/* * Copyright (c) 2000, 2016, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "classfile/vmSymbols.hpp" #include "utilities/macros.hpp" #if INCLUDE_ALL_GCS #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp" #endif // INCLUDE_ALL_GCS #include "jfr/jfrEvents.hpp" #include "compiler/compileBroker.hpp" #include "memory/allocation.inline.hpp" #include "prims/jni.h" #include "prims/jvm.h" #include "runtime/coroutine.hpp" #include "runtime/globals.hpp" #include "runtime/interfaceSupport.hpp" #include "runtime/prefetch.inline.hpp" #include "runtime/orderAccess.inline.hpp" #include "runtime/reflection.hpp" #include "runtime/synchronizer.hpp" #include "services/threadService.hpp" #include "utilities/copy.hpp" #include "utilities/dtrace.hpp" PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC /* * Implementation of class sun.misc.Unsafe */ #ifndef USDT2 HS_DTRACE_PROBE_DECL3(hotspot, thread__park__begin, uintptr_t, int, long long); HS_DTRACE_PROBE_DECL1(hotspot, thread__park__end, uintptr_t); HS_DTRACE_PROBE_DECL1(hotspot, thread__unpark, uintptr_t); #endif /* !USDT2 */ #define MAX_OBJECT_SIZE \ ( arrayOopDesc::header_size(T_DOUBLE) * HeapWordSize \ + ((julong)max_jint * sizeof(double)) ) #define UNSAFE_ENTRY(result_type, header) \ JVM_ENTRY(result_type, header) // Can't use UNSAFE_LEAF because it has the signature of a straight // call into the runtime (just like JVM_LEAF, funny that) but it's // called like a Java Native and thus the wrapper built for it passes // arguments like a JNI call. It expects those arguments to be popped // from the stack on Intel like all good JNI args are, and adjusts the // stack according. Since the JVM_LEAF call expects no extra // arguments the stack isn't popped in the C code, is pushed by the // wrapper and we get sick. //#define UNSAFE_LEAF(result_type, header) \ // JVM_LEAF(result_type, header) #define UNSAFE_END JVM_END #define UnsafeWrapper(arg) /*nothing, for the present*/ inline void* addr_from_java(jlong addr) { // This assert fails in a variety of ways on 32-bit systems. // It is impossible to predict whether native code that converts // pointers to longs will sign-extend or zero-extend the addresses. //assert(addr == (uintptr_t)addr, "must not be odd high bits"); return (void*)(uintptr_t)addr; } inline jlong addr_to_java(void* p) { assert(p == (void*)(uintptr_t)p, "must not be odd high bits"); return (uintptr_t)p; } // Note: The VM's obj_field and related accessors use byte-scaled // ("unscaled") offsets, just as the unsafe methods do. // However, the method Unsafe.fieldOffset explicitly declines to // guarantee this. The field offset values manipulated by the Java user // through the Unsafe API are opaque cookies that just happen to be byte // offsets. We represent this state of affairs by passing the cookies // through conversion functions when going between the VM and the Unsafe API. // The conversion functions just happen to be no-ops at present. inline jlong field_offset_to_byte_offset(jlong field_offset) { return field_offset; } inline jlong field_offset_from_byte_offset(jlong byte_offset) { return byte_offset; } inline jint invocation_key_from_method_slot(jint slot) { return slot; } inline jint invocation_key_to_method_slot(jint key) { return key; } inline void* index_oop_from_field_offset_long(oop p, jlong field_offset) { jlong byte_offset = field_offset_to_byte_offset(field_offset); #ifdef ASSERT if (p != NULL) { assert(byte_offset >= 0 && byte_offset <= (jlong)MAX_OBJECT_SIZE, "sane offset"); if (byte_offset == (jint)byte_offset) { void* ptr_plus_disp = (address)p + byte_offset; assert((void*)p->obj_field_addr((jint)byte_offset) == ptr_plus_disp, "raw [ptr+disp] must be consistent with oop::field_base"); } jlong p_size = HeapWordSize * (jlong)(p->size()); assert(byte_offset < p_size, err_msg("Unsafe access: offset " INT64_FORMAT " > object's size " INT64_FORMAT, byte_offset, p_size)); } #endif if (sizeof(char*) == sizeof(jint)) // (this constant folds!) return (address)p + (jint) byte_offset; else return (address)p + byte_offset; } // Externally callable versions: // (Use these in compiler intrinsics which emulate unsafe primitives.) jlong Unsafe_field_offset_to_byte_offset(jlong field_offset) { return field_offset; } jlong Unsafe_field_offset_from_byte_offset(jlong byte_offset) { return byte_offset; } jint Unsafe_invocation_key_from_method_slot(jint slot) { return invocation_key_from_method_slot(slot); } jint Unsafe_invocation_key_to_method_slot(jint key) { return invocation_key_to_method_slot(key); } ///// Data in the Java heap. #define truncate_jboolean(x) ((x) & 1) #define truncate_jbyte(x) (x) #define truncate_jshort(x) (x) #define truncate_jchar(x) (x) #define truncate_jint(x) (x) #define truncate_jlong(x) (x) #define truncate_jfloat(x) (x) #define truncate_jdouble(x) (x) #define GET_FIELD(obj, offset, type_name, v) \ oop p = JNIHandles::resolve(obj); \ type_name v = *(type_name*)index_oop_from_field_offset_long(p, offset) #define SET_FIELD(obj, offset, type_name, x) \ oop p = JNIHandles::resolve(obj); \ *(type_name*)index_oop_from_field_offset_long(p, offset) = truncate_##type_name(x) #define GET_FIELD_VOLATILE(obj, offset, type_name, v) \ oop p = JNIHandles::resolve(obj); \ if (support_IRIW_for_not_multiple_copy_atomic_cpu) { \ OrderAccess::fence(); \ } \ volatile type_name v = OrderAccess::load_acquire((volatile type_name*)index_oop_from_field_offset_long(p, offset)); #define SET_FIELD_VOLATILE(obj, offset, type_name, x) \ oop p = JNIHandles::resolve(obj); \ OrderAccess::release_store_fence((volatile type_name*)index_oop_from_field_offset_long(p, offset), truncate_##type_name(x)); // Macros for oops that check UseCompressedOops #define GET_OOP_FIELD(obj, offset, v) \ oop p = JNIHandles::resolve(obj); \ oop v; \ if (UseCompressedOops) { \ narrowOop n = *(narrowOop*)index_oop_from_field_offset_long(p, offset); \ v = oopDesc::decode_heap_oop(n); \ } else { \ v = *(oop*)index_oop_from_field_offset_long(p, offset); \ } // Get/SetObject must be special-cased, since it works with handles. // We could be accessing the referent field in a reference // object. If G1 is enabled then we need to register non-null // referent with the SATB barrier. #if INCLUDE_ALL_GCS static bool is_java_lang_ref_Reference_access(oop o, jlong offset) { if (offset == java_lang_ref_Reference::referent_offset && o != NULL) { Klass* k = o->klass(); if (InstanceKlass::cast(k)->reference_type() != REF_NONE) { assert(InstanceKlass::cast(k)->is_subclass_of(SystemDictionary::Reference_klass()), "sanity"); return true; } } return false; } #endif static void ensure_satb_referent_alive(oop o, jlong offset, oop v) { #if INCLUDE_ALL_GCS if (UseG1GC && v != NULL && is_java_lang_ref_Reference_access(o, offset)) { G1SATBCardTableModRefBS::enqueue(v); } #endif } // The xxx140 variants for backward compatibility do not allow a full-width offset. UNSAFE_ENTRY(jobject, Unsafe_GetObject140(JNIEnv *env, jobject unsafe, jobject obj, jint offset)) UnsafeWrapper("Unsafe_GetObject"); if (obj == NULL) THROW_0(vmSymbols::java_lang_NullPointerException()); GET_OOP_FIELD(obj, offset, v) ensure_satb_referent_alive(p, offset, v); return JNIHandles::make_local(env, v); UNSAFE_END UNSAFE_ENTRY(void, Unsafe_SetObject140(JNIEnv *env, jobject unsafe, jobject obj, jint offset, jobject x_h)) UnsafeWrapper("Unsafe_SetObject"); if (obj == NULL) THROW(vmSymbols::java_lang_NullPointerException()); oop x = JNIHandles::resolve(x_h); //SET_FIELD(obj, offset, oop, x); oop p = JNIHandles::resolve(obj); if (UseCompressedOops) { if (x != NULL) { // If there is a heap base pointer, we are obliged to emit a store barrier. oop_store((narrowOop*)index_oop_from_field_offset_long(p, offset), x); } else { narrowOop n = oopDesc::encode_heap_oop_not_null(x); *(narrowOop*)index_oop_from_field_offset_long(p, offset) = n; } } else { if (x != NULL) { // If there is a heap base pointer, we are obliged to emit a store barrier. oop_store((oop*)index_oop_from_field_offset_long(p, offset), x); } else { *(oop*)index_oop_from_field_offset_long(p, offset) = x; } } UNSAFE_END // The normal variants allow a null base pointer with an arbitrary address. // But if the base pointer is non-null, the offset should make some sense. // That is, it should be in the range [0, MAX_OBJECT_SIZE]. UNSAFE_ENTRY(jobject, Unsafe_GetObject(JNIEnv *env, jobject unsafe, jobject obj, jlong offset)) UnsafeWrapper("Unsafe_GetObject"); GET_OOP_FIELD(obj, offset, v) ensure_satb_referent_alive(p, offset, v); return JNIHandles::make_local(env, v); UNSAFE_END