/* * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_VM_RUNTIME_FRAME_HPP #define SHARE_VM_RUNTIME_FRAME_HPP #include "oops/method.hpp" #include "runtime/basicLock.hpp" #include "runtime/monitorChunk.hpp" #include "runtime/registerMap.hpp" #include "utilities/top.hpp" #ifdef COMPILER2 #if defined ADGLOBALS_MD_HPP # include ADGLOBALS_MD_HPP #elif defined TARGET_ARCH_MODEL_x86_32 # include "adfiles/adGlobals_x86_32.hpp" #elif defined TARGET_ARCH_MODEL_x86_64 # include "adfiles/adGlobals_x86_64.hpp" #elif defined TARGET_ARCH_MODEL_sparc # include "adfiles/adGlobals_sparc.hpp" #elif defined TARGET_ARCH_MODEL_zero # include "adfiles/adGlobals_zero.hpp" #elif defined TARGET_ARCH_MODEL_ppc_64 # include "adfiles/adGlobals_ppc_64.hpp" #endif #endif // COMPILER2 #ifdef TARGET_ARCH_zero # include "stack_zero.hpp" #endif typedef class BytecodeInterpreter* interpreterState; class CodeBlob; class FrameValues; class vframeArray; // A frame represents a physical stack frame (an activation). Frames // can be C or Java frames, and the Java frames can be interpreted or // compiled. In contrast, vframes represent source-level activations, // so that one physical frame can correspond to multiple source level // frames because of inlining. class frame VALUE_OBJ_CLASS_SPEC { private: // Instance variables: intptr_t* _sp; // stack pointer (from Thread::last_Java_sp) address _pc; // program counter (the next instruction after the call) CodeBlob* _cb; // CodeBlob that "owns" pc enum deopt_state { not_deoptimized, is_deoptimized, unknown }; deopt_state _deopt_state; public: // Constructors frame(); #ifndef PRODUCT // This is a generic constructor which is only used by pns() in debug.cpp. // pns (i.e. print native stack) uses this constructor to create a starting // frame for stack walking. The implementation of this constructor is platform // dependent (i.e. SPARC doesn't need an 'fp' argument an will ignore it) but // we want to keep the signature generic because pns() is shared code. frame(void* sp, void* fp, void* pc); #endif // Accessors // pc: Returns the pc at which this frame will continue normally. // It must point at the beginning of the next instruction to execute. address pc() const { return _pc; } // This returns the pc that if you were in the debugger you'd see. Not // the idealized value in the frame object. This undoes the magic conversion // that happens for deoptimized frames. In addition it makes the value the // hardware would want to see in the native frame. The only user (at this point) // is deoptimization. It likely no one else should ever use it. address raw_pc() const; void set_pc( address newpc ); intptr_t* sp() const { return _sp; } void set_sp( intptr_t* newsp ) { _sp = newsp; } CodeBlob* cb() const { return _cb; } // patching operations void patch_pc(Thread* thread, address pc); // Every frame needs to return a unique id which distinguishes it from all other frames. // For sparc and ia32 use sp. ia64 can have memory frames that are empty so multiple frames // will have identical sp values. For ia64 the bsp (fp) value will serve. No real frame // should have an id() of NULL so it is a distinguishing value for an unmatchable frame. // We also have relationals which allow comparing a frame to anoth frame's id() allow // us to distinguish younger (more recent activation) from older (less recent activations) // A NULL id is only valid when comparing for equality. intptr_t* id(void) const; bool is_younger(intptr_t* id) const; bool is_older(intptr_t* id) const; // testers // Compares for strict equality. Rarely used or needed. // It can return a different result than f1.id() == f2.id() bool equal(frame other) const; // type testers bool is_interpreted_frame() const; bool is_java_frame() const; bool is_entry_frame() const; // Java frame called from C? bool is_stub_frame() const; bool is_ignored_frame() const; bool is_native_frame() const; bool is_runtime_frame() const; bool is_compiled_frame() const; bool is_safepoint_blob_frame() const; bool is_deoptimized_frame() const; // testers bool is_first_frame() const; // oldest frame? (has no sender) bool is_first_java_frame() const; // same for Java frame bool is_interpreted_frame_valid(JavaThread* thread) const; // performs sanity checks on interpreted frames. // tells whether this frame is marked for deoptimization bool should_be_deoptimized() const; // tells whether this frame can be deoptimized bool can_be_deoptimized() const; // returns the frame size in stack slots int frame_size(RegisterMap* map) const; // returns the sending frame frame sender(RegisterMap* map) const; // for Profiling - acting on another frame. walks sender frames // if