/* * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_VM_RUNTIME_VM_OPERATIONS_HPP #define SHARE_VM_RUNTIME_VM_OPERATIONS_HPP #include "classfile/javaClasses.hpp" #include "memory/allocation.hpp" #include "oops/oop.hpp" #include "runtime/thread.hpp" #include "utilities/top.hpp" // The following classes are used for operations // initiated by a Java thread but that must // take place in the VMThread. #define VM_OP_ENUM(type) VMOp_##type, // Note: When new VM_XXX comes up, add 'XXX' to the template table. #define VM_OPS_DO(template) \ template(Dummy) \ template(ThreadStop) \ template(ThreadDump) \ template(PrintThreads) \ template(FindDeadlocks) \ template(ForceSafepoint) \ template(ForceAsyncSafepoint) \ template(Deoptimize) \ template(DeoptimizeFrame) \ template(DeoptimizeAll) \ template(ZombieAll) \ template(HandleFullCodeCache) \ template(Verify) \ template(PrintJNI) \ template(HeapDumper) \ template(DeoptimizeTheWorld) \ template(GC_HeapInspection) \ template(GenCollectFull) \ template(GenCollectFullConcurrent) \ template(GenCollectForAllocation) \ template(GenCollectForPermanentAllocation) \ template(ParallelGCFailedAllocation) \ template(ParallelGCFailedPermanentAllocation) \ template(ParallelGCSystemGC) \ template(CGC_Operation) \ template(CMS_Initial_Mark) \ template(CMS_Final_Remark) \ template(G1CollectFull) \ template(G1CollectForAllocation) \ template(G1IncCollectionPause) \ template(EnableBiasedLocking) \ template(RevokeBias) \ template(BulkRevokeBias) \ template(PopulateDumpSharedSpace) \ template(JNIFunctionTableCopier) \ template(RedefineClasses) \ template(GetOwnedMonitorInfo) \ template(GetObjectMonitorUsage) \ template(GetCurrentContendedMonitor) \ template(GetStackTrace) \ template(GetMultipleStackTraces) \ template(GetAllStackTraces) \ template(GetThreadListStackTraces) \ template(GetFrameCount) \ template(GetFrameLocation) \ template(ChangeBreakpoints) \ template(GetOrSetLocal) \ template(GetCurrentLocation) \ template(EnterInterpOnlyMode) \ template(ChangeSingleStep) \ template(HeapWalkOperation) \ template(HeapIterateOperation) \ template(ReportJavaOutOfMemory) \ template(Exit) \ class VM_Operation: public CHeapObj { public: enum Mode { _safepoint, // blocking, safepoint, vm_op C-heap allocated _no_safepoint, // blocking, no safepoint, vm_op C-Heap allocated _concurrent, // non-blocking, no safepoint, vm_op C-Heap allocated _async_safepoint // non-blocking, safepoint, vm_op C-Heap allocated }; enum VMOp_Type { VM_OPS_DO(VM_OP_ENUM) VMOp_Terminating }; private: Thread* _calling_thread; ThreadPriority _priority; long _timestamp; VM_Operation* _next; VM_Operation* _prev; // The VM operation name array static const char* _names[]; public: VM_Operation() { _calling_thread = NULL; _next = NULL; _prev = NULL; } virtual ~VM_Operation() {} // VM operation support (used by VM thread) Thread* calling_thread() const { return _calling_thread; } ThreadPriority priority() { return _priority; } void set_calling_thread(Thread* thread, ThreadPriority priority); long timestamp() const { return _timestamp; } void set_timestamp(long timestamp) { _timestamp = timestamp; } // Called by VM thread - does in turn invoke doit(). Do not override this void evaluate(); // evaluate() is called by the VMThread and in turn calls doit(). // If the thread invoking VMThread::execute((VM_Operation*) is a JavaThread, // doit_prologue() is called in that thread before transferring control to // the VMThread. // If doit_prologue() returns true the VM operation will proceed, and // doit_epilogue() will be called by the JavaThread once the VM operation // completes. If doit_prologue() returns