UNSAFE_ENTRY(void, Unsafe_SetObject(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jobject x_h)) UnsafeWrapper("Unsafe_SetObject"); oop x = JNIHandles::resolve(x_h); oop p = JNIHandles::resolve(obj); if (UseCompressedOops) { oop_store((narrowOop*)index_oop_from_field_offset_long(p, offset), x); } else { oop_store((oop*)index_oop_from_field_offset_long(p, offset), x); } UNSAFE_END UNSAFE_ENTRY(jobject, Unsafe_GetObjectVolatile(JNIEnv *env, jobject unsafe, jobject obj, jlong offset)) UnsafeWrapper("Unsafe_GetObjectVolatile"); oop p = JNIHandles::resolve(obj); void* addr = index_oop_from_field_offset_long(p, offset); volatile oop v; if (UseCompressedOops) { volatile narrowOop n = *(volatile narrowOop*) addr; (void)const_cast(v = oopDesc::decode_heap_oop(n)); } else { (void)const_cast(v = *(volatile oop*) addr); } ensure_satb_referent_alive(p, offset, v); OrderAccess::acquire(); return JNIHandles::make_local(env, v); UNSAFE_END UNSAFE_ENTRY(void, Unsafe_SetObjectVolatile(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jobject x_h)) UnsafeWrapper("Unsafe_SetObjectVolatile"); oop x = JNIHandles::resolve(x_h); oop p = JNIHandles::resolve(obj); void* addr = index_oop_from_field_offset_long(p, offset); OrderAccess::release(); if (UseCompressedOops) { oop_store((narrowOop*)addr, x); } else { oop_store((oop*)addr, x); } OrderAccess::fence(); UNSAFE_END #ifndef SUPPORTS_NATIVE_CX8 // VM_Version::supports_cx8() is a surrogate for 'supports atomic long memory ops'. // // On platforms which do not support atomic compare-and-swap of jlong (8 byte) // values we have to use a lock-based scheme to enforce atomicity. This has to be // applied to all Unsafe operations that set the value of a jlong field. Even so // the compareAndSwapLong operation will not be atomic with respect to direct stores // to the field from Java code. It is important therefore that any Java code that // utilizes these Unsafe jlong operations does not perform direct stores. To permit // direct loads of the field from Java code we must also use Atomic::store within the // locked regions. And for good measure, in case there are direct stores, we also // employ Atomic::load within those regions. Note that the field in question must be // volatile and so must have atomic load/store accesses applied at the Java level. // // The locking scheme could utilize a range of strategies for controlling the locking // granularity: from a lock per-field through to a single global lock. The latter is // the simplest and is used for the current implementation. Note that the Java object // that contains the field, can not, in general, be used for locking. To do so can lead // to deadlocks as we may introduce locking into what appears to the Java code to be a // lock-free path. // // As all the locked-regions are very short and themselves non-blocking we can treat // them as leaf routines and elide safepoint checks (ie we don't perform any thread // state transitions even when blocking for the lock). Note that if we do choose to // add safepoint checks and thread state transitions, we must ensure that we calculate // the address of the field _after_ we have acquired the lock, else the object may have // been moved by the GC UNSAFE_ENTRY(jlong, Unsafe_GetLongVolatile(JNIEnv *env, jobject unsafe, jobject obj, jlong offset)) UnsafeWrapper("Unsafe_GetLongVolatile"); { if (VM_Version::supports_cx8()) { GET_FIELD_VOLATILE(obj, offset, jlong, v); return v; } else { Handle p (THREAD, JNIHandles::resolve(obj)); jlong* addr = (jlong*)(index_oop_from_field_offset_long(p(), offset)); MutexLockerEx mu(UnsafeJlong_lock, Mutex::_no_safepoint_check_flag); jlong value = Atomic::load(addr); return value; } } UNSAFE_END UNSAFE_ENTRY(void, Unsafe_SetLongVolatile(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jlong x)) UnsafeWrapper("Unsafe_SetLongVolatile"); { if (VM_Version::supports_cx8()) { SET_FIELD_VOLATILE(obj, offset, jlong, x); } else { Handle p (THREAD, JNIHandles::resolve(obj)); jlong* addr = (jlong*)(index_oop_from_field_offset_long(p(), offset)); MutexLockerEx mu(UnsafeJlong_lock, Mutex::_no_safepoint_check_flag); Atomic::store(x, addr); } } UNSAFE_END #endif // not SUPPORTS_NATIVE_CX8 #define DEFINE_GETSETOOP(jboolean, Boolean) \ \ UNSAFE_ENTRY(jboolean, Unsafe_Get##Boolean##140(JNIEnv *env, jobject unsafe, jobject obj, jint offset)) \ UnsafeWrapper("Unsafe_Get"#Boolean); \ if (obj == NULL) THROW_0(vmSymbols::java_lang_NullPointerException()); \ GET_FIELD(obj, offset, jboolean, v); \ return v; \ UNSAFE_END \ \ UNSAFE_ENTRY(void, Unsafe_Set##Boolean##140(JNIEnv *env, jobject unsafe, jobject obj, jint offset, jboolean x)) \ UnsafeWrapper("Unsafe_Set"#Boolean); \ if (obj == NULL) THROW(vmSymbols::java_lang_NullPointerException()); \ SET_FIELD(obj, offset, jboolean, x); \ UNSAFE_END \ \ UNSAFE_ENTRY(jboolean, Unsafe_Get##Boolean(JNIEnv *env, jobject unsafe, jobject obj, jlong offset)) \ UnsafeWrapper("Unsafe_Get"#Boolean); \ GET_FIELD(obj, offset, jboolean, v); \ return v; \ UNSAFE_END \ \ UNSAFE_ENTRY(void, Unsafe_Set##Boolean(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jboolean x)) \ UnsafeWrapper("Unsafe_Set"#Boolean); \ SET_FIELD(obj, offset, jboolean, x); \ UNSAFE_END \ \ // END DEFINE_GETSETOOP. DEFINE_GETSETOOP(jboolean, Boolean) DEFINE_GETSETOOP(jbyte, Byte) DEFINE_GETSETOOP(jshort, Short); DEFINE_GETSETOOP(jchar, Char); DEFINE_GETSETOOP(jint, Int); DEFINE_GETSETOOP(jlong, Long); DEFINE_GETSETOOP(jfloat, Float); DEFINE_GETSETOOP(jdouble, Double); #undef DEFINE_GETSETOOP #define DEFINE_GETSETOOP_VOLATILE(jboolean, Boolean) \ \ UNSAFE_ENTRY(jboolean, Unsafe_Get##Boolean##Volatile(JNIEnv *env, jobject unsafe, jobject obj, jlong offset)) \ UnsafeWrapper("Unsafe_Get"#Boolean); \ GET_FIELD_VOLATILE(obj, offset, jboolean, v); \ return v; \ UNSAFE_END \ \ UNSAFE_ENTRY(void, Unsafe_Set##Boolean##Volatile(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jboolean x)) \ UnsafeWrapper("Unsafe_Set"#Boolean); \ SET_FIELD_VOLATILE(obj, offset, jboolean, x); \ UNSAFE_END \ \ // END DEFINE_GETSETOOP_VOLATILE. DEFINE_GETSETOOP_VOLATILE(jboolean, Boolean) DEFINE_GETSETOOP_VOLATILE(jbyte, Byte) DEFINE_GETSETOOP_VOLATILE(jshort, Short); DEFINE_GETSETOOP_VOLATILE(jchar, Char); DEFINE_GETSETOOP_VOLATILE(jint, Int); DEFINE_GETSETOOP_VOLATILE(jfloat, Float); DEFINE_GETSETOOP_VOLATILE(jdouble, Double); #ifdef SUPPORTS_NATIVE_CX8 DEFINE_GETSETOOP_VOLATILE(jlong, Long); #endif #undef DEFINE_GETSETOOP_VOLATILE // The non-intrinsified versions of setOrdered just use setVolatile UNSAFE_ENTRY(void, Unsafe_SetOrderedInt(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jint x)) UnsafeWrapper("Unsafe_SetOrderedInt"); SET_FIELD_VOLATILE(obj, offset, jint, x); UNSAFE_END UNSAFE_ENTRY(void, Unsafe_SetOrderedObject(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jobject x_h)) UnsafeWrapper("Unsafe_SetOrderedObject"); oop x = JNIHandles::resolve(x_h); oop p = JNIHandles::resolve(obj); void* addr = index_oop_from_field_offset_long(p, offset); OrderAccess::release(); if (UseCompressedOops) { oop_store((narrowOop*)addr, x); } else { oop_store((oop*)addr, x); } OrderAccess::fence(); UNSAFE_END UNSAFE_ENTRY(void, Unsafe_SetOrderedLong(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jlong x)) UnsafeWrapper("Unsafe_SetOrderedLong"); #ifdef SUPPORTS_NATIVE_CX8 SET_FIELD_VOLATILE(obj, offset, jlong, x); #else // Keep old code for platforms which may not have atomic long (8 bytes) instructions { if (VM_Version::supports_cx8()) { SET_FIELD_VOLATILE(obj, offset, jlong, x); } else { Handle p (THREAD, JNIHandles::resolve(obj)); jlong* addr = (jlong*)(index_oop_from_field_offset_long(p(), offset)); MutexLockerEx mu(UnsafeJlong_lock, Mutex::_no_safepoint_check_flag); Atomic::store(x, addr); } } #endif UNSAFE_END UNSAFE_ENTRY(void, Unsafe_LoadFence(JNIEnv *env, jobject unsafe)) UnsafeWrapper("Unsafe_LoadFence"); OrderAccess::acquire(); UNSAFE_END UNSAFE_ENTRY(void, Unsafe_StoreFence(JNIEnv *env, jobject unsafe)) UnsafeWrapper("Unsafe_StoreFence"); OrderAccess::release(); UNSAFE_END UNSAFE_ENTRY(void, Unsafe_FullFence(JNIEnv *env, jobject unsafe)) UnsafeWrapper("Unsafe_FullFence"); OrderAccess::fence(); UNSAFE_END ////// Data in the C heap. // Note: These do not throw NullPointerException for bad pointers. // They just crash. Only a oop base pointer can generate a NullPointerException. // #define DEFINE_GETSETNATIVE(java_type, Type, native_type) \ \ UNSAFE_ENTRY(java_type, Unsafe_GetNative##Type(JNIEnv *env, jobject unsafe, jlong addr)) \ UnsafeWrapper("Unsafe_GetNative"#Type); \ void* p = addr_from_java(addr); \ JavaThread* t = JavaThread::current(); \ t->set_doing_unsafe_access(true); \ java_type x = *(volatile native_type*)p; \ t->set_doing_unsafe_access(false); \ return x; \ UNSAFE_END \ \ UNSAFE_ENTRY(void, Unsafe_SetNative##Type(JNIEnv *env, jobject unsafe, jlong addr, java_type x)) \ UnsafeWrapper("Unsafe_SetNative"#Type); \ JavaThread* t = JavaThread::current(); \ t->set_doing_unsafe_access(true); \ void* p = addr_from_java(addr); \ *(volatile native_type*)p = x; \ t->set_doing_unsafe_access(false); \ UNSAFE_END \ \ // END DEFINE_GETSETNATIVE. DEFINE_GETSETNATIVE(jbyte, Byte, signed char) DEFINE_GETSETNATIVE(jshort, Short, signed short); DEFINE_GETSETNATIVE(jchar, Char, unsigned short); DEFINE_GETSETNATIVE(jint, Int, jint); // no long -- handled specially DEFINE_GETSETNATIVE(jfloat, Float, float); DEFINE_GETSETNATIVE(jdouble, Double, double); #undef DEFINE_GETSETNATIVE UNSAFE_ENTRY(jlong, Unsafe_GetNativeLong(JNIEnv *env, jobject unsafe, jlong addr)) UnsafeWrapper("Unsafe_GetNativeLong"); JavaThread* t = JavaThread::current(); // We do it this way to avoid problems with access to heap using 64 // bit loads, as jlong in heap could be not 64-bit aligned, and on // some CPUs (SPARC) it leads to SIGBUS. t->set_doing_unsafe_access(true); void* p = addr_from_java(addr); jlong x; if (((intptr_t)p & 7) == 0) { // jlong is aligned, do a volatile access x = *(volatile jlong*)p; } else { jlong_accessor acc; acc.words[0] = ((volatile jint*)p)[0]; acc.words[1] = ((volatile jint*)p)[1]; x = acc.long_value; } t->set_doing_unsafe_access(false); return x; UNSAFE_END UNSAFE_ENTRY(void, Unsafe_SetNativeLong(JNIEnv *env, jobject unsafe, jlong addr, jlong x)) UnsafeWrapper("Unsafe_SetNativeLong"); JavaThread* t = JavaThread::current(); // see comment for Unsafe_GetNativeLong t->set_doing_unsafe_access(true); void* p = addr_from_java(addr); if (((intptr_t)p & 7) == 0) { // jlong is aligned, do a volatile access *(volatile jlong*)p = x; } else { jlong_accessor acc; acc.long_value = x; ((volatile jint*)p)[0] = acc.words[0]; ((volatile jint*)p)[1] = acc.words[1]; } t->set_doing_unsafe_access(false); UNSAFE_END UNSAFE_ENTRY(jlong, Unsafe_GetNativeAddress(JNIEnv *env, jobject unsafe, jlong addr)) UnsafeWrapper("Unsafe_GetNativeAddress"); void* p = addr_from_java(addr); return addr_to_java(*(void**)p); UNSAFE_END UNSAFE_ENTRY(void, Unsafe_SetNativeAddress(JNIEnv *env, jobject unsafe, jlong addr, jlong x)) UnsafeWrapper("Unsafe_SetNativeAddress"); void* p = addr_from_java(addr); *(void**)p = addr_from_java(x); UNSAFE_END ////// Allocation requests UNSAFE_ENTRY(jobject, Unsafe_AllocateInstance(JNIEnv *env, jobject unsafe, jclass cls)) UnsafeWrapper("Unsafe_AllocateInstance"); { ThreadToNativeFromVM ttnfv(thread); return env->AllocObject(cls); } UNSAFE_END UNSAFE_ENTRY(jlong, Unsafe_AllocateMemory(JNIEnv *env, jobject unsafe, jlong size)) UnsafeWrapper("Unsafe_AllocateMemory"); size_t sz = (size_t)size; if (sz != (julong)size || size < 0) { THROW_0(vmSymbols::java_lang_IllegalArgumentException()); } if (sz == 0) { return 0; } sz = round_to(sz, HeapWordSize); void* x = os::malloc(sz, mtInternal); if (x == NULL) { THROW_0(vmSymbols::java_lang_OutOfMemoryError()); } //Copy::fill_to_words((HeapWord*)x, sz / HeapWordSize); return addr_to_java(x); UNSAFE_END UNSAFE_ENTRY(jlong, Unsafe_ReallocateMemory(JNIEnv *env, jobject unsafe, jlong addr, jlong size)) UnsafeWrapper("Unsafe_ReallocateMemory"); void* p = addr_from_java(addr); size_t sz = (size_t)size; if (sz != (julong)size || size < 0) { THROW_0(vmSymbols::java_lang_IllegalArgumentException()); } if (sz == 0) { os::free(p); return 0; } sz = round_to(sz, HeapWordSize); void* x = (p == NULL) ? os::malloc(sz, mtInternal) : os::realloc(p, sz, mtInternal); if (x == NULL) { THROW_0(vmSymbols::java_lang_OutOfMemoryError()); } return addr_to_java(x); UNSAFE_END UNSAFE_ENTRY(void, Unsafe_FreeMemory(JNIEnv *env, jobject unsafe, jlong addr)) UnsafeWrapper("Unsafe_FreeMemory"); void* p = addr_from_java(addr); if (p == NULL) { return; } os::free(p); UNSAFE_END UNSAFE_ENTRY(void, Unsafe_SetMemory(JNIEnv *env, jobject unsafe, jlong addr, jlong size, jbyte value)) UnsafeWrapper("Unsafe_SetMemory"); size_t sz = (size_t)size; if (sz != (julong)size || size < 0) { THROW(vmSymbols::java_lang_IllegalArgumentException()); } char* p = (char*) addr_from_java(addr); Copy::fill_to_memory_atomic(p, sz, value); UNSAFE_END UNSAFE_ENTRY(void, Unsafe_SetMemory2(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jlong size, jbyte value)) UnsafeWrapper("Unsafe_SetMemory"); size_t sz = (size_t)size; if (sz != (julong)size || size < 0) { THROW(vmSymbols::java_lang_IllegalArgumentException()); } oop base = JNIHandles::resolve(obj); void* p = index_oop_from_field_offset_long(base, offset); Copy::fill_to_memory_atomic(p, sz, value); UNSAFE_END UNSAFE_ENTRY(void, Unsafe_CopyMemory(JNIEnv *env, jobject unsafe, jlong srcAddr, jlong dstAddr, jlong size)) UnsafeWrapper("Unsafe_CopyMemory"); if (size == 0) { return; } size_t sz = (size_t)size; if (sz != (julong)size || size < 0) { THROW(vmSymbols::java_lang_IllegalArgumentException()); } void* src = addr_from_java(srcAddr); void* dst = addr_from_java(dstAddr); Copy::conjoint_memory_atomic(src, dst, sz); UNSAFE_END UNSAFE_ENTRY(void, Unsafe_CopyMemory2(JNIEnv *env, jobject unsafe, jobject srcObj, jlong srcOffset, jobject dstObj, jlong dstOffset, jlong size)) UnsafeWrapper("Unsafe_CopyMemory"); if (size == 0) { return; } size_t sz = (size_t)size; if (sz != (julong)size || size < 0) { THROW(vmSymbols::java_lang_IllegalArgumentException()); } oop srcp = JNIHandles::resolve(srcObj); oop dstp = JNIHandles::resolve(dstObj); if (dstp != NULL && !dstp->is_typeArray()) { // NYI: This works only for non-oop arrays at present. // Generalizing it would be reasonable, but requires card marking. // Also, autoboxing a Long from 0L in copyMemory(x,y, 0L,z, n) would be bad. THROW(vmSymbols::java_lang_IllegalArgumentException()); } void* src = index_oop_from_field_offset_long(srcp, srcOffset); void* dst = index_oop_from_field_offset_long(dstp, dstOffset); Copy::conjoint_memory_atomic(src, dst, sz); UNSAFE_END ////// Random queries // See comment at file start about UNSAFE_LEAF //UNSAFE_LEAF(jint, Unsafe_AddressSize()) UNSAFE_ENTRY(jint, Unsafe_AddressSize(JNIEnv *env, jobject unsafe)) UnsafeWrapper("Unsafe_AddressSize"); return sizeof(void*); UNSAFE_END // See comment at file start about UNSAFE_LEAF //UNSAFE_LEAF(jint, Unsafe_PageSize()) UNSAFE_ENTRY(jint, Unsafe_PageSize(JNIEnv *env, jobject unsafe)) UnsafeWrapper("Unsafe_PageSize"); return os::vm_page_size(); UNSAFE_END jint find_field_offset(jobject field, int must_be_static, TRAPS) { if (field == NULL) { THROW_0(vmSymbols::java_lang_NullPointerException()); } oop reflected = JNIHandles::resolve_non_null(field); oop mirror = java_lang_reflect_Field::clazz(reflected); Klass* k = java_lang_Class::as_Klass(mirror); int slot = java_lang_reflect_Field::slot(reflected); int modifiers = java_lang_reflect_Field::modifiers(reflected); if (must_be_static >= 0) { int really_is_static = ((modifiers & JVM_ACC_STATIC) != 0); if (must_be_static != really_is_static) { THROW_0(vmSymbols::java_lang_IllegalArgumentException()); } } int offset = InstanceKlass::cast(k)->field_offset(slot); return field_offset_from_byte_offset(offset); } UNSAFE_ENTRY(jlong, Unsafe_ObjectFieldOffset(JNIEnv *env, jobject unsafe, jobject field)) UnsafeWrapper("Unsafe_ObjectFieldOffset"); return find_field_offset(field, 0, THREAD); UNSAFE_END UNSAFE_ENTRY(jlong, Unsafe_StaticFieldOffset(JNIEnv *env, jobject unsafe, jobject field)) UnsafeWrapper("Unsafe_StaticFieldOffset"); return find_field_offset(field, 1, THREAD); UNSAFE_END UNSAFE_ENTRY(jobject, Unsafe_StaticFieldBaseFromField(JNIEnv *env, jobject unsafe, jobject field)) UnsafeWrapper("Unsafe_StaticFieldBase"); // Note: In this VM implementation, a field address is always a short // offset from the base of a a klass metaobject. Thus, the full dynamic // range of the return type is never used. However, some implementations // might put the static field inside an array shared by many classes, // or even at a fixed address, in which case the address could be quite // large. In that last case, this function would return NULL, since // the address would operate alone, without any base pointer. if (field == NULL) THROW_0(vmSymbols::java_lang_NullPointerException()); oop reflected = JNIHandles::resolve_non_null(field); oop mirror = java_lang_reflect_Field::clazz(reflected); int modifiers = java_lang_reflect_Field::modifiers(reflected); if ((modifiers & JVM_ACC_STATIC) == 0) { THROW_0(vmSymbols::java_lang_IllegalArgumentException()); } return