/* * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "classfile/vmSymbols.hpp" #include "memory/oopFactory.hpp" #include "oops/oop.inline.hpp" #include "runtime/handles.inline.hpp" #include "utilities/xmlstream.hpp" Symbol* vmSymbols::_symbols[vmSymbols::SID_LIMIT]; Symbol* vmSymbols::_type_signatures[T_VOID+1] = { NULL /*, NULL...*/ }; inline int compare_symbol(Symbol* a, Symbol* b) { if (a == b) return 0; // follow the natural address order: return (address)a > (address)b ? +1 : -1; } static vmSymbols::SID vm_symbol_index[vmSymbols::SID_LIMIT]; extern "C" { static int compare_vmsymbol_sid(const void* void_a, const void* void_b) { Symbol* a = vmSymbols::symbol_at(*((vmSymbols::SID*) void_a)); Symbol* b = vmSymbols::symbol_at(*((vmSymbols::SID*) void_b)); return compare_symbol(a, b); } } #ifndef PRODUCT #define VM_SYMBOL_ENUM_NAME_BODY(name, string) #name "\0" static const char* vm_symbol_enum_names = VM_SYMBOLS_DO(VM_SYMBOL_ENUM_NAME_BODY, VM_ALIAS_IGNORE) "\0"; static const char* vm_symbol_enum_name(vmSymbols::SID sid) { const char* string = &vm_symbol_enum_names[0]; int skip = (int)sid - (int)vmSymbols::FIRST_SID; for (; skip != 0; skip--) { size_t skiplen = strlen(string); if (skiplen == 0) return ""; // overflow string += skiplen+1; } return string; } #endif //PRODUCT // Put all the VM symbol strings in one place. // Makes for a more compact libjvm. #define VM_SYMBOL_BODY(name, string) string "\0" static const char* vm_symbol_bodies = VM_SYMBOLS_DO(VM_SYMBOL_BODY, VM_ALIAS_IGNORE); void vmSymbols::initialize(TRAPS) { assert((int)SID_LIMIT <= (1< (1<print("*** Duplicate VM symbol SIDs %s(%d) and %s(%d): \"", vm_symbol_enum_name((SID)i2), i2, vm_symbol_enum_name((SID)i1), i1); sym->print_symbol_on(tty); tty->print_cr("\""); } } } #endif //ASSERT // Create an index for find_id: { for (int index = (int)FIRST_SID; index < (int)SID_LIMIT; index++) { vm_symbol_index[index] = (SID)index; } int num_sids = SID_LIMIT-FIRST_SID; qsort(&vm_symbol_index[FIRST_SID], num_sids, sizeof(vm_symbol_index[0]), compare_vmsymbol_sid); } #ifdef ASSERT { // Spot-check correspondence between strings, symbols, and enums: assert(_symbols[NO_SID] == NULL, "must be"); const char* str = "java/lang/Object"; TempNewSymbol jlo = SymbolTable::new_symbol(str, CHECK); assert(strncmp(str, (char*)jlo->base(), jlo->utf8_length()) == 0, ""); assert(jlo == java_lang_Object(), ""); SID sid = VM_SYMBOL_ENUM_NAME(java_lang_Object); assert(find_sid(jlo) == sid, ""); assert(symbol_at(sid) == jlo, ""); // Make sure find_sid produces the right answer in each case. for (int index = (int)FIRST_SID; index < (int)SID_LIMIT; index++) { Symbol* sym = symbol_at((SID)index); sid = find_sid(sym); assert(sid == (SID)index, "symbol index works"); // Note: If there are duplicates, this assert will fail. // A "Duplicate VM symbol" message will have already been printed. } // The string "format" happens (at the moment) not to be a vmSymbol, // though it is a method name in java.lang.String. str = "format"; TempNewSymbol fmt = SymbolTable::new_symbol(str, CHECK); sid = find_sid(fmt); assert(sid == NO_SID, "symbol index works (negative test)"); } #endif } #ifndef PRODUCT const char* vmSymbols::name_for(vmSymbols::SID sid) { if (sid == NO_SID) return "NO_SID"; const char* string = &vm_symbol_bodies[0]; for (int index = (int)FIRST_SID; index < (int)SID_LIMIT; index++) { if (index == (int)sid) return string; string += strlen(string); // skip string body string += 1; // skip trailing null } return "BAD_SID"; } #endif void vmSymbols::symbols_do(SymbolClosure* f) { for (int index = (int)FIRST_SID; index < (int)SID_LIMIT; index++) { f->do_symbol(&_symbols[index]); } for (int i = 0; i < T_VOID+1; i++) { f->do_symbol(&_type_signatures[i]); } } void vmSymbols::serialize(SerializeOopClosure* soc) { soc->do_region((u_char*)&_symbols[FIRST_SID], (SID_LIMIT - FIRST_SID) * sizeof(_symbols[0])); soc->do_region((u_char*)_type_signatures, sizeof(_type_signatures)); } BasicType vmSymbols::signature_type(Symbol* s) { assert(s != NULL, "checking"); for (int i = T_BOOLEAN; i < T_VOID+1; i++) { if (s == _type_signatures[i]) { return (BasicType)i; } } return T_OBJECT; } static int mid_hint = (int)vmSymbols::FIRST_SID+1; #ifndef PRODUCT static int find_sid_calls, find_sid_probes; // (Typical counts are calls=7000 and probes=17000.) #endif vmSymbols::SID vmSymbols::find_sid(Symbol* symbol) { // Handle the majority of misses by a bounds check. // Then, use a binary search over the index. // Expected trip count is less than log2_SID_LIMIT, about eight. // This is slow but acceptable, given that calls are not // dynamically common. (methodOop::intrinsic_id has a cache.) NOT_PRODUCT(find_sid_calls++); int min = (int)FIRST_SID, max = (int)SID_LIMIT - 1; SID sid = NO_SID, sid1; int cmp1; sid1 = vm_symbol_index[min]; cmp1 = compare_symbol(symbol, symbol_at(sid1)); if (cmp1 <= 0) { // before the first if (cmp1 == 0) sid = sid1; } else { sid1 = vm_symbol_index[max]; cmp1 = compare_symbol(symbol, symbol_at(sid1)); if (cmp1 >= 0) { // after the last if (cmp1 == 0) sid = sid1; } else { // After checking the extremes, do a binary search. ++min; --max; // endpoints are done int mid = mid_hint; // start at previous success while (max >= min) { assert(mid >= min && mid <= max, ""); NOT_PRODUCT(find_sid_probes++); sid1 = vm_symbol_index[mid]; cmp1 = compare_symbol(symbol, symbol_at(sid1)); if (cmp1 == 0) { mid_hint = mid; sid = sid1; break; } if (cmp1 < 0) max = mid - 1; // symbol < symbol_at(sid) else min = mid + 1; // Pick a new probe point: mid = (max + min) / 2; } } } #ifdef ASSERT // Perform the exhaustive self-check the first 1000 calls, // and every 100 calls thereafter. static int find_sid_check_count = -2000; if ((uint)++find_sid_check_count > (uint)100) { if (find_sid_check_count > 0) find_sid_check_count = 0; // Make sure this is the right answer, using linear search. // (We have already proven that there are no duplicates in the list.) SID sid2 = NO_SID; for (int index = (int)FIRST_SID; index < (int)SID_LIMIT; index++) { Symbol* sym2 = symbol_at((SID)index); if (sym2 == symbol) { sid2 = (SID)index; break; } } // Unless it's a duplicate, assert that the sids are the same. if (_symbols[sid] != _symbols[sid2]) { assert(sid == sid2, "binary same as linear search"); } } #endif //ASSERT return sid; } static vmIntrinsics::ID wrapper_intrinsic(BasicType type, bool unboxing) { #define TYPE2(type, unboxing) ((int)(type)*2 + ((unboxing) ? 