false the VM operation is cancelled. virtual void doit() = 0; virtual bool doit_prologue() { return true; }; virtual void doit_epilogue() {}; // Note: Not called if mode is: _concurrent // Type test virtual bool is_methodCompiler() const { return false; } // Linking VM_Operation *next() const { return _next; } VM_Operation *prev() const { return _prev; } void set_next(VM_Operation *next) { _next = next; } void set_prev(VM_Operation *prev) { _prev = prev; } // Configuration. Override these appropriatly in subclasses. virtual VMOp_Type type() const = 0; virtual Mode evaluation_mode() const { return _safepoint; } virtual bool allow_nested_vm_operations() const { return false; } virtual bool is_cheap_allocated() const { return false; } virtual void oops_do(OopClosure* f) { /* do nothing */ }; // CAUTION: // If you override these methods, make sure that the evaluation // of these methods is race-free and non-blocking, since these // methods may be evaluated either by the mutators or by the // vm thread, either concurrently with mutators or with the mutators // stopped. In other words, taking locks is verboten, and if there // are any races in evaluating the conditions, they'd better be benign. virtual bool evaluate_at_safepoint() const { return evaluation_mode() == _safepoint || evaluation_mode() == _async_safepoint; } virtual bool evaluate_concurrently() const { return evaluation_mode() == _concurrent || evaluation_mode() == _async_safepoint; } // Debugging void print_on_error(outputStream* st) const; const char* name() const { return _names[type()]; } static const char* name(int type) { assert(type >= 0 && type < VMOp_Terminating, "invalid VM operation type"); return _names[type]; } #ifndef PRODUCT void print_on(outputStream* st) const { print_on_error(st); } #endif }; class VM_ThreadStop: public VM_Operation { private: oop _thread; // The Thread that the Throwable is thrown against oop _throwable; // The Throwable thrown at the target Thread public: // All oops are passed as JNI handles, since there is no guarantee that a GC might happen before the // VM operation is executed. VM_ThreadStop(oop thread, oop throwable) { _thread = thread; _throwable = throwable; } VMOp_Type type() const { return VMOp_ThreadStop; } oop target_thread() const { return _thread; } oop throwable() const { return _throwable;} void doit(); // We deoptimize if top-most frame is compiled - this might require a C2I adapter to be generated bool allow_nested_vm_operations() const { return true; } Mode evaluation_mode() const { return _async_safepoint; } bool is_cheap_allocated() const { return true; } // GC support void oops_do(OopClosure* f) { f->do_oop(&_thread); f->do_oop(&_throwable); } }; // dummy vm op, evaluated just to force a safepoint class VM_ForceSafepoint: public VM_Operation { public: VM_ForceSafepoint() {} void doit() {} VMOp_Type type() const { return VMOp_ForceSafepoint; } }; // dummy vm op, evaluated just to force a safepoint class VM_ForceAsyncSafepoint: public VM_Operation { public: VM_ForceAsyncSafepoint() {} void doit() {} VMOp_Type type() const { return VMOp_ForceAsyncSafepoint; } Mode evaluation_mode() const { return _async_safepoint; } bool is_cheap_allocated() const { return true; } }; class VM_Deoptimize: public VM_Operation { public: VM_Deoptimize() {} VMOp_Type type() const { return VMOp_Deoptimize; } void doit(); bool allow_nested_vm_operations() const { return true; } }; // Deopt helper that can deoptimize frames in threads other than the // current thread. Only used through Deoptimization::deoptimize_frame. class VM_DeoptimizeFrame: public VM_Operation { friend class Deoptimization; private: JavaThread* _thread; intptr_t* _id; VM_DeoptimizeFrame(JavaThread* thread, intptr_t* id); public: VMOp_Type type() const { return VMOp_DeoptimizeFrame; } void doit(); bool allow_nested_vm_operations() const { return true; } }; class VM_HandleFullCodeCache: public VM_Operation { private: bool _is_full; public: VM_HandleFullCodeCache(bool is_full) { _is_full = is_full; } VMOp_Type type() const { return VMOp_HandleFullCodeCache; } void doit(); bool allow_nested_vm_operations() const { return true; } }; #ifndef PRODUCT class VM_DeoptimizeAll: public VM_Operation { private: KlassHandle _dependee; public: VM_DeoptimizeAll() {} VMOp_Type type() const { return VMOp_DeoptimizeAll; } void doit(); bool allow_nested_vm_operations() const { return true; } }; class VM_ZombieAll: public VM_Operation { public: VM_ZombieAll() {} VMOp_Type type() const { return VMOp_ZombieAll; } void doit(); bool allow_nested_vm_operations() const { return true; } }; #endif // PRODUCT class VM_Verify: public VM_Operation { private: KlassHandle _dependee; public: VM_Verify() {} VMOp_Type type() const { return VMOp_Verify; } void doit(); }; class VM_PrintThreads: public VM_Operation { private: outputStream* _out; bool _print_concurrent_locks; public: VM_PrintThreads() { _out = tty; _print_concurrent_locks = PrintConcurrentLocks; } VM_PrintThreads(outputStream* out, bool print_concurrent_locks) { _out = out; _print_concurrent_locks = print_concurrent_locks; } VMOp_Type type() const { return VMOp_PrintThreads; } void doit(); bool doit_prologue(); void doit_epilogue(); }; class VM_PrintJNI: public VM_Operation { private: outputStream* _out; public: VM_PrintJNI() { _out = tty; } VM_PrintJNI(outputStream* out) { _out = out; } VMOp_Type type() const { return VMOp_PrintJNI; } void doit(); }; class DeadlockCycle; class VM_FindDeadlocks: public VM_Operation { private: bool _concurrent_locks; DeadlockCycle* _deadlocks; outputStream* _out; public: VM_FindDeadlocks(bool concurrent_locks) : _concurrent_locks(concurrent_locks), _out(NULL), _deadlocks(NULL) {}; VM_FindDeadlocks(outputStream* st) : _concurrent_locks(true), _out(st), _deadlocks(NULL) {}; ~VM_FindDeadlocks(); DeadlockCycle* result() { return _deadlocks; }; VMOp_Type type() const { return VMOp_FindDeadlocks; } void doit(); bool doit_prologue(); }; class ThreadDumpResult; class ThreadSnapshot; class ThreadConcurrentLocks; class VM_ThreadDump : public VM_Operation { private: ThreadDumpResult* _result; int _num_threads; GrowableArray* _threads; int _max_depth; bool _with_locked_monitors; bool _with_locked_synchronizers; ThreadSnapshot* snapshot_thread(JavaThread* java_thread, ThreadConcurrentLocks* tcl); public: VM_ThreadDump(ThreadDumpResult* result, int max_depth, // -1 indicates entire stack bool with_locked_monitors, bool with_locked_synchronizers); VM_ThreadDump(ThreadDumpResult* result, GrowableArray* threads, int num_threads, // -1 indicates entire stack int max_depth, bool with_locked_monitors, bool with_locked_synchronizers); VMOp_Type type() const { return VMOp_ThreadDump; } void doit(); bool doit_prologue(); void doit_epilogue(); }; class VM_Exit: public VM_Operation { private: int _exit_code; static volatile bool _vm_exited; static Thread * _shutdown_thread; static void wait_if_vm_exited(); public: VM_Exit(int exit_code) { _exit_code = exit_code; } static int wait_for_threads_in_native_to_block(); static int set_vm_exited(); static bool vm_exited() { return _vm_exited; } static void block_if_vm_exited() { if (_vm_exited) { wait_if_vm_exited(); } } VMOp_Type type() const { return VMOp_Exit; } void doit(); }; #endif // SHARE_VM_RUNTIME_VM_OPERATIONS_HPP