JNIHandles::make_local(env, mirror); UNSAFE_END //@deprecated UNSAFE_ENTRY(jint, Unsafe_FieldOffset(JNIEnv *env, jobject unsafe, jobject field)) UnsafeWrapper("Unsafe_FieldOffset"); // tries (but fails) to be polymorphic between static and non-static: jlong offset = find_field_offset(field, -1, THREAD); guarantee(offset == (jint)offset, "offset fits in 32 bits"); return (jint)offset; UNSAFE_END //@deprecated UNSAFE_ENTRY(jobject, Unsafe_StaticFieldBaseFromClass(JNIEnv *env, jobject unsafe, jobject clazz)) UnsafeWrapper("Unsafe_StaticFieldBase"); if (clazz == NULL) { THROW_0(vmSymbols::java_lang_NullPointerException()); } return JNIHandles::make_local(env, JNIHandles::resolve_non_null(clazz)); UNSAFE_END UNSAFE_ENTRY(void, Unsafe_EnsureClassInitialized(JNIEnv *env, jobject unsafe, jobject clazz)) { UnsafeWrapper("Unsafe_EnsureClassInitialized"); if (clazz == NULL) { THROW(vmSymbols::java_lang_NullPointerException()); } oop mirror = JNIHandles::resolve_non_null(clazz); Klass* klass = java_lang_Class::as_Klass(mirror); if (klass != NULL && klass->should_be_initialized()) { InstanceKlass* k = InstanceKlass::cast(klass); k->initialize(CHECK); } } UNSAFE_END UNSAFE_ENTRY(jboolean, Unsafe_ShouldBeInitialized(JNIEnv *env, jobject unsafe, jobject clazz)) { UnsafeWrapper("Unsafe_ShouldBeInitialized"); if (clazz == NULL) { THROW_(vmSymbols::java_lang_NullPointerException(), false); } oop mirror = JNIHandles::resolve_non_null(clazz); Klass* klass = java_lang_Class::as_Klass(mirror); if (klass != NULL && klass->should_be_initialized()) { return true; } return false; } UNSAFE_END static void getBaseAndScale(int& base, int& scale, jclass acls, TRAPS) { if (acls == NULL) { THROW(vmSymbols::java_lang_NullPointerException()); } oop mirror = JNIHandles::resolve_non_null(acls); Klass* k = java_lang_Class::as_Klass(mirror); if (k == NULL || !k->oop_is_array()) { THROW(vmSymbols::java_lang_InvalidClassException()); } else if (k->oop_is_objArray()) { base = arrayOopDesc::base_offset_in_bytes(T_OBJECT); scale = heapOopSize; } else if (k->oop_is_typeArray()) { TypeArrayKlass* tak = TypeArrayKlass::cast(k); base = tak->array_header_in_bytes(); assert(base == arrayOopDesc::base_offset_in_bytes(tak->element_type()), "array_header_size semantics ok"); scale = (1 << tak->log2_element_size()); } else { ShouldNotReachHere(); } } UNSAFE_ENTRY(jint, Unsafe_ArrayBaseOffset(JNIEnv *env, jobject unsafe, jclass acls)) UnsafeWrapper("Unsafe_ArrayBaseOffset"); int base = 0, scale = 0; getBaseAndScale(base, scale, acls, CHECK_0); return field_offset_from_byte_offset(base); UNSAFE_END UNSAFE_ENTRY(jint, Unsafe_ArrayIndexScale(JNIEnv *env, jobject unsafe, jclass acls)) UnsafeWrapper("Unsafe_ArrayIndexScale"); int base = 0, scale = 0; getBaseAndScale(base, scale, acls, CHECK_0); // This VM packs both fields and array elements down to the byte. // But watch out: If this changes, so that array references for // a given primitive type (say, T_BOOLEAN) use different memory units // than fields, this method MUST return zero for such arrays. // For example, the VM used to store sub-word sized fields in full // words in the object layout, so that accessors like getByte(Object,int) // did not really do what one might expect for arrays. Therefore, // this function used to report a zero scale factor, so that the user // would know not to attempt to access sub-word array elements. // // Code for unpacked fields: // if (scale < wordSize) return 0; // The following allows for a pretty general fieldOffset cookie scheme, // but requires it to be linear in byte offset. return field_offset_from_byte_offset(scale) - field_offset_from_byte_offset(0); UNSAFE_END static inline void throw_new(JNIEnv *env, const char *ename) { char buf[100]; strcpy(buf, "java/lang/"); strcat(buf, ename); jclass cls = env->FindClass(buf); if (env->ExceptionCheck()) { env->ExceptionClear(); tty->print_cr("Unsafe: cannot throw %s because FindClass has failed", buf); return; } char* msg = NULL; env->ThrowNew(cls, msg); } static jclass Unsafe_DefineClass_impl(JNIEnv *env, jstring name, jbyteArray data, int offset, int length, jobject loader, jobject pd) { { // Code lifted from JDK 1.3 ClassLoader.c jbyte *body; char *utfName; jclass result = 0; char buf[128]; if (UsePerfData) { ClassLoader::unsafe_defineClassCallCounter()->inc(); } if (data == NULL) { throw_new(env, "NullPointerException"); return 0; } /* Work around 4153825. malloc crashes on Solaris when passed a * negative size. */ if (length < 0) { throw_new(env, "ArrayIndexOutOfBoundsException"); return 0; } body = NEW_C_HEAP_ARRAY(jbyte, length, mtInternal); if (body == 0) { throw_new(env, "OutOfMemoryError"); return 0; } env->GetByteArrayRegion(data, offset, length, body); if (env->ExceptionOccurred()) goto free_body; if (name != NULL) { uint len = env->GetStringUTFLength(name); int unicode_len = env->GetStringLength(name); if (len >= sizeof(buf)) { utfName = NEW_C_HEAP_ARRAY(char, len + 1, mtInternal); if (utfName == NULL) { throw_new(env, "OutOfMemoryError"); goto free_body; } } else { utfName = buf; } env->GetStringUTFRegion(name, 0, unicode_len, utfName); //VerifyFixClassname(utfName); for (uint i = 0; i < len; i++) { if (utfName[i] == '.') utfName[i] = '/'; } } else { utfName = NULL; } result = JVM_DefineClass(env, utfName, loader, body, length, pd); if (utfName && utfName != buf) FREE_C_HEAP_ARRAY(char, utfName, mtInternal); free_body: FREE_C_HEAP_ARRAY(jbyte, body, mtInternal); return result; } } UNSAFE_ENTRY(jclass, Unsafe_DefineClass(JNIEnv *env, jobject unsafe, jstring name, jbyteArray data, int offset, int length, jobject loader, jobject pd)) UnsafeWrapper("Unsafe_DefineClass"); { ThreadToNativeFromVM ttnfv(thread); return Unsafe_DefineClass_impl(env, name, data, offset, length, loader, pd); } UNSAFE_END UNSAFE_ENTRY(jclass, Unsafe_DefineClass0(JNIEnv *env, jobject unsafe, jstring name, jbyteArray data, int offset, int length)) UnsafeWrapper("Unsafe_DefineClass"); { ThreadToNativeFromVM ttnfv(thread); int depthFromDefineClass0 = 1; jclass caller = JVM_GetCallerClass(env, depthFromDefineClass0); jobject loader = (caller == NULL) ? NULL : JVM_GetClassLoader(env, caller); jobject pd = (caller == NULL) ? NULL : JVM_GetProtectionDomain(env, caller); return Unsafe_DefineClass_impl(env, name, data, offset, length, loader, pd); } UNSAFE_END #define DAC_Args CLS"[B["OBJ // define a class but do not make it known to the class loader or system dictionary // - host_class: supplies context for linkage, access control, protection domain, and class loader // - data: bytes of a class file, a raw memory address (length gives the number of bytes) // - cp_patches: where non-null entries exist, they replace corresponding CP entries in data // When you load an anonymous class U, it works as if you changed its name just before loading, // to a name that you will never use again. Since the name is lost, no other class can directly // link to any member of U. Just after U is loaded, the only way to use it is reflectively, // through java.lang.Class methods like Class.newInstance. // Access checks for linkage sites within U continue to follow the same rules as for named classes. // The package of an anonymous class is given by the package qualifier on the name under which it was loaded. // An anonymous class also has special privileges to access any member of its host class. // This is the main reason why this loading operation is unsafe. The purpose of this is to // allow language implementations to simulate "open classes"; a host class in effect gets // new code when an anonymous class is loaded alongside it. A less convenient but more // standard way to do this is with reflection, which can also be set to ignore access // restrictions. // Access into an anonymous class is possible only through reflection. Therefore, there // are no special access rules for calling into an anonymous class. The relaxed access // rule for the host class is applied in the opposite direction: A host class reflectively // access one of its anonymous classes. // If you load the same bytecodes twice, you get two different classes. You can reload // the same bytecodes with or without varying CP patches. // By using the CP patching array, you can have a new anonymous class U2 refer to an older one U1. // The bytecodes for U2 should refer to U1 by a symbolic name (doesn't matter what the name is). // The CONSTANT_Class entry for that name can be patched to refer directly to U1. // This allows, for example, U2 to use U1 as a superclass or super-interface, or as // an outer class (so that U2 is