1 : 0)) switch (TYPE2(type, unboxing)) { #define BASIC_TYPE_CASE(type, box, unbox) \ case TYPE2(type, false): return vmIntrinsics::box; \ case TYPE2(type, true): return vmIntrinsics::unbox BASIC_TYPE_CASE(T_BOOLEAN, _Boolean_valueOf, _booleanValue); BASIC_TYPE_CASE(T_BYTE, _Byte_valueOf, _byteValue); BASIC_TYPE_CASE(T_CHAR, _Character_valueOf, _charValue); BASIC_TYPE_CASE(T_SHORT, _Short_valueOf, _shortValue); BASIC_TYPE_CASE(T_INT, _Integer_valueOf, _intValue); BASIC_TYPE_CASE(T_LONG, _Long_valueOf, _longValue); BASIC_TYPE_CASE(T_FLOAT, _Float_valueOf, _floatValue); BASIC_TYPE_CASE(T_DOUBLE, _Double_valueOf, _doubleValue); #undef BASIC_TYPE_CASE } #undef TYPE2 return vmIntrinsics::_none; } vmIntrinsics::ID vmIntrinsics::for_boxing(BasicType type) { return wrapper_intrinsic(type, false); } vmIntrinsics::ID vmIntrinsics::for_unboxing(BasicType type) { return wrapper_intrinsic(type, true); } vmIntrinsics::ID vmIntrinsics::for_raw_conversion(BasicType src, BasicType dest) { #define SRC_DEST(s,d) (((int)(s) << 4) + (int)(d)) switch (SRC_DEST(src, dest)) { case SRC_DEST(T_INT, T_FLOAT): return vmIntrinsics::_intBitsToFloat; case SRC_DEST(T_FLOAT, T_INT): return vmIntrinsics::_floatToRawIntBits; case SRC_DEST(T_LONG, T_DOUBLE): return vmIntrinsics::_longBitsToDouble; case SRC_DEST(T_DOUBLE, T_LONG): return vmIntrinsics::_doubleToRawLongBits; } #undef SRC_DEST return vmIntrinsics::_none; } methodOop vmIntrinsics::method_for(vmIntrinsics::ID id) { if (id == _none) return NULL; Symbol* cname = vmSymbols::symbol_at(class_for(id)); Symbol* mname = vmSymbols::symbol_at(name_for(id)); Symbol* msig = vmSymbols::symbol_at(signature_for(id)); if (cname == NULL || mname == NULL || msig == NULL) return NULL; klassOop k = SystemDictionary::find_well_known_klass(cname); if (k == NULL) return NULL; return instanceKlass::cast(k)->find_method(mname, msig); } #define VM_INTRINSIC_INITIALIZE(id, klass, name, sig, flags) #id "\0" static const char* vm_intrinsic_name_bodies = VM_INTRINSICS_DO(VM_INTRINSIC_INITIALIZE, VM_SYMBOL_IGNORE, VM_SYMBOL_IGNORE, VM_SYMBOL_IGNORE, VM_ALIAS_IGNORE); static const char* vm_intrinsic_name_table[vmIntrinsics::ID_LIMIT]; const char* vmIntrinsics::name_at(vmIntrinsics::ID id) { const char** nt = &vm_intrinsic_name_table[0]; if (nt[_none] == NULL) { char* string = (char*) &vm_intrinsic_name_bodies[0]; for (int index = FIRST_ID; index < ID_LIMIT; index++) { nt[index] = string; string += strlen(string); // skip string body string += 1; // skip trailing null } assert(!strcmp(nt[_hashCode], "_hashCode"), "lined up"); nt[_none] = "_none"; } if ((uint)id < (uint)ID_LIMIT) return vm_intrinsic_name_table[(uint)id]; else return "(unknown intrinsic)"; } // These are flag-matching functions: inline bool match_F_R(jshort flags) { const int req = 0; const int neg = JVM_ACC_STATIC | JVM_ACC_SYNCHRONIZED; return (flags & (req | neg)) == req; } inline bool match_F_Y(jshort flags) { const int req = JVM_ACC_SYNCHRONIZED; const int neg = JVM_ACC_STATIC; return (flags & (req | neg)) == req; } inline bool match_F_RN(jshort flags) { const int req = JVM_ACC_NATIVE; const int neg = JVM_ACC_STATIC | JVM_ACC_SYNCHRONIZED; return (flags & (req | neg)) == req; } inline bool match_F_S(jshort flags) { const int req = JVM_ACC_STATIC; const int neg = JVM_ACC_SYNCHRONIZED; return (flags & (req | neg)) == req; } inline bool match_F_SN(jshort flags) { const int req = JVM_ACC_STATIC | JVM_ACC_NATIVE; const int neg = JVM_ACC_SYNCHRONIZED; return (flags & (req | neg)) == req; } inline bool match_F_RNY(jshort flags) { const int req = JVM_ACC_NATIVE | JVM_ACC_SYNCHRONIZED; const int neg = JVM_ACC_STATIC; return (flags & (req | neg)) == req; } // These are for forming case labels: #define ID3(x, y, z) (( jlong)(z) + \ ((jlong)(y) << vmSymbols::log2_SID_LIMIT) + \ ((jlong)(x) << (2*vmSymbols::log2_SID_LIMIT)) ) #define SID_ENUM(n) vmSymbols::VM_SYMBOL_ENUM_NAME(n) vmIntrinsics::ID vmIntrinsics::find_id_impl(vmSymbols::SID holder, vmSymbols::SID name, vmSymbols::SID sig, jshort flags) { assert((int)vmSymbols::SID_LIMIT <= (1<> shift) & mask) == 1021, ""); return vmSymbols::SID( (info >> shift) & mask ); } vmSymbols::SID vmIntrinsics::name_for(vmIntrinsics::ID id) { jlong info = intrinsic_info(id); int shift = vmSymbols::log2_SID_LIMIT + log2_FLAG_LIMIT, mask = right_n_bits(vmSymbols::log2_SID_LIMIT); assert(((ID4(1021,1022,1023,15) >> shift) & mask) == 1022, ""); return vmSymbols::SID( (info >> shift) & mask ); } vmSymbols::SID vmIntrinsics::signature_for(vmIntrinsics::ID id) { jlong info = intrinsic_info(id); int shift = log2_FLAG_LIMIT, mask = right_n_bits(vmSymbols::log2_SID_LIMIT); assert(((ID4(1021,1022,1023,15) >> shift) & mask) == 1023, ""); return vmSymbols::SID( (info >> shift) & mask ); } vmIntrinsics::Flags vmIntrinsics::flags_for(vmIntrinsics::ID id) { jlong info = intrinsic_info(id); int shift = 0, mask = right_n_bits(log2_FLAG_LIMIT); assert(((ID4(1021,1022,1023,15) >> shift) & mask) == 15, ""); return Flags( (info >> shift) & mask ); } #ifndef PRODUCT // verify_method performs an extra check on a matched intrinsic method static bool match_method(methodOop m, Symbol* n, Symbol* s) { return (m->name() == n && m->signature() == s); } static vmIntrinsics::ID match_method_with_klass(methodOop m, Symbol* mk) { #define VM_INTRINSIC_MATCH(id, klassname, namepart, sigpart, flags) \ { Symbol* k = vmSymbols::klassname(); \ if (mk == k) { \ Symbol* n = vmSymbols::namepart(); \ Symbol* s = vmSymbols::sigpart(); \ if (match_method(m, n, s)) \ return vmIntrinsics::id; \ } } VM_INTRINSICS_DO(VM_INTRINSIC_MATCH, VM_SYMBOL_IGNORE, VM_SYMBOL_IGNORE, VM_SYMBOL_IGNORE, VM_ALIAS_IGNORE); return vmIntrinsics::_none; #undef VM_INTRINSIC_MATCH } void vmIntrinsics::verify_method(ID actual_id, methodOop m) { Symbol* mk = Klass::cast(m->method_holder())->name(); ID declared_id = match_method_with_klass(m, mk); if (declared_id == actual_id) return; // success if (declared_id == _none && actual_id != _none && mk == vmSymbols::java_lang_StrictMath()) { // Here are a few special cases in StrictMath not declared in vmSymbols.hpp. switch (actual_id) { case _min: case _max: case _dsqrt: declared_id = match_method_with_klass(m, vmSymbols::java_lang_Math()); if (declared_id == actual_id) return; // acceptable alias break; } } const char* declared_name = name_at(declared_id); const char* actual_name = name_at(actual_id); methodHandle mh = m; m = NULL; ttyLocker ttyl; if (xtty != NULL) { xtty->begin_elem("intrinsic_misdeclared actual='%s' declared='%s'", actual_name, declared_name); xtty->method(mh); xtty->end_elem(""); } if (PrintMiscellaneous && (WizardMode || Verbose)) { tty->print_cr("*** misidentified method; %s(%d) should be %s(%d):", declared_name, declared_id, actual_name, actual_id); mh()->print_short_name(tty); tty->cr(); } } #endif //PRODUCT