valid. frame profile_find_Java_sender_frame(JavaThread *thread); bool safe_for_sender(JavaThread *thread); // returns the sender, but skips conversion frames frame real_sender(RegisterMap* map) const; // returns the the sending Java frame, skipping any intermediate C frames // NB: receiver must not be first frame frame java_sender() const; private: // Helper methods for better factored code in frame::sender frame sender_for_compiled_frame(RegisterMap* map) const; frame sender_for_entry_frame(RegisterMap* map) const; frame sender_for_interpreter_frame(RegisterMap* map) const; frame sender_for_native_frame(RegisterMap* map) const; bool is_entry_frame_valid(JavaThread* thread) const; // All frames: // A low-level interface for vframes: public: intptr_t* addr_at(int index) const { return &fp()[index]; } intptr_t at(int index) const { return *addr_at(index); } // accessors for locals oop obj_at(int offset) const { return *obj_at_addr(offset); } void obj_at_put(int offset, oop value) { *obj_at_addr(offset) = value; } jint int_at(int offset) const { return *int_at_addr(offset); } void int_at_put(int offset, jint value) { *int_at_addr(offset) = value; } oop* obj_at_addr(int offset) const { return (oop*) addr_at(offset); } oop* adjusted_obj_at_addr(Method* method, int index) { return obj_at_addr(adjust_offset(method, index)); } private: jint* int_at_addr(int offset) const { return (jint*) addr_at(offset); } public: // Link (i.e., the pointer to the previous frame) intptr_t* link() const; void set_link(intptr_t* addr); // Return address address sender_pc() const; // Support for deoptimization void deoptimize(JavaThread* thread); // The frame's original SP, before any extension by an interpreted callee; // used for packing debug info into vframeArray objects and vframeArray lookup. intptr_t* unextended_sp() const; // returns the stack pointer of the calling frame intptr_t* sender_sp() const; // Returns the real 'frame pointer' for the current frame. // This is the value expected by the platform ABI when it defines a // frame pointer register. It may differ from the effective value of // the FP register when that register is used in the JVM for other // purposes (like compiled frames on some platforms). // On other platforms, it is defined so that the stack area used by // this frame goes from real_fp() to sp(). intptr_t* real_fp() const; // Deoptimization info, if needed (platform dependent). // Stored in the initial_info field of the unroll info, to be used by // the platform dependent deoptimization blobs. intptr_t *initial_deoptimization_info(); // Interpreter frames: private: intptr_t** interpreter_frame_locals_addr() const; intptr_t* interpreter_frame_bcx_addr() const; intptr_t* interpreter_frame_mdx_addr() const; public: // Locals // The _at version returns a pointer because the address is used for GC. intptr_t* interpreter_frame_local_at(int index) const; void interpreter_frame_set_locals(intptr_t* locs); // byte code index/pointer (use these functions for unchecked frame access only!) intptr_t interpreter_frame_bcx() const { return *interpreter_frame_bcx_addr(); } void interpreter_frame_set_bcx(intptr_t bcx); // byte code index jint interpreter_frame_bci() const; void interpreter_frame_set_bci(jint bci); // byte code pointer address interpreter_frame_bcp() const; void interpreter_frame_set_bcp(address bcp); // Unchecked access to the method data index/pointer. // Only use this if you know what you are doing. intptr_t interpreter_frame_mdx() const { return *interpreter_frame_mdx_addr(); } void interpreter_frame_set_mdx(intptr_t mdx); // method data pointer address interpreter_frame_mdp() const; void interpreter_frame_set_mdp(address dp); // Find receiver out of caller's (compiled) argument list oop retrieve_receiver(RegisterMap *reg_map); // Return the monitor owner and BasicLock for compiled synchronized // native methods so that biased locking can revoke the receiver's // bias if necessary. This is also used by JVMTI's GetLocalInstance method // (via VM_GetReceiver) to retrieve the receiver from a native wrapper frame. BasicLock* get_native_monitor(); oop get_native_receiver(); // Find receiver for an invoke when arguments are just pushed on stack (i.e., callee stack-frame is // not setup) oop interpreter_callee_receiver(Symbol* signature) { return *interpreter_callee_receiver_addr(signature); } oop* interpreter_callee_receiver_addr(Symbol* signature); // expression stack (may go up or down, direction == 1 or -1) public: intptr_t* interpreter_frame_expression_stack() const; static jint interpreter_frame_expression_stack_direction(); // The _at version returns a pointer because the address is used for