BRKPT", "Process breakpoint." }, { SIGTRAP, TRAP_TRACE, "TRAP_TRACE", "Process trace trap." }, { SIGCHLD, CLD_EXITED, "CLD_EXITED", "Child has exited." }, { SIGCHLD, CLD_KILLED, "CLD_KILLED", "Child has terminated abnormally and did not create a core file." }, { SIGCHLD, CLD_DUMPED, "CLD_DUMPED", "Child has terminated abnormally and created a core file." }, { SIGCHLD, CLD_TRAPPED, "CLD_TRAPPED", "Traced child has trapped." }, { SIGCHLD, CLD_STOPPED, "CLD_STOPPED", "Child has stopped." }, { SIGCHLD, CLD_CONTINUED,"CLD_CONTINUED","Stopped child has continued." }, #ifdef SIGPOLL { SIGPOLL, POLL_OUT, "POLL_OUT", "Output buffers available." }, { SIGPOLL, POLL_MSG, "POLL_MSG", "Input message available." }, { SIGPOLL, POLL_ERR, "POLL_ERR", "I/O error." }, { SIGPOLL, POLL_PRI, "POLL_PRI", "High priority input available." }, { SIGPOLL, POLL_HUP, "POLL_HUP", "Device disconnected. [Option End]" }, #endif { -1, -1, NULL, NULL } }; // Codes valid in any signal context. const struct { int code; const char* s_code; const char* s_desc; } t2 [] = { { SI_USER, "SI_USER", "Signal sent by kill()." }, { SI_QUEUE, "SI_QUEUE", "Signal sent by the sigqueue()." }, { SI_TIMER, "SI_TIMER", "Signal generated by expiration of a timer set by timer_settime()." }, { SI_ASYNCIO, "SI_ASYNCIO", "Signal generated by completion of an asynchronous I/O request." }, { SI_MESGQ, "SI_MESGQ", "Signal generated by arrival of a message on an empty message queue." }, // Linux specific #ifdef SI_TKILL { SI_TKILL, "SI_TKILL", "Signal sent by tkill (pthread_kill)" }, #endif #ifdef SI_DETHREAD { SI_DETHREAD, "SI_DETHREAD", "Signal sent by execve() killing subsidiary threads" }, #endif #ifdef SI_KERNEL { SI_KERNEL, "SI_KERNEL", "Signal sent by kernel." }, #endif #ifdef SI_SIGIO { SI_SIGIO, "SI_SIGIO", "Signal sent by queued SIGIO" }, #endif #ifdef AIX { SI_UNDEFINED, "SI_UNDEFINED","siginfo contains partial information" }, { SI_EMPTY, "SI_EMPTY", "siginfo contains no useful information" }, #endif #ifdef __sun { SI_NOINFO, "SI_NOINFO", "No signal information" }, { SI_RCTL, "SI_RCTL", "kernel generated signal via rctl action" }, { SI_LWP, "SI_LWP", "Signal sent via lwp_kill" }, #endif { -1, NULL, NULL } }; const char* s_code = NULL; const char* s_desc = NULL; for (int i = 0; t1[i].sig != -1; i ++) { if (t1[i].sig == si->si_signo && t1[i].code == si->si_code) { s_code = t1[i].s_code; s_desc = t1[i].s_desc; break; } } if (s_code == NULL) { for (int i = 0; t2[i].s_code != NULL; i ++) { if (t2[i].code == si->si_code) { s_code = t2[i].s_code; s_desc = t2[i].s_desc; } } } if (s_code == NULL) { out->s_name = "unknown"; out->s_desc = "unknown"; return false; } out->s_name = s_code; out->s_desc = s_desc; return true; } // A POSIX conform, platform-independend siginfo print routine. // Short print out on one line. void os::Posix::print_siginfo_brief(outputStream* os, const siginfo_t* si) { char buf[20]; os->print("siginfo: "); if (!si) { os->print(""); return; } // See print_siginfo_full() for details. const int sig = si->si_signo; os->print("si_signo: %d (%s)", sig, os::Posix::get_signal_name(sig, buf, sizeof(buf))); enum_sigcode_desc_t ed; if (get_signal_code_description(si, &ed)) { os->print(", si_code: %d (%s)", si->si_code, ed.s_name); } else { os->print(", si_code: %d (unknown)", si->si_code); } if (si->si_errno) { os->print(", si_errno: %d", si->si_errno); } const int me = (int) ::getpid(); const int pid = (int) si->si_pid; if (si->si_code == SI_USER || si->si_code == SI_QUEUE) { if (IS_VALID_PID(pid) && pid != me) { os->print(", sent from pid: %d (uid: %d)", pid, (int) si->si_uid); } } else if (sig == SIGSEGV || sig == SIGBUS || sig == SIGILL || sig == SIGTRAP || sig == SIGFPE) { os->print(", si_addr: " PTR_FORMAT, si->si_addr); #ifdef SIGPOLL } else if (sig == SIGPOLL) { os->print(", si_band: " PTR64_FORMAT, (uint64_t)si->si_band); #endif } else if (sig == SIGCHLD) { os->print_cr(", si_pid: %d, si_uid: %d, si_status: %d", (int) si->si_pid, si->si_uid, si->si_status); } } os::WatcherThreadCrashProtection::WatcherThreadCrashProtection() { assert(Thread::current()->is_Watcher_thread(), "Must be WatcherThread"); } /* * See the caveats for this class in os_posix.hpp * Protects the callback call so that SIGSEGV / SIGBUS jumps back into this * method and returns false. If none of the signals are raised, returns true. * The callback is supposed to provide the method that should be protected. */ bool os::WatcherThreadCrashProtection::call(os::CrashProtectionCallback& cb) { sigset_t saved_sig_mask; assert(Thread::current()->is_Watcher_thread(), "Only for WatcherThread"); assert(!WatcherThread::watcher_thread()->has_crash_protection(), "crash_protection already set?"); // we cannot rely on sigsetjmp/siglongjmp to save/restore the signal mask // since on at least some systems (OS X) siglongjmp will restore the mask // for the process, not the thread pthread_sigmask(0, NULL, &saved_sig_mask); if (sigsetjmp(_jmpbuf, 0) == 0) { // make sure we can see in the signal handler that we have crash protection // installed WatcherThread::watcher_thread()->set_crash_protection(this); cb.call(); // and clear the crash protection WatcherThread::watcher_thread()->set_crash_protection(NULL); return true; } // this happens when we siglongjmp() back pthread_sigmask(SIG_SETMASK, &saved_sig_mask, NULL); WatcherThread::watcher_thread()->set_crash_protection(NULL); return false; } void os::WatcherThreadCrashProtection::restore() { assert(WatcherThread::watcher_thread()->has_crash_protection(), "must have crash protection"); siglongjmp(_jmpbuf, 1); } void os::WatcherThreadCrashProtection::check_crash_protection(int sig, Thread* thread) { if (thread != NULL && thread->is_Watcher_thread() && WatcherThread::watcher_thread()->has_crash_protection()) { if (sig == SIGSEGV || sig == SIGBUS) { WatcherThread::watcher_thread()->crash_protection()->restore(); } } }