/* * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ # include "incls/_precompiled.incl" # include "incls/_taskqueue.cpp.incl" #ifdef TRACESPINNING uint ParallelTaskTerminator::_total_yields = 0; uint ParallelTaskTerminator::_total_spins = 0; uint ParallelTaskTerminator::_total_peeks = 0; #endif #if TASKQUEUE_STATS const char * const TaskQueueStats::_names[last_stat_id] = { "qpush", "qpop", "qpop-s", "qattempt", "qsteal", "opush", "omax" }; TaskQueueStats & TaskQueueStats::operator +=(const TaskQueueStats & addend) { for (unsigned int i = 0; i < last_stat_id; ++i) { _stats[i] += addend._stats[i]; } return *this; } void TaskQueueStats::print_header(unsigned int line, outputStream* const stream, unsigned int width) { // Use a width w: 1 <= w <= max_width const unsigned int max_width = 40; const unsigned int w = MAX2(MIN2(width, max_width), 1U); if (line == 0) { // spaces equal in width to the header const unsigned int hdr_width = w * last_stat_id + last_stat_id - 1; stream->print("%*s", hdr_width, " "); } else if (line == 1) { // labels stream->print("%*s", w, _names[0]); for (unsigned int i = 1; i < last_stat_id; ++i) { stream->print(" %*s", w, _names[i]); } } else if (line == 2) { // dashed lines char dashes[max_width + 1]; memset(dashes, '-', w); dashes[w] = '\0'; stream->print("%s", dashes); for (unsigned int i = 1; i < last_stat_id; ++i) { stream->print(" %s", dashes); } } } void TaskQueueStats::print(outputStream* stream, unsigned int width) const { #define FMT SIZE_FORMAT_W(*) stream->print(FMT, width, _stats[0]); for (unsigned int i = 1; i < last_stat_id; ++i) { stream->print(" " FMT, width, _stats[i]); } #undef FMT } #ifdef ASSERT // Invariants which should hold after a TaskQueue has been emptied and is // quiescent; they do not hold at arbitrary times. void TaskQueueStats::verify() const { assert(get(push) == get(pop) + get(steal), err_msg("push=" SIZE_FORMAT " pop=" SIZE_FORMAT " steal=" SIZE_FORMAT, get(push), get(pop), get(steal))); assert(get(pop_slow) <= get(pop), err_msg("pop_slow=" SIZE_FORMAT " pop=" SIZE_FORMAT, get(pop_slow), get(pop))); assert(get(steal) <= get(steal_attempt), err_msg("steal=" SIZE_FORMAT " steal_attempt=" SIZE_FORMAT, get(steal), get(steal_attempt))); assert(get(overflow) == 0 || get(push) != 0, err_msg("overflow=" SIZE_FORMAT " push=" SIZE_FORMAT, get(overflow), get(push))); assert(get(overflow_max_len) == 0 || get(overflow) != 0, err_msg("overflow_max_len=" SIZE_FORMAT " overflow=" SIZE_FORMAT, get(overflow_max_len), get(overflow))); } #endif // ASSERT #endif // TASKQUEUE_STATS int TaskQueueSetSuper::randomParkAndMiller(int *seed0) { const int a = 16807; const int m = 2147483647; const int q = 127773; /* m div a */ const int r = 2836; /* m mod a */ assert(sizeof(int) == 4, "I think this relies on that"); int seed = *seed0; int hi = seed / q; int lo = seed % q; int test = a * lo - r * hi; if (test > 0) seed = test; else seed = test + m; *seed0 = seed; return seed; } ParallelTaskTerminator:: ParallelTaskTerminator(int n_threads, TaskQueueSetSuper* queue_set) : _n_threads(n_threads), _queue_set(queue_set), _offered_termination(0) {} bool ParallelTaskTerminator::peek_in_queue_set() { return _queue_set->peek(); } void ParallelTaskTerminator::yield() { assert(_offered_termination <= _n_threads, "Invariant"); os::yield(); } void ParallelTaskTerminator::sleep(uint millis) { assert(_offered_termination <= _n_threads, "Invariant"); os::sleep(Thread::current(), millis, false); } bool