GC. intptr_t* interpreter_frame_expression_stack_at(jint offset) const; // top of expression stack intptr_t* interpreter_frame_tos_at(jint offset) const; intptr_t* interpreter_frame_tos_address() const; jint interpreter_frame_expression_stack_size() const; intptr_t* interpreter_frame_sender_sp() const; #ifndef CC_INTERP // template based interpreter deoptimization support void set_interpreter_frame_sender_sp(intptr_t* sender_sp); void interpreter_frame_set_monitor_end(BasicObjectLock* value); #endif // CC_INTERP // Address of the temp oop in the frame. Needed as GC root. oop* interpreter_frame_temp_oop_addr() const; // BasicObjectLocks: // // interpreter_frame_monitor_begin is higher in memory than interpreter_frame_monitor_end // Interpreter_frame_monitor_begin points to one element beyond the oldest one, // interpreter_frame_monitor_end points to the youngest one, or if there are none, // it points to one beyond where the first element will be. // interpreter_frame_monitor_size reports the allocation size of a monitor in the interpreter stack. // this value is >= BasicObjectLock::size(), and may be rounded up BasicObjectLock* interpreter_frame_monitor_begin() const; BasicObjectLock* interpreter_frame_monitor_end() const; BasicObjectLock* next_monitor_in_interpreter_frame(BasicObjectLock* current) const; BasicObjectLock* previous_monitor_in_interpreter_frame(BasicObjectLock* current) const; static int interpreter_frame_monitor_size(); void interpreter_frame_verify_monitor(BasicObjectLock* value) const; // Tells whether the current interpreter_frame frame pointer // corresponds to the old compiled/deoptimized fp // The receiver used to be a top level frame bool interpreter_frame_equals_unpacked_fp(intptr_t* fp); // Return/result value from this interpreter frame // If the method return type is T_OBJECT or T_ARRAY populates oop_result // For other (non-T_VOID) the appropriate field in the jvalue is populated // with the result value. // Should only be called when at method exit when the method is not // exiting due to an exception. BasicType interpreter_frame_result(oop* oop_result, jvalue* value_result); public: // Method & constant pool cache Method* interpreter_frame_method() const; void interpreter_frame_set_method(Method* method); Method** interpreter_frame_method_addr() const; ConstantPoolCache** interpreter_frame_cache_addr() const; public: // Entry frames JavaCallWrapper* entry_frame_call_wrapper() const { return *entry_frame_call_wrapper_addr(); } JavaCallWrapper* entry_frame_call_wrapper_if_safe(JavaThread* thread) const; JavaCallWrapper** entry_frame_call_wrapper_addr() const; intptr_t* entry_frame_argument_at(int offset) const; // tells whether there is another chunk of Delta stack above bool entry_frame_is_first() const; // Compiled frames: public: // Given the index of a local, and the number of argument words // in this stack frame, tell which word of the stack frame to find // the local in. Arguments are stored above the ofp/rpc pair, // while other locals are stored below it. // Since monitors (BasicLock blocks) are also assigned indexes, // but may have different storage requirements, their presence // can also affect the calculation of offsets. static int local_offset_for_compiler(int local_index, int nof_args, int max_nof_locals, int max_nof_monitors); // Given the index of a monitor, etc., tell which word of the // stack frame contains the start of the BasicLock block. // Note that the local index by convention is the __higher__ // of the two indexes allocated to the block. static int monitor_offset_for_compiler(int local_index, int nof_args, int max_nof_locals, int max_nof_monitors); // Tell the smallest value that local_offset_for_compiler will attain. // This is used to help determine how much stack frame to allocate. static int min_local_offset_for_compiler(int nof_args, int max_nof_locals, int max_nof_monitors); // Tells if this register must be spilled during a call. // On Intel, all registers are smashed by calls. static bool volatile_across_calls(Register reg); // Safepoints public: oop saved_oop_result(RegisterMap* map) const; void set_saved_oop_result(RegisterMap* map, oop obj); // For debugging private: const char* print_name() const; void describe_pd(FrameValues& values, int frame_no); public: void print_value() const { print_value_on(tty,NULL); } void print_value_on(outputStream* st, JavaThread *thread) const; void print_on(outputStream* st) const; void interpreter_frame_print_on(outputStream* st) const; void print_on_error(outputStream* st, char* buf, int buflen, bool verbose = false) const; static void print_C_frame(outputStream* st, char* buf, int buflen, address