/* * Copyright 1998-2005 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. * */ # include "incls/_precompiled.incl" # include "incls/_relocInfo_x86.cpp.incl" void Relocation::pd_set_data_value(address x, intptr_t o) { #ifdef AMD64 x += o; typedef Assembler::WhichOperand WhichOperand; WhichOperand which = (WhichOperand) format(); // that is, disp32 or imm64, call32 assert(which == Assembler::disp32_operand || which == Assembler::imm64_operand, "format unpacks ok"); if (which == Assembler::imm64_operand) { *pd_address_in_code() = x; } else { // Note: Use runtime_call_type relocations for call32_operand. address ip = addr(); address disp = Assembler::locate_operand(ip, which); address next_ip = Assembler::locate_next_instruction(ip); *(int32_t*) disp = x - next_ip; } #else *pd_address_in_code() = x + o; #endif // AMD64 } address Relocation::pd_call_destination(address orig_addr) { intptr_t adj = 0; if (orig_addr != NULL) { // We just moved this call instruction from orig_addr to addr(). // This means its target will appear to have grown by addr() - orig_addr. adj = -( addr() - orig_addr ); } NativeInstruction* ni = nativeInstruction_at(addr()); if (ni->is_call()) { return nativeCall_at(addr())->destination() + adj; } else if (ni->is_jump()) { return nativeJump_at(addr())->jump_destination() + adj; } else if (ni->is_cond_jump()) { return nativeGeneralJump_at(addr())->jump_destination() + adj; } else if (ni->is_mov_literal64()) { return (address) ((NativeMovConstReg*)ni)->data(); } else { ShouldNotReachHere(); return NULL; } } void Relocation::pd_set_call_destination(address x) { NativeInstruction* ni = nativeInstruction_at(addr()); if (ni->is_call()) { nativeCall_at(addr())->set_destination(x); } else if (ni->is_jump()) { NativeJump* nj = nativeJump_at(addr()); #ifdef AMD64 if (nj->jump_destination() == (address) -1) { x = (address) -1; // retain jump to self } #endif // AMD64 nj->set_jump_destination(x); } else if (ni->is_cond_jump()) { // %%%% kludge this, for now, until we get a jump_destination method address old_dest = nativeGeneralJump_at(addr())->jump_destination(); address disp = Assembler::locate_operand(addr(), Assembler::call32_operand); *(jint*)disp += (x - old_dest); } else if (ni->is_mov_literal64()) { ((NativeMovConstReg*)ni)->set_data((intptr_t)x); } else { ShouldNotReachHere(); } } address* Relocation::pd_address_in_code() { // All embedded Intel addresses are stored in 32-bit words. // Since the addr points at the start of the instruction, // we must parse the instruction a bit to find the embedded word. assert(is_data(), "must be a DataRelocation"); typedef Assembler::WhichOperand WhichOperand; WhichOperand which = (WhichOperand) format(); // that is, disp32 or imm64/imm32 #ifdef AMD64 assert(which == Assembler::disp32_operand || which == Assembler::call32_operand || which == Assembler::imm64_operand, "format unpacks ok"); if (which != Assembler::imm64_operand) { // The "address" in the code is a displacement can't return it as // and address* since it is really a jint* ShouldNotReachHere(); return NULL; } #else assert(which == Assembler::disp32_operand || which == Assembler::imm32_operand, "format unpacks ok"); #endif // AMD64 return (address*) Assembler::locate_operand(addr(), which); } address Relocation::pd_get_address_from_code() { #ifdef AMD64 // All embedded Intel addresses are stored in 32-bit words. // Since the addr points at the start of the instruction, // we must parse the instruction a bit to find the embedded word. assert(is_data(), "must be a DataRelocation"); typedef Assembler::WhichOperand WhichOperand; WhichOperand which = (WhichOperand) format(); // that is, disp32 or imm64/imm32 assert(which == Assembler::disp32_operand || which == Assembler::call32_operand || which == Assembler::imm64_operand, "format unpacks ok"); if (which != Assembler::imm64_operand) { address ip = addr(); address disp = Assembler::locate_operand(ip, which); address next_ip = Assembler::locate_next_instruction(ip); address a = next_ip + *(int32_t*) disp; return a; } #endif // AMD64 return *pd_address_in_code(); } int Relocation::pd_breakpoint_size() { // minimum breakpoint size, in short words return NativeIllegalInstruction::instruction_size / sizeof(short); } void Relocation::pd_swap_in_breakpoint(address x, short* instrs, int instrlen) { Untested("pd_swap_in_breakpoint"); if (instrs != NULL) { assert(instrlen * sizeof(short) == NativeIllegalInstruction::instruction_size, "enough instrlen in reloc. data"); for (int i = 0; i < instrlen; i++) { instrs[i] = ((short*)x)[i]; } } NativeIllegalInstruction::insert(x); } void Relocation::pd_swap_out_breakpoint(address x, short* instrs, int instrlen) { Untested("pd_swap_out_breakpoint"); assert(NativeIllegalInstruction::instruction_size == sizeof(short), "right address unit for update"); NativeInstruction* ni = nativeInstruction_at(x); *(short*)ni->addr_at(0) = instrs[0]; }