an anonymous inner class of anonymous U1). // It is not possible for a named class, or an older anonymous class, to refer by // name (via its CP) to a newer anonymous class. // CP patching may also be used to modify (i.e., hack) the names of methods, classes, // or type descriptors used in the loaded anonymous class. // Finally, CP patching may be used to introduce "live" objects into the constant pool, // instead of "dead" strings. A compiled statement like println((Object)"hello") can // be changed to println(greeting), where greeting is an arbitrary object created before // the anonymous class is loaded. This is useful in dynamic languages, in which // various kinds of metaobjects must be introduced as constants into bytecode. // Note the cast (Object), which tells the verifier to expect an arbitrary object, // not just a literal string. For such ldc instructions, the verifier uses the // type Object instead of String, if the loaded constant is not in fact a String. static instanceKlassHandle Unsafe_DefineAnonymousClass_impl(JNIEnv *env, jclass host_class, jbyteArray data, jobjectArray cp_patches_jh, HeapWord* *temp_alloc, TRAPS) { if (UsePerfData) { ClassLoader::unsafe_defineClassCallCounter()->inc(); } if (data == NULL) { THROW_0(vmSymbols::java_lang_NullPointerException()); } jint length = typeArrayOop(JNIHandles::resolve_non_null(data))->length(); jint word_length = (length + sizeof(HeapWord)-1) / sizeof(HeapWord); HeapWord* body = NEW_C_HEAP_ARRAY(HeapWord, word_length, mtInternal); if (body == NULL) { THROW_0(vmSymbols::java_lang_OutOfMemoryError()); } // caller responsible to free it: (*temp_alloc) = body; { jbyte* array_base = typeArrayOop(JNIHandles::resolve_non_null(data))->byte_at_addr(0); Copy::conjoint_words((HeapWord*) array_base, body, word_length); } u1* class_bytes = (u1*) body; int class_bytes_length = (int) length; if (class_bytes_length < 0) class_bytes_length = 0; if (class_bytes == NULL || host_class == NULL || length != class_bytes_length) THROW_0(vmSymbols::java_lang_IllegalArgumentException()); objArrayHandle cp_patches_h; if (cp_patches_jh != NULL) { oop p = JNIHandles::resolve_non_null(cp_patches_jh); if (!p->is_objArray()) THROW_0(vmSymbols::java_lang_IllegalArgumentException()); cp_patches_h = objArrayHandle(THREAD, (objArrayOop)p); } KlassHandle host_klass(THREAD, java_lang_Class::as_Klass(JNIHandles::resolve_non_null(host_class))); const char* host_source = host_klass->external_name(); Handle host_loader(THREAD, host_klass->class_loader()); Handle host_domain(THREAD, host_klass->protection_domain()); GrowableArray* cp_patches = NULL; if (cp_patches_h.not_null()) { int alen = cp_patches_h->length(); for (int i = alen-1; i >= 0; i--) { oop p = cp_patches_h->obj_at(i); if (p != NULL) { Handle patch(THREAD, p); if (cp_patches == NULL) cp_patches = new GrowableArray(i+1, i+1, Handle()); cp_patches->at_put(i, patch); } } } ClassFileStream st(class_bytes, class_bytes_length, (char*) host_source); instanceKlassHandle anon_klass; { Symbol* no_class_name = NULL; Klass* anonk = SystemDictionary::parse_stream(no_class_name, host_loader, host_domain, &st, host_klass, cp_patches, CHECK_NULL); if (anonk == NULL) return NULL; anon_klass = instanceKlassHandle(THREAD, anonk); } return anon_klass; } UNSAFE_ENTRY(jclass, Unsafe_DefineAnonymousClass(JNIEnv *env, jobject unsafe, jclass host_class, jbyteArray data, jobjectArray cp_patches_jh)) { instanceKlassHandle anon_klass; jobject res_jh = NULL; UnsafeWrapper("Unsafe_DefineAnonymousClass"); ResourceMark rm(THREAD); HeapWord* temp_alloc = NULL; anon_klass = Unsafe_DefineAnonymousClass_impl(env, host_class, data, cp_patches_jh, &temp_alloc, THREAD); if (anon_klass() != NULL) res_jh = JNIHandles::make_local(env, anon_klass->java_mirror()); // try/finally clause: if (temp_alloc != NULL) { FREE_C_HEAP_ARRAY(HeapWord, temp_alloc, mtInternal); } // The anonymous class loader data has been artificially been kept alive to // this point. The mirror and any instances of this class have to keep // it alive afterwards. if (anon_klass() != NULL) { anon_klass->class_loader_data()->set_keep_alive(false); } // let caller initialize it as needed... return (jclass) res_jh; } UNSAFE_END UNSAFE_ENTRY(void, Unsafe_MonitorEnter(JNIEnv *env, jobject unsafe, jobject jobj)) UnsafeWrapper("Unsafe_MonitorEnter"); { if (jobj == NULL) { THROW(vmSymbols::java_lang_NullPointerException()); } Handle obj(thread, JNIHandles::resolve_non_null(jobj)); ObjectSynchronizer::jni_enter(obj, CHECK); } UNSAFE_END UNSAFE_ENTRY(jboolean, Unsafe_TryMonitorEnter(JNIEnv *env, jobject unsafe, jobject jobj)) UnsafeWrapper("Unsafe_TryMonitorEnter"); { if (jobj == NULL) { THROW_(vmSymbols::java_lang_NullPointerException(), JNI_FALSE); } Handle obj(thread, JNIHandles::resolve_non_null(jobj)); bool res = ObjectSynchronizer::jni_try_enter(obj, CHECK_0); return (res ? JNI_TRUE : JNI_FALSE); } UNSAFE_END UNSAFE_ENTRY(void, Unsafe_MonitorExit(JNIEnv *env, jobject unsafe, jobject jobj)) UnsafeWrapper("Unsafe_MonitorExit"); { if (jobj == NULL) { THROW(vmSymbols::java_lang_NullPointerException()); } Handle obj(THREAD, JNIHandles::resolve_non_null(jobj)); ObjectSynchronizer::jni_exit(obj(), CHECK); } UNSAFE_END UNSAFE_ENTRY(void, Unsafe_ThrowException(JNIEnv *env, jobject unsafe, jthrowable thr)) UnsafeWrapper("Unsafe_ThrowException"); { ThreadToNativeFromVM ttnfv(thread); env->Throw(thr); } UNSAFE_END // JSR166 ------------------------------------------------------------------ UNSAFE_ENTRY(jboolean, Unsafe_CompareAndSwapObject(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jobject e_h, jobject x_h)) UnsafeWrapper("Unsafe_CompareAndSwapObject"); oop x = JNIHandles::resolve(x_h); oop e = JNIHandles::resolve(e_h); oop p = JNIHandles::resolve(obj); HeapWord* addr = (HeapWord *)index_oop_from_field_offset_long(p, offset); oop res = oopDesc::atomic_compare_exchange_oop(x, addr, e, true); jboolean success = (res == e); if (success) update_barrier_set((void*)addr, x); return success; UNSAFE_END UNSAFE_ENTRY(jboolean, Unsafe_CompareAndSwapInt(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jint e, jint x)) UnsafeWrapper("Unsafe_CompareAndSwapInt"); oop p = JNIHandles::resolve(obj); jint* addr = (jint *) index_oop_from_field_offset_long(p, offset); return (jint)(Atomic::cmpxchg(x, addr, e)) == e; UNSAFE_END UNSAFE_ENTRY(jboolean, Unsafe_CompareAndSwapLong(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jlong e, jlong x)) UnsafeWrapper("Unsafe_CompareAndSwapLong"); Handle p (THREAD, JNIHandles::resolve(obj)); jlong* addr = (jlong*)(index_oop_from_field_offset_long(p(), offset)); #ifdef SUPPORTS_NATIVE_CX8 return (jlong)(Atomic::cmpxchg(x, addr, e)) == e; #else if (VM_Version::supports_cx8()) return (jlong)(Atomic::cmpxchg(x, addr, e)) == e; else { jboolean success = false; MutexLockerEx mu(UnsafeJlong_lock, Mutex::_no_safepoint_check_flag); jlong val = Atomic::load(addr); if (val == e) { Atomic::store(x, addr); success = true; } return success; } #endif UNSAFE_END static void post_thread_park_event(EventThreadPark* event, const oop obj, jlong timeout_nanos, jlong until_epoch_millis) { assert(event != NULL, "invariant"); assert(event->should_commit(), "invariant"); event->set_parkedClass((obj != NULL) ? obj->klass() : NULL); event->set_timeout(timeout_nanos); event->set_until(until_epoch_millis); event->set_address((obj != NULL) ? (u8)cast_from_oop(obj) : 0); event->commit(); } UNSAFE_ENTRY(void, Unsafe_Park(JNIEnv *env, jobject unsafe, jboolean isAbsolute, jlong time)) UnsafeWrapper("Unsafe_Park"); EventThreadPark event; #ifndef USDT2 HS_DTRACE_PROBE3(hotspot, thread__park__begin, thread->parker(), (int) isAbsolute, time); #else /* USDT2 */ HOTSPOT_THREAD_PARK_BEGIN( (uintptr_t) thread->parker(), (int) isAbsolute, time); #endif /* USDT2 */ JavaThreadParkedState jtps(thread, time != 0); thread->parker()->park(isAbsolute != 0, time); #ifndef USDT2 HS_DTRACE_PROBE1(hotspot, thread__park__end, thread->parker()); #else /* USDT2 */ HOTSPOT_THREAD_PARK_END( (uintptr_t) thread->parker()); #endif /* USDT2 */ if (event.should_commit()) { const oop obj = thread->current_park_blocker(); if (time == 0) { post_thread_park_event(&event, obj, min_jlong, min_jlong); } else { if (isAbsolute != 0) { post_thread_park_event(&event, obj, min_jlong, time); } else { post_thread_park_event(&event, obj, time, min_jlong); } } } UNSAFE_END UNSAFE_ENTRY(void, Unsafe_Unpark(JNIEnv *env, jobject unsafe, jobject jthread)) UnsafeWrapper("Unsafe_Unpark"); Parker* p = NULL; if (jthread != NULL) { oop java_thread = JNIHandles::resolve_non_null(jthread); if (java_thread != NULL) { jlong lp = java_lang_Thread::park_event(java_thread); if (lp != 0) { // This cast is OK even though the jlong might have been read // non-atomically on 32bit systems, since there, one word will // always be zero anyway and the value set is always the same p = (Parker*)addr_from_java(lp); } else { // Grab lock if apparently null or using older version of library MutexLocker mu(Threads_lock); java_thread = JNIHandles::resolve_non_null(jthread); if (java_thread != NULL) { JavaThread* thr = java_lang_Thread::thread(java_thread); if (thr != NULL) { p = thr->parker(); if (p != NULL) { // Bind to Java thread for next time. java_lang_Thread::set_park_event(java_thread, addr_to_java(p)); } } } } } } if (p != NULL) { #ifndef USDT2 HS_DTRACE_PROBE1(hotspot, thread__unpark, p); #else /* USDT2 */ HOTSPOT_THREAD_UNPARK( (uintptr_t) p); #endif /* USDT2 */ p->unpark(); } UNSAFE_END UNSAFE_ENTRY(jint, Unsafe_Loadavg(JNIEnv *env, jobject unsafe, jdoubleArray loadavg, jint nelem)) UnsafeWrapper("Unsafe_Loadavg"); const int max_nelem = 3; double la[max_nelem]; jint ret; typeArrayOop a = typeArrayOop(JNIHandles::resolve_non_null(loadavg)); assert(a->is_typeArray(), "must be type array"); if (nelem < 0 || nelem > max_nelem || a->length() < nelem) { ThreadToNativeFromVM ttnfv(thread); throw_new(env, "ArrayIndexOutOfBoundsException"); return -1; } ret = os::loadavg(la, nelem); if (ret == -1) return -1; // if successful, ret is the number of samples actually retrieved. assert(ret >= 0 && ret <= max_nelem, "Unexpected loadavg return value"); switch(ret) { case 3: a->double_at_put(2, (jdouble)la[2]); // fall through case 2: a->double_at_put(1, (jdouble)la[1]); // fall through case 1: a->double_at_put(0, (jdouble)la[0]); break; } return ret; UNSAFE_END UNSAFE_ENTRY(void, Unsafe_PrefetchRead(JNIEnv* env, jclass ignored, jobject obj, jlong offset)) UnsafeWrapper("Unsafe_PrefetchRead"); oop p = JNIHandles::resolve(obj); void* addr = index_oop_from_field_offset_long(p, 0); Prefetch::read(addr, (intx)offset); UNSAFE_END UNSAFE_ENTRY(void, Unsafe_PrefetchWrite(JNIEnv* env, jclass ignored, jobject obj, jlong offset)) UnsafeWrapper("Unsafe_PrefetchWrite"); oop p = JNIHandles::resolve(obj); void* addr = index_oop_from_field_offset_long(p, 0); Prefetch::write(addr, (intx)offset); UNSAFE_END jlong CoroutineSupport_getThreadCoroutine(JNIEnv* env, jclass klass) { DEBUG_CORO_PRINT("CoroutineSupport_getThreadCoroutine\n"); JavaThread* THREAD = JavaThread::thread_from_jni_environment(env); Coroutine* list = THREAD->coroutine_list(); assert(list != NULL, "thread isn't initialized for coroutines"); return (jlong)list; } void CoroutineSupport_switchTo(JNIEnv* env, jclass klass, jobject old_coroutine, jobject target_coroutine) { ShouldNotReachHere(); } void CoroutineSupport_switchToAndTerminate(JNIEnv* env, jclass klass, jobject old_coroutine, jobject target_coroutine) { JavaThread* THREAD = JavaThread::thread_from_jni_environment(env); assert(old_coroutine != NULL, "NULL old CoroutineBase in switchToAndTerminate"); assert(target_coroutine == NULL, "expecting NULL"); oop old_oop = JNIHandles::resolve(old_coroutine); Coroutine* coro = (Coroutine*)java_dyn_CoroutineBase::data(old_oop); assert(coro != NULL, "NULL old coroutine in switchToAndTerminate"); java_dyn_CoroutineBase::set_data(old_oop, 0); CoroutineStack* stack = coro->stack(); stack->remove_from_list(THREAD->coroutine_stack_list()); if (THREAD->coroutine_stack_cache_size() < MaxFreeCoroutinesCacheSize) { stack->insert_into_list(THREAD->coroutine_stack_cache()); THREAD->coroutine_stack_cache_size() ++; } else { CoroutineStack::free_stack(stack, THREAD); } Coroutine::free_coroutine(coro, THREAD); } void CoroutineSupport_switchToAndExit(JNIEnv* env, jclass klass, jobject old_coroutine, jobject target_coroutine) { JavaThread* THREAD = JavaThread::thread_from_jni_environment(env); { ThreadInVMfromNative tivm(THREAD); HandleMark mark(THREAD); THROW(vmSymbols::java_dyn_CoroutineExitException()); } } jlong CoroutineSupport_createCoroutine(JNIEnv* env, jclass klass, jobject coroutine, jlong stack_size) { DEBUG_CORO_PRINT("CoroutineSupport_createCoroutine\n"); assert(coroutine != NULL, "cannot create coroutine with NULL Coroutine object"); JavaThread* THREAD = JavaThread::thread_from_jni_environment(env); ThreadInVMfromNative tivm(THREAD); if (stack_size == 0 || stack_size < -1) { THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "invalid stack size"); } CoroutineStack* stack = NULL; if (stack_size <= 0 && THREAD->coroutine_stack_cache_size() > 0) { stack = THREAD->coroutine_stack_cache(); stack->remove_from_list(THREAD->coroutine_stack_cache()); THREAD->coroutine_stack_cache_size() --; DEBUG_CORO_ONLY(tty->print("reused coroutine stack at %08x\n", stack->_stack_base)); } else { stack = CoroutineStack::create_stack(THREAD, stack_size); if (stack == NULL) { THROW_0(vmSymbols::java_lang_OutOfMemoryError()); } } stack->insert_into_list(THREAD->coroutine_stack_list()); Coroutine* coro = Coroutine::create_coroutine(THREAD, stack, JNIHandles::resolve(coroutine)); if (coro == NULL) { ThreadInVMfromNative tivm(THREAD); HandleMark mark(THREAD); THROW_0(vmSymbols::java_lang_OutOfMemoryError()); } coro->insert_into_list(THREAD->coroutine_list()); return (jlong)coro; } jboolean CoroutineSupport_isDisposable(JNIEnv* env, jclass klass, jlong coroutineLong) { DEBUG_CORO_PRINT("CoroutineSupport_isDisposable\n"); JavaThread* THREAD = JavaThread::thread_from_jni_environment(env); Coroutine* coro = (Coroutine*)coroutineLong; assert(coro != NULL, "cannot free NULL coroutine"); assert(!coro->is_thread_coroutine(), "cannot free thread coroutine"); return coro->is_disposable(); } jobject CoroutineSupport_cleanupCoroutine(JNIEnv* env, jclass klass) { DEBUG_CORO_PRINT("CoroutineSupport_cleanupCoroutine\n"); JavaThread* THREAD = JavaThread::thread_from_jni_environment(env); // TODO: implementation needed... return NULL; } /// JVM_RegisterUnsafeMethods #define ADR "J" #define LANG "Ljava/lang/" #define OBJ LANG "Object;" #define CLS LANG "Class;" #define CTR LANG "reflect/Constructor;" #define FLD LANG "reflect/Field;" #define MTH LANG "reflect/Method;" #define THR LANG "Throwable;" #define DC0_Args LANG "String;[BII" #define DC_Args DC0_Args LANG "ClassLoader;" "Ljava/security/ProtectionDomain;" #define CC (char*) /*cast a literal from (const char*)*/ #define FN_PTR(f) CAST_FROM_FN_PTR(void*, &f) // define deprecated accessors for compabitility with 1.4.0 #define DECLARE_GETSETOOP_140(Boolean, Z) \ {CC "get" #Boolean, CC "(" OBJ "I)" #Z, FN_PTR(Unsafe_Get##Boolean##140)}, \ {CC "put" #Boolean, CC "(" OBJ "I" #Z ")V", FN_PTR(Unsafe_Set##Boolean##140)} // Note: In 1.4.1, getObject and kin take both int and long offsets. #define DECLARE_GETSETOOP_141(Boolean, Z) \ {CC "get" #Boolean, CC "(" OBJ "J)" #Z, FN_PTR(Unsafe_Get##Boolean)}, \ {CC "put" #Boolean, CC "(" OBJ "J" #Z ")V", FN_PTR(Unsafe_Set##Boolean)} // Note: In 1.5.0, there are volatile versions too #define DECLARE_GETSETOOP(Boolean, Z) \ {CC "get" #Boolean, CC "(" OBJ "J)" #Z, FN_PTR(Unsafe_Get##Boolean)}, \ {CC "put" #Boolean, CC "(" OBJ "J" #Z ")V", FN_PTR(Unsafe_Set##Boolean)}, \ {CC "get" #Boolean "Volatile", CC "(" OBJ "J)" #Z, FN_PTR(Unsafe_Get##Boolean##Volatile)}, \ {CC "put" #Boolean "Volatile", CC "(" OBJ "J" #Z ")V", FN_PTR(Unsafe_Set##Boolean##Volatile)} #define DECLARE_GETSETNATIVE(Byte, B) \ {CC "get" #Byte, CC "(" ADR ")" #B, FN_PTR(Unsafe_GetNative##Byte)}, \ {CC "put" #Byte, CC "(" ADR#B ")V", FN_PTR(Unsafe_SetNative##Byte)} // These are the methods for 1.4.0 static JNINativeMethod methods_140[] = { {CC "getObject", CC "(" OBJ "I)" OBJ "", FN_PTR(Unsafe_GetObject140)}, {CC "putObject", CC "(" OBJ "I" OBJ ")V", FN_PTR(Unsafe_SetObject140)}, DECLARE_GETSETOOP_140(Boolean, Z), DECLARE_GETSETOOP_140(Byte, B), DECLARE_GETSETOOP_140(Short, S), DECLARE_GETSETOOP_140(Char, C), DECLARE_GETSETOOP_140(Int, I), DECLARE_GETSETOOP_140(Long, J), DECLARE_GETSETOOP_140(Float, F), DECLARE_GETSETOOP_140(Double, D), DECLARE_GETSETNATIVE(Byte, B), DECLARE_GETSETNATIVE(Short, S), DECLARE_GETSETNATIVE(Char, C), DECLARE_GETSETNATIVE(Int, I), DECLARE_GETSETNATIVE(Long, J), DECLARE_GETSETNATIVE(Float, F), DECLARE_GETSETNATIVE(Double, D), {CC "getAddress", CC "(" ADR ")" ADR, FN_PTR(Unsafe_GetNativeAddress)}, {CC "putAddress", CC "(" ADR "" ADR ")V", FN_PTR(Unsafe_SetNativeAddress)}, {CC "allocateMemory", CC "(J)" ADR, FN_PTR(Unsafe_AllocateMemory)}, {CC "reallocateMemory", CC "(" ADR "J)" ADR, FN_PTR(Unsafe_ReallocateMemory)}, {CC "freeMemory", CC "(" ADR ")V", FN_PTR(Unsafe_FreeMemory)}, {CC "fieldOffset", CC "(" FLD ")I", FN_PTR(Unsafe_FieldOffset)}, {CC "staticFieldBase", CC "(" CLS ")" OBJ, FN_PTR(Unsafe_StaticFieldBaseFromClass)}, {CC "ensureClassInitialized",CC "(" CLS ")V", FN_PTR(Unsafe_EnsureClassInitialized)}, {CC "arrayBaseOffset", CC "(" CLS ")I", FN_PTR(Unsafe_ArrayBaseOffset)}, {CC "arrayIndexScale", CC "(" CLS ")I", FN_PTR(Unsafe_ArrayIndexScale)}, {CC "addressSize", CC "()I", FN_PTR(Unsafe_AddressSize)}, {CC "pageSize", CC "()I", FN_PTR(Unsafe_PageSize)}, {CC "defineClass", CC "(" DC0_Args ")" CLS, FN_PTR(Unsafe_DefineClass0)}, {CC "defineClass", CC "(" DC_Args ")" CLS, FN_PTR(Unsafe_DefineClass)}, {CC "allocateInstance", CC "(" CLS ")" OBJ, FN_PTR(Unsafe_AllocateInstance)}, {CC "monitorEnter", CC "(" OBJ ")V", FN_PTR(Unsafe_MonitorEnter)}, {CC "monitorExit", CC "(" OBJ ")V", FN_PTR(Unsafe_MonitorExit)}, {CC "throwException", CC "(" THR ")V", FN_PTR(Unsafe_ThrowException)} }; // These are the methods prior to the JSR 166 changes in 1.5.0 static JNINativeMethod methods_141[] = { {CC "getObject", CC "(" OBJ "J)" OBJ "", FN_PTR(Unsafe_GetObject)}, {CC "putObject", CC "(" OBJ "J" OBJ ")V", FN_PTR(Unsafe_SetObject)}, DECLARE_GETSETOOP_141(Boolean, Z), DECLARE_GETSETOOP_141(Byte, B), DECLARE_GETSETOOP_141(Short, S), DECLARE_GETSETOOP_141(Char, C), DECLARE_GETSETOOP_141(Int, I), DECLARE_GETSETOOP_141(Long, J), DECLARE_GETSETOOP_141(Float, F), DECLARE_GETSETOOP_141(Double, D), DECLARE_GETSETNATIVE(Byte, B), DECLARE_GETSETNATIVE(Short, S), DECLARE_GETSETNATIVE(Char, C), DECLARE_GETSETNATIVE(Int, I), DECLARE_GETSETNATIVE(Long, J), DECLARE_GETSETNATIVE(Float, F), DECLARE_GETSETNATIVE(Double, D), {CC "getAddress", CC "(" ADR ")" ADR, FN_PTR(Unsafe_GetNativeAddress)}, {CC "putAddress", CC "(" ADR "" ADR ")V", FN_PTR(Unsafe_SetNativeAddress)}, {CC "allocateMemory", CC "(J)" ADR, FN_PTR(Unsafe_AllocateMemory)}, {CC "reallocateMemory", CC "(" ADR "J)" ADR, FN_PTR(Unsafe_ReallocateMemory)}, {CC "freeMemory", CC "(" ADR ")V", FN_PTR(Unsafe_FreeMemory)}, {CC "objectFieldOffset", CC "(" FLD ")J", FN_PTR(Unsafe_ObjectFieldOffset)}, {CC "staticFieldOffset", CC "(" FLD ")J", FN_PTR(Unsafe_StaticFieldOffset)}, {CC "staticFieldBase", CC "(" FLD ")" OBJ, FN_PTR(Unsafe_StaticFieldBaseFromField)}, {CC "ensureClassInitialized",CC "(" CLS ")V", FN_PTR(Unsafe_EnsureClassInitialized)}, {CC "arrayBaseOffset", CC "(" CLS ")I", FN_PTR(Unsafe_ArrayBaseOffset)}, {CC "arrayIndexScale", CC "(" CLS ")I", FN_PTR(Unsafe_ArrayIndexScale)}, {CC "addressSize", CC "()I", FN_PTR(Unsafe_AddressSize)}, {CC "pageSize", CC "()I", FN_PTR(Unsafe_PageSize)}, {CC "defineClass", CC "(" DC0_Args ")" CLS, FN_PTR(Unsafe_DefineClass0)}, {CC "defineClass", CC "(" DC_Args ")" CLS, FN_PTR(Unsafe_DefineClass)}, {CC "allocateInstance", CC "(" CLS ")" OBJ, FN_PTR(Unsafe_AllocateInstance)}, {CC "monitorEnter", CC "(" OBJ ")V", FN_PTR(Unsafe_MonitorEnter)}, {CC "monitorExit", CC "(" OBJ ")V", FN_PTR(Unsafe_MonitorExit)}, {CC "throwException", CC "(" THR ")V", FN_PTR(Unsafe_ThrowException)} }; // These are the methods prior to the JSR 166 changes in 1.6.0 static JNINativeMethod methods_15[] = { {CC "getObject", CC "(" OBJ "J)" OBJ "", FN_PTR(Unsafe_GetObject)}, {CC "putObject", CC "(" OBJ "J" OBJ ")V", FN_PTR(Unsafe_SetObject)}, {CC "getObjectVolatile",CC "(" OBJ "J)" OBJ "", FN_PTR(Unsafe_GetObjectVolatile)}, {CC "putObjectVolatile",CC "(" OBJ "J" OBJ ")V", FN_PTR(Unsafe_SetObjectVolatile)}, DECLARE_GETSETOOP(Boolean, Z), DECLARE_GETSETOOP(Byte, B), DECLARE_GETSETOOP(Short, S), DECLARE_GETSETOOP(Char, C), DECLARE_GETSETOOP(Int, I), DECLARE_GETSETOOP(Long, J), DECLARE_GETSETOOP(Float, F), DECLARE_GETSETOOP(Double, D), DECLARE_GETSETNATIVE(Byte, B), DECLARE_GETSETNATIVE(Short, S), DECLARE_GETSETNATIVE(Char, C), DECLARE_GETSETNATIVE(Int, I), DECLARE_GETSETNATIVE(Long, J), DECLARE_GETSETNATIVE(Float, F), DECLARE_GETSETNATIVE(Double, D), {CC "getAddress", CC "(" ADR ")" ADR, FN_PTR(Unsafe_GetNativeAddress)}, {CC "putAddress", CC "(" ADR "" ADR ")V", FN_PTR(Unsafe_SetNativeAddress)}, {CC "allocateMemory", CC "(J)" ADR, FN_PTR(Unsafe_AllocateMemory)}, {CC "reallocateMemory", CC "(" ADR "J)" ADR, FN_PTR(Unsafe_ReallocateMemory)}, {CC "freeMemory", CC "(" ADR ")V", FN_PTR(Unsafe_FreeMemory)}, {CC "objectFieldOffset", CC "(" FLD ")J", FN_PTR(Unsafe_ObjectFieldOffset)}, {CC "staticFieldOffset", CC "(" FLD ")J", FN_PTR(Unsafe_StaticFieldOffset)}, {CC "staticFieldBase", CC "(" FLD ")" OBJ, FN_PTR(Unsafe_StaticFieldBaseFromField)}, {CC "ensureClassInitialized",CC "(" CLS ")V", FN_PTR(Unsafe_EnsureClassInitialized)}, {CC "arrayBaseOffset", CC "(" CLS ")I", FN_PTR(Unsafe_ArrayBaseOffset)}, {CC "arrayIndexScale", CC "(" CLS ")I", FN_PTR(Unsafe_ArrayIndexScale)}, {CC "addressSize", CC "()I", FN_PTR(Unsafe_AddressSize)}, {CC "pageSize", CC "()I", FN_PTR(Unsafe_PageSize)}, {CC "defineClass", CC "(" DC0_Args ")" CLS, FN_PTR(Unsafe_DefineClass0)}, {CC "defineClass", CC "(" DC_Args ")" CLS, FN_PTR(Unsafe_DefineClass)}, {CC "allocateInstance", CC "(" CLS ")" OBJ, FN_PTR(Unsafe_AllocateInstance)}, {CC "monitorEnter", CC "(" OBJ ")V", FN_PTR(Unsafe_MonitorEnter)}, {CC "monitorExit", CC "(" OBJ ")V", FN_PTR(Unsafe_MonitorExit)}, {CC "throwException", CC "(" THR ")V", FN_PTR(Unsafe_ThrowException)}, {CC "compareAndSwapObject", CC "(" OBJ "J" OBJ "" OBJ ")Z", FN_PTR(Unsafe_CompareAndSwapObject)}, {CC "compareAndSwapInt", CC "(" OBJ "J""I""I"")Z", FN_PTR(Unsafe_CompareAndSwapInt)}, {CC "compareAndSwapLong", CC "(" OBJ "J""J""J"")Z", FN_PTR(Unsafe_CompareAndSwapLong)}, {CC "park", CC "(ZJ)V", FN_PTR(Unsafe_Park)}, {CC "unpark", CC "(" OBJ ")V", FN_PTR(Unsafe_Unpark)} }; // These are the methods for 1.6.0 and 1.7.0 static JNINativeMethod methods_16[] = { {CC "getObject", CC "(" OBJ "J)" OBJ "", FN_PTR(Unsafe_GetObject)}, {CC "putObject", CC "(" OBJ "J" OBJ ")V", FN_PTR(Unsafe_SetObject)}, {CC "getObjectVolatile",CC "(" OBJ "J)" OBJ "", FN_PTR(Unsafe_GetObjectVolatile)}, {CC "putObjectVolatile",CC "(" OBJ "J" OBJ ")V", FN_PTR(Unsafe_SetObjectVolatile)}, DECLARE_GETSETOOP(Boolean, Z), DECLARE_GETSETOOP(Byte, B), DECLARE_GETSETOOP(Short, S), DECLARE_GETSETOOP(Char, C), DECLARE_GETSETOOP(Int, I), DECLARE_GETSETOOP(Long, J), DECLARE_GETSETOOP(Float, F), DECLARE_GETSETOOP(Double, D), DECLARE_GETSETNATIVE(Byte, B), DECLARE_GETSETNATIVE(Short, S), DECLARE_GETSETNATIVE(Char, C), DECLARE_GETSETNATIVE(Int, I), DECLARE_GETSETNATIVE(Long, J), DECLARE_GETSETNATIVE(Float, F), DECLARE_GETSETNATIVE(Double, D), {CC "getAddress", CC "(" ADR ")" ADR, FN_PTR(Unsafe_GetNativeAddress)}, {CC "putAddress", CC "(" ADR "" ADR ")V", FN_PTR(Unsafe_SetNativeAddress)}, {CC "allocateMemory", CC "(J)" ADR, FN_PTR(Unsafe_AllocateMemory)}, {CC "reallocateMemory", CC "(" ADR "J)" ADR, FN_PTR(Unsafe_ReallocateMemory)}, {CC "freeMemory", CC "(" ADR ")V", FN_PTR(Unsafe_FreeMemory)}, {CC "objectFieldOffset", CC "(" FLD ")J", FN_PTR(Unsafe_ObjectFieldOffset)}, {CC "staticFieldOffset", CC "(" FLD ")J", FN_PTR(Unsafe_StaticFieldOffset)}, {CC "staticFieldBase", CC "(" FLD ")" OBJ, FN_PTR(Unsafe_StaticFieldBaseFromField)}, {CC "ensureClassInitialized",CC "(" CLS ")V", FN_PTR(Unsafe_EnsureClassInitialized)}, {CC "arrayBaseOffset", CC "(" CLS ")I", FN_PTR(Unsafe_ArrayBaseOffset)}, {CC "arrayIndexScale", CC "(" CLS ")I", FN_PTR(Unsafe_ArrayIndexScale)}, {CC "addressSize", CC "()I", FN_PTR(Unsafe_AddressSize)}, {CC "pageSize", CC "()I", FN_PTR(Unsafe_PageSize)}, {CC "defineClass", CC "(" DC0_Args ")" CLS, FN_PTR(Unsafe_DefineClass0)}, {CC "defineClass", CC "(" DC_Args ")" CLS, FN_PTR(Unsafe_DefineClass)}, {CC "allocateInstance", CC "(" CLS ")" OBJ, FN_PTR(Unsafe_AllocateInstance)}, {CC "monitorEnter", CC "(" OBJ ")V", FN_PTR(Unsafe_MonitorEnter)}, {CC "monitorExit", CC "(" OBJ ")V", FN_PTR(Unsafe_MonitorExit)}, {CC "tryMonitorEnter", CC "(" OBJ ")Z", FN_PTR(Unsafe_TryMonitorEnter)}, {CC "throwException", CC "(" THR ")V", FN_PTR(Unsafe_ThrowException)}, {CC "compareAndSwapObject", CC "(" OBJ "J" OBJ "" OBJ ")Z", FN_PTR(Unsafe_CompareAndSwapObject)}, {CC "compareAndSwapInt", CC "(" OBJ "J""I""I"")Z", FN_PTR(Unsafe_CompareAndSwapInt)}, {CC "compareAndSwapLong", CC "(" OBJ "J""J""J"")Z", FN_PTR(Unsafe_CompareAndSwapLong)}, {CC "putOrderedObject", CC "(" OBJ "J" OBJ ")V", FN_PTR(Unsafe_SetOrderedObject)}, {CC "putOrderedInt", CC "(" OBJ "JI)V", FN_PTR(Unsafe_SetOrderedInt)}, {CC "putOrderedLong", CC "(" OBJ "JJ)V", FN_PTR(Unsafe_SetOrderedLong)}, {CC "park", CC "(ZJ)V", FN_PTR(Unsafe_Park)}, {CC "unpark", CC "(" OBJ ")V", FN_PTR(Unsafe_Unpark)} }; // These are the methods for 1.8.0 static JNINativeMethod methods_18[] = { {CC "getObject", CC "(" OBJ "J)" OBJ "", FN_PTR(Unsafe_GetObject)}, {CC "putObject", CC "(" OBJ "J" OBJ ")V", FN_PTR(Unsafe_SetObject)}, {CC "getObjectVolatile",CC "(" OBJ "J)" OBJ "", FN_PTR(Unsafe_GetObjectVolatile)}, {CC "putObjectVolatile",CC "(" OBJ "J" OBJ ")V", FN_PTR(Unsafe_SetObjectVolatile)}, DECLARE_GETSETOOP(Boolean, Z), DECLARE_GETSETOOP(Byte, B), DECLARE_GETSETOOP(Short, S), DECLARE_GETSETOOP(Char, C), DECLARE_GETSETOOP(Int, I), DECLARE_GETSETOOP(Long, J), DECLARE_GETSETOOP(Float, F), DECLARE_GETSETOOP(Double, D), DECLARE_GETSETNATIVE(Byte, B), DECLARE_GETSETNATIVE(Short, S), DECLARE_GETSETNATIVE(Char, C), DECLARE_GETSETNATIVE(Int, I), DECLARE_GETSETNATIVE(Long, J), DECLARE_GETSETNATIVE(Float, F), DECLARE_GETSETNATIVE(Double, D), {CC "getAddress", CC "(" ADR ")" ADR, FN_PTR(Unsafe_GetNativeAddress)}, {CC "putAddress", CC "(" ADR "" ADR ")V", FN_PTR(Unsafe_SetNativeAddress)}, {CC "allocateMemory", CC "(J)" ADR, FN_PTR(Unsafe_AllocateMemory)}, {CC "reallocateMemory", CC "(" ADR "J)" ADR, FN_PTR(Unsafe_ReallocateMemory)}, {CC "freeMemory", CC "(" ADR ")V", FN_PTR(Unsafe_FreeMemory)}, {CC "objectFieldOffset", CC "(" FLD ")J", FN_PTR(Unsafe_ObjectFieldOffset)}, {CC "staticFieldOffset", CC "(" FLD ")J", FN_PTR(Unsafe_StaticFieldOffset)}, {CC "staticFieldBase", CC "(" FLD ")" OBJ, FN_PTR(Unsafe_StaticFieldBaseFromField)}, {CC "ensureClassInitialized",CC "(" CLS ")V", FN_PTR(Unsafe_EnsureClassInitialized)}, {CC "arrayBaseOffset", CC "(" CLS ")I", FN_PTR(Unsafe_ArrayBaseOffset)}, {CC "arrayIndexScale", CC "(" CLS ")I", FN_PTR(Unsafe_ArrayIndexScale)}, {CC "addressSize", CC "()I", FN_PTR(Unsafe_AddressSize)}, {CC "pageSize", CC "()I", FN_PTR(Unsafe_PageSize)}, {CC "defineClass", CC "(" DC_Args ")" CLS, FN_PTR(Unsafe_DefineClass)}, {CC "allocateInstance", CC "(" CLS ")" OBJ, FN_PTR(Unsafe_AllocateInstance)}, {CC "monitorEnter", CC "(" OBJ ")V", FN_PTR(Unsafe_MonitorEnter)}, {CC "monitorExit", CC "(" OBJ ")V", FN_PTR(Unsafe_MonitorExit)}, {CC "tryMonitorEnter", CC "(" OBJ ")Z", FN_PTR(Unsafe_TryMonitorEnter)}, {CC "throwException", CC "(" THR ")V", FN_PTR(Unsafe_ThrowException)}, {CC "compareAndSwapObject", CC "(" OBJ "J" OBJ "" OBJ ")Z", FN_PTR(Unsafe_CompareAndSwapObject)}, {CC "compareAndSwapInt", CC "(" OBJ "J""I""I"")Z", FN_PTR(Unsafe_CompareAndSwapInt)}, {CC "compareAndSwapLong", CC "(" OBJ "J""J""J"")Z", FN_PTR(Unsafe_CompareAndSwapLong)}, {CC "putOrderedObject", CC "(" OBJ "J" OBJ ")V", FN_PTR(Unsafe_SetOrderedObject)}, {CC "putOrderedInt", CC "(" OBJ "JI)V", FN_PTR(Unsafe_SetOrderedInt)}, {CC "putOrderedLong", CC "(" OBJ "JJ)V", FN_PTR(Unsafe_SetOrderedLong)}, {CC "park", CC "(ZJ)V", FN_PTR(Unsafe_Park)}, {CC "unpark", CC "(" OBJ ")V", FN_PTR(Unsafe_Unpark)} }; JNINativeMethod loadavg_method[] = { {CC "getLoadAverage", CC "([DI)I", FN_PTR(Unsafe_Loadavg)} }; JNINativeMethod prefetch_methods[] = { {CC "prefetchRead", CC "(" OBJ "J)V", FN_PTR(Unsafe_PrefetchRead)}, {CC "prefetchWrite", CC "(" OBJ "J)V", FN_PTR(Unsafe_PrefetchWrite)}, {CC "prefetchReadStatic", CC "(" OBJ "J)V", FN_PTR(Unsafe_PrefetchRead)}, {CC "prefetchWriteStatic",CC "(" OBJ "J)V", FN_PTR(Unsafe_PrefetchWrite)} }; JNINativeMethod memcopy_methods_17[] = { {CC "copyMemory", CC "(" OBJ "J" OBJ "JJ)V", FN_PTR(Unsafe_CopyMemory2)}, {CC "setMemory", CC "(" OBJ "JJB)V", FN_PTR(Unsafe_SetMemory2)} }; JNINativeMethod memcopy_methods_15[] = { {CC "setMemory", CC "(" ADR "JB)V", FN_PTR(Unsafe_SetMemory)}, {CC "copyMemory", CC "(" ADR ADR "J)V", FN_PTR(Unsafe_CopyMemory)} }; JNINativeMethod anonk_methods[] = { {CC "defineAnonymousClass", CC "(" DAC_Args ")" CLS, FN_PTR(Unsafe_DefineAnonymousClass)}, }; JNINativeMethod lform_methods[] = { {CC "shouldBeInitialized",CC "(" CLS ")Z", FN_PTR(Unsafe_ShouldBeInitialized)}, }; JNINativeMethod fence_methods[] = { {CC "loadFence", CC "()V", FN_PTR(Unsafe_LoadFence)}, {CC "storeFence", CC "()V", FN_PTR(Unsafe_StoreFence)}, {CC "fullFence", CC "()V", FN_PTR(Unsafe_FullFence)}, }; #define COBA "Ljava/dyn/CoroutineBase;" JNINativeMethod coroutine_support_methods[] = { {CC"getThreadCoroutine", CC"()J", FN_PTR(CoroutineSupport_getThreadCoroutine)}, {CC"createCoroutine", CC"("COBA"J)J", FN_PTR(CoroutineSupport_createCoroutine)}, {CC"isDisposable", CC"(J)Z", FN_PTR(CoroutineSupport_isDisposable)}, {CC"switchTo", CC"("COBA COBA")V", FN_PTR(CoroutineSupport_switchTo)}, {CC"switchToAndTerminate", CC"("COBA COBA")V", FN_PTR(CoroutineSupport_switchToAndTerminate)}, {CC"switchToAndExit", CC"("COBA COBA")V", FN_PTR(CoroutineSupport_switchToAndExit)}, {CC"cleanupCoroutine", CC"()"COBA, FN_PTR(CoroutineSupport_cleanupCoroutine)}, }; #define COMPILE_CORO_METHODS_FROM (3) #undef COBA #undef CC #undef FN_PTR #undef ADR #undef LANG #undef OBJ #undef CLS #undef CTR #undef FLD #undef MTH #undef THR #undef DC0_Args #undef DC_Args #undef DECLARE_GETSETOOP #undef DECLARE_GETSETNATIVE /** * Helper method to register native methods. */ static bool register_natives(const char* message, JNIEnv* env, jclass clazz, const JNINativeMethod* methods, jint nMethods) { int status = env->RegisterNatives(clazz, methods, nMethods); if (status < 0 || env->ExceptionOccurred()) { if (PrintMiscellaneous && (Verbose || WizardMode)) { tty->print_cr("Unsafe: failed registering %s", message); } env->ExceptionClear(); return false; } else { if (PrintMiscellaneous && (Verbose || WizardMode)) { tty->print_cr("Unsafe: successfully registered %s", message); } return true; } } // This one function is exported, used by NativeLookup. // The Unsafe_xxx functions above are called only from the interpreter. // The optimizer looks at names and signatures to recognize // individual functions. JVM_ENTRY(void, JVM_RegisterUnsafeMethods(JNIEnv *env, jclass unsafecls)) UnsafeWrapper("JVM_RegisterUnsafeMethods"); { ThreadToNativeFromVM ttnfv(thread); // Unsafe methods { bool success = false; // We need to register the 1.6 methods first because the 1.8 methods would register fine on 1.7 and 1.6 if (!success) { success = register_natives("1.6 methods", env, unsafecls, methods_16, sizeof(methods_16)/sizeof(JNINativeMethod)); } if (!success) { success = register_natives("1.8 methods", env, unsafecls, methods_18, sizeof(methods_18)/sizeof(JNINativeMethod)); } if (!success) { success = register_natives("1.5 methods", env, unsafecls, methods_15, sizeof(methods_15)/sizeof(JNINativeMethod)); } if (!success) { success = register_natives("1.4.1 methods", env, unsafecls, methods_141, sizeof(methods_141)/sizeof(JNINativeMethod)); } if (!success) { success = register_natives("1.4.0 methods", env, unsafecls, methods_140, sizeof(methods_140)/sizeof(JNINativeMethod)); } guarantee(success, "register unsafe natives"); } // Unsafe.getLoadAverage register_natives("1.6 loadavg method", env, unsafecls, loadavg_method, sizeof(loadavg_method)/sizeof(JNINativeMethod)); // Prefetch methods register_natives("1.6 prefetch methods", env, unsafecls, prefetch_methods, sizeof(prefetch_methods)/sizeof(JNINativeMethod)); // Memory copy methods { bool success = false; if (!success) { success = register_natives("1.7 memory copy methods", env, unsafecls, memcopy_methods_17, sizeof(memcopy_methods_17)/sizeof(JNINativeMethod)); } if (!success) { success = register_natives("1.5 memory copy methods", env, unsafecls, memcopy_methods_15, sizeof(memcopy_methods_15)/sizeof(JNINativeMethod)); } } // Unsafe.defineAnonymousClass if (EnableInvokeDynamic) { register_natives("1.7 define anonymous class method", env, unsafecls, anonk_methods, sizeof(anonk_methods)/sizeof(JNINativeMethod)); } // Unsafe.shouldBeInitialized if (EnableInvokeDynamic) { register_natives("1.7 LambdaForm support", env, unsafecls, lform_methods, sizeof(lform_methods)/sizeof(JNINativeMethod)); } // Fence methods register_natives("1.8 fence methods", env, unsafecls, fence_methods, sizeof(fence_methods)/sizeof(JNINativeMethod)); } JVM_END JVM_ENTRY(void, JVM_RegisterCoroutineSupportMethods(JNIEnv *env, jclass corocls)) UnsafeWrapper("JVM_RegisterCoroutineSupportMethods"); { assert(EnableCoroutine, "coroutine not enabled"); ThreadToNativeFromVM ttnfv(thread); { int coro_method_count = (int)(sizeof(coroutine_support_methods)/sizeof(JNINativeMethod)); for (int i=0; iRegisterNatives(corocls, coroutine_support_methods + i, 1); if (env->ExceptionOccurred()) { tty->print_cr("Warning: Coroutine classes not found (%i)", i); vm_exit(1); } } for (int i=COMPILE_CORO_METHODS_FROM; iGetStaticMethodID(corocls, coroutine_support_methods[i].name, coroutine_support_methods[i].signature); { ThreadInVMfromNative tivfn(thread); methodHandle method(Method::resolve_jmethod_id(id)); AdapterHandlerLibrary::create_native_wrapper(method); } } } } JVM_END