pc); // Add annotated descriptions of memory locations belonging to this frame to values void describe(FrameValues& values, int frame_no); // Conversion from an VMReg to physical stack location oop* oopmapreg_to_location(VMReg reg, const RegisterMap* regmap) const; // Oops-do's void oops_compiled_arguments_do(Symbol* signature, bool has_receiver, bool has_appendix, const RegisterMap* reg_map, OopClosure* f); void oops_interpreted_do(OopClosure* f, CLDClosure* cld_f, const RegisterMap* map, bool query_oop_map_cache = true); private: void oops_interpreted_arguments_do(Symbol* signature, bool has_receiver, OopClosure* f); // Iteration of oops void oops_do_internal(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf, RegisterMap* map, bool use_interpreter_oop_map_cache); void oops_entry_do(OopClosure* f, const RegisterMap* map); void oops_code_blob_do(OopClosure* f, CodeBlobClosure* cf, const RegisterMap* map); int adjust_offset(Method* method, int index); // helper for above fn public: // Memory management void oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf, RegisterMap* map) { oops_do_internal(f, cld_f, cf, map, true); } void nmethods_do(CodeBlobClosure* cf); // RedefineClasses support for finding live interpreted methods on the stack void metadata_do(void f(Metadata*)); void gc_prologue(); void gc_epilogue(); void pd_gc_epilog(); # ifdef ENABLE_ZAP_DEAD_LOCALS private: class CheckValueClosure: public OopClosure { public: void do_oop(oop* p); void do_oop(narrowOop* p) { ShouldNotReachHere(); } }; static CheckValueClosure _check_value; class CheckOopClosure: public OopClosure { public: void do_oop(oop* p); void do_oop(narrowOop* p) { ShouldNotReachHere(); } }; static CheckOopClosure _check_oop; static void check_derived_oop(oop* base, oop* derived); class ZapDeadClosure: public OopClosure { public: void do_oop(oop* p); void do_oop(narrowOop* p) { ShouldNotReachHere(); } }; static ZapDeadClosure _zap_dead; public: // Zapping void zap_dead_locals (JavaThread* thread, const RegisterMap* map); void zap_dead_interpreted_locals(JavaThread* thread, const RegisterMap* map); void zap_dead_compiled_locals (JavaThread* thread, const RegisterMap* map); void zap_dead_entry_locals (JavaThread* thread, const RegisterMap* map); void zap_dead_deoptimized_locals(JavaThread* thread, const RegisterMap* map); # endif // Verification void verify(const RegisterMap* map); static bool verify_return_pc(address x); static bool is_bci(intptr_t bcx); // Usage: // assert(frame::verify_return_pc(return_address), "must be a return pc"); int pd_oop_map_offset_adjustment() const; #ifdef TARGET_ARCH_x86 # include "frame_x86.hpp" #endif #ifdef TARGET_ARCH_sparc # include "frame_sparc.hpp" #endif #ifdef TARGET_ARCH_zero # include "frame_zero.hpp" #endif #ifdef TARGET_ARCH_arm # include "frame_arm.hpp" #endif #ifdef TARGET_ARCH_ppc # include "frame_ppc.hpp" #endif }; #ifndef PRODUCT // A simple class to describe a location on the stack class FrameValue VALUE_OBJ_CLASS_SPEC { public: intptr_t* location; char* description; int owner; int priority; }; // A collection of described stack values that can print a symbolic // description of the stack memory. Interpreter frame values can be // in the caller frames so all the values are collected first and then // sorted before being printed. class FrameValues { private: GrowableArray _values; static int compare(FrameValue* a, FrameValue* b) { if (a->location == b->location) { return a->priority - b->priority; } return a->location - b->location; } public: // Used by frame functions to describe locations. void describe(int owner, intptr_t* location, const char* description, int priority = 0); #ifdef ASSERT void validate(); #endif void print(JavaThread* thread); }; #endif // // StackFrameStream iterates through the frames of a thread starting from // top most frame. It automatically takes care of updating the location of // all (callee-saved) registers. Notice: If a thread is stopped at // a safepoint, all registers are saved, not only the callee-saved ones. // // Use: // // for(StackFrameStream fst(thread); !fst.is_done(); fst.next()) { // ... // } // class StackFrameStream : public StackObj { private: frame _fr; RegisterMap _reg_map; bool _is_done; public: StackFrameStream(JavaThread *thread, bool update = true); StackFrameStream(JavaThread *thread, frame last_frame, bool update = true); // Iteration bool is_done() { return (_is_done) ? true : (_is_done = _fr.is_first_frame(), false); } void next() { if (!_is_done) _fr = _fr.sender(&_reg_map); } // Query frame *current() { return &_fr; } RegisterMap* register_map() { return &_reg_map; } }; #endif // SHARE_VM_RUNTIME_FRAME_HPP