ParallelTaskTerminator::offer_termination(TerminatorTerminator* terminator) { assert(_n_threads > 0, "Initialization is incorrect"); assert(_offered_termination < _n_threads, "Invariant"); Atomic::inc(&_offered_termination); uint yield_count = 0; // Number of hard spin loops done since last yield uint hard_spin_count = 0; // Number of iterations in the hard spin loop. uint hard_spin_limit = WorkStealingHardSpins; // If WorkStealingSpinToYieldRatio is 0, no hard spinning is done. // If it is greater than 0, then start with a small number // of spins and increase number with each turn at spinning until // the count of hard spins exceeds WorkStealingSpinToYieldRatio. // Then do a yield() call and start spinning afresh. if (WorkStealingSpinToYieldRatio > 0) { hard_spin_limit = WorkStealingHardSpins >> WorkStealingSpinToYieldRatio; hard_spin_limit = MAX2(hard_spin_limit, 1U); } // Remember the initial spin limit. uint hard_spin_start = hard_spin_limit; // Loop waiting for all threads to offer termination or // more work. while (true) { assert(_offered_termination <= _n_threads, "Invariant"); // Are all threads offering termination? if (_offered_termination == _n_threads) { return true; } else { // Look for more work. // Periodically sleep() instead of yield() to give threads // waiting on the cores the chance to grab this code if (yield_count <= WorkStealingYieldsBeforeSleep) { // Do a yield or hardspin. For purposes of deciding whether // to sleep, count this as a yield. yield_count++; // Periodically call yield() instead spinning // After WorkStealingSpinToYieldRatio spins, do a yield() call // and reset the counts and starting limit. if (hard_spin_count > WorkStealingSpinToYieldRatio) { yield(); hard_spin_count = 0; hard_spin_limit = hard_spin_start; #ifdef TRACESPINNING _total_yields++; #endif } else { // Hard spin this time // Increase the hard spinning period but only up to a limit. hard_spin_limit = MIN2(2*hard_spin_limit, (uint) WorkStealingHardSpins); for (uint j = 0; j < hard_spin_limit; j++) { SpinPause(); } hard_spin_count++; #ifdef TRACESPINNING _total_spins++; #endif } } else { if (PrintGCDetails && Verbose) { gclog_or_tty->print_cr("ParallelTaskTerminator::offer_termination() " "thread %d sleeps after %d yields", Thread::current(), yield_count); } yield_count = 0; // A sleep will cause this processor to seek work on another processor's // runqueue, if it has nothing else to run (as opposed to the yield // which may only move the thread to the end of the this processor's // runqueue). sleep(WorkStealingSleepMillis); } #ifdef TRACESPINNING _total_peeks++; #endif if (peek_in_queue_set() || (terminator != NULL && terminator->should_exit_termination())) { Atomic::dec(&_offered_termination); assert(_offered_termination < _n_threads, "Invariant"); return false; } } } } #ifdef TRACESPINNING void ParallelTaskTerminator::print_termination_counts() { gclog_or_tty->print_cr("ParallelTaskTerminator Total yields: %lld " "Total spins: %lld Total peeks: %lld", total_yields(), total_spins(), total_peeks()); } #endif void ParallelTaskTerminator::reset_for_reuse() { if (_offered_termination != 0) { assert(_offered_termination == _n_threads, "Terminator may still be in use"); _offered_termination = 0; } } #ifdef ASSERT bool ObjArrayTask::is_valid() const { return _obj != NULL && _obj->is_objArray() && _index > 0 && _index < objArrayOop(_obj)->length(); } #endif // ASSERT void ParallelTaskTerminator::reset_for_reuse(int n_threads) { reset_for_reuse(); _n_threads = n_threads; }