/* * Copyright 2003-2007 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. * */ #include "incls/_precompiled.incl" #include "incls/_assembler_x86_64.cpp.incl" // Implementation of AddressLiteral AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) { _is_lval = false; _target = target; switch (rtype) { case relocInfo::oop_type: // Oops are a special case. Normally they would be their own section // but in cases like icBuffer they are literals in the code stream that // we don't have a section for. We use none so that we get a literal address // which is always patchable. break; case relocInfo::external_word_type: _rspec = external_word_Relocation::spec(target); break; case relocInfo::internal_word_type: _rspec = internal_word_Relocation::spec(target); break; case relocInfo::opt_virtual_call_type: _rspec = opt_virtual_call_Relocation::spec(); break; case relocInfo::static_call_type: _rspec = static_call_Relocation::spec(); break; case relocInfo::runtime_call_type: _rspec = runtime_call_Relocation::spec(); break; case relocInfo::none: break; default: ShouldNotReachHere(); break; } } // Implementation of Address Address Address::make_array(ArrayAddress adr) { #ifdef _LP64 // Not implementable on 64bit machines // Should have been handled higher up the call chain. ShouldNotReachHere(); return Address(); #else AddressLiteral base = adr.base(); Address index = adr.index(); assert(index._disp == 0, "must not have disp"); // maybe it can? Address array(index._base, index._index, index._scale, (intptr_t) base.target()); array._rspec = base._rspec; return array; #endif // _LP64 } // exceedingly dangerous constructor Address::Address(int disp, address loc, relocInfo::relocType rtype) { _base = noreg; _index = noreg; _scale = no_scale; _disp = disp; switch (rtype) { case relocInfo::external_word_type: _rspec = external_word_Relocation::spec(loc); break; case relocInfo::internal_word_type: _rspec = internal_word_Relocation::spec(loc); break; case relocInfo::runtime_call_type: // HMM _rspec = runtime_call_Relocation::spec(); break; case relocInfo::none: break; default: ShouldNotReachHere(); } } // Convert the raw encoding form into the form expected by the constructor for // Address. An index of 4 (rsp) corresponds to having no index, so convert // that to noreg for the Address constructor. Address Address::make_raw(int base, int index, int scale, int disp) { bool valid_index = index != rsp->encoding(); if (valid_index) { Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp)); return madr; } else { Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp)); return madr; } } // Implementation of Assembler int AbstractAssembler::code_fill_byte() { return (u_char)'\xF4'; // hlt } // This should only be used by 64bit instructions that can use rip-relative // it cannot be used by instructions that want an immediate value. bool Assembler::reachable(AddressLiteral adr) { int64_t disp; // None will force a 64bit literal to the code stream. Likely a placeholder // for something that will be patched later and we need to certain it will // always be reachable. if (adr.reloc() == relocInfo::none) { return false; } if (adr.reloc() == relocInfo::internal_word_type) { // This should be rip relative and easily reachable. return true; } if (adr.reloc() != relocInfo::external_word_type && adr.reloc() != relocInfo::runtime_call_type ) { return false; } // Stress the correction code if (ForceUnreachable) { // Must be runtimecall reloc, see if it is in the codecache // Flipping stuff in the codecache to be unreachable causes issues // with things like inline caches where the additional instructions // are not handled. if (CodeCache::find_blob(adr._target) == NULL) { return false; } } // For external_word_type/runtime_call_type if it is reachable from where we // are now (possibly a temp buffer) and where we might end up // anywhere in the codeCache then we are always reachable. // This would have to change if we ever save/restore shared code // to be more pessimistic. disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int)); if (!is_simm32(disp)) return false; disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int)); if (!is_simm32(disp)) return false; disp = (int64_t)adr._target - ((int64_t)_code_pos + sizeof(int)); // Because rip relative is a disp + address_of_next_instruction and we // don't know the value of address_of_next_instruction we apply a fudge factor // to make sure we will be ok no matter the size of the instruction we get placed into. // We don't have to fudge the checks above here because they are already worst case. // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal // + 4 because better safe than sorry. const int fudge = 12 + 4; if (disp < 0) { disp -= fudge; } else { disp += fudge; } return is_simm32(disp); } // make this go away eventually void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) { if (rtype == relocInfo::none) { emit_long(data); } else { emit_data(data, Relocation::spec_simple(rtype), format); } } void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) { assert(imm64_operand == 0, "default format must be imm64 in this file"); assert(imm64_operand != format, "must not be imm64"); assert(inst_mark() != NULL, "must be inside InstructionMark"); if (rspec.type() != relocInfo::none) { #ifdef ASSERT check_relocation(rspec, format); #endif // Do not use AbstractAssembler::relocate, which is not intended for // embedded words. Instead, relocate to the enclosing instruction. // hack. call32 is too wide for mask so use disp32 if (format == call32_operand) code_section()->relocate(inst_mark(), rspec, disp32_operand); else code_section()->relocate(inst_mark(), rspec, format); } emit_long(data); } void Assembler::emit_data64(jlong data, relocInfo::relocType rtype, int format) { if (rtype == relocInfo::none) { emit_long64(data); } else { emit_data64(data, Relocation::spec_simple(rtype), format); } } void Assembler::emit_data64(jlong data, RelocationHolder const& rspec, int format) { assert(imm64_operand == 0, "default format must be imm64 in this file"); assert(imm64_operand == format, "must be imm64"); assert(inst_mark() != NULL, "must be inside InstructionMark"); // Do not use AbstractAssembler::relocate, which is not intended for // embedded words. Instead, relocate to the enclosing instruction. code_section()->relocate(inst_mark(), rspec, format); #ifdef ASSERT check_relocation(rspec, format); #endif emit_long64(data); } void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) { assert(isByte(op1) && isByte(op2), "wrong opcode"); assert(isByte(imm8), "not a byte"); assert((op1 & 0x01) == 0, "should be 8bit operation"); int dstenc = dst->encoding(); if (dstenc >= 8) { dstenc -= 8; } emit_byte(op1); emit_byte(op2 | dstenc); emit_byte(imm8); } void Assembler::emit_arith(int op1, int op2, Register dst, int imm32) { assert(isByte(op1) && isByte(op2), "wrong opcode"); assert((op1 & 0x01) == 1, "should be 32bit operation"); assert((op1 & 0x02) == 0, "sign-extension bit should not be set"); int dstenc = dst->encoding(); if (dstenc >= 8) { dstenc -= 8; } if (is8bit(imm32)) { emit_byte(op1 | 0x02); // set sign bit emit_byte(op2 | dstenc); emit_byte(imm32 & 0xFF); } else { emit_byte(op1); emit_byte(op2 | dstenc); emit_long(imm32); } } // immediate-to-memory forms void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int imm32) { assert((op1 & 0x01) == 1, "should be 32bit operation"); assert((op1 & 0x02) == 0, "sign-extension bit should not be set"); if (is8bit(imm32)) { emit_byte(op1 | 0x02); // set sign bit emit_operand(rm, adr, 1); emit_byte(imm32 & 0xFF); } else { emit_byte(op1); emit_operand(rm, adr, 4); emit_long(imm32); } } void Assembler::emit_arith(int op1, int op2, Register dst, Register src) { assert(isByte(op1) && isByte(op2), "wrong opcode"); int dstenc = dst->encoding(); int srcenc = src->encoding(); if (dstenc >= 8) { dstenc -= 8; } if (srcenc >= 8) { srcenc -= 8; } emit_byte(op1); emit_byte(op2 | dstenc << 3 | srcenc); } void Assembler::emit_operand(Register reg, Register base, Register index, Address::ScaleFactor scale, int disp, RelocationHolder const& rspec, int rip_relative_correction) { relocInfo::relocType rtype = (relocInfo::relocType) rspec.type(); int regenc = reg->encoding(); if (regenc >= 8) { regenc -= 8; } if (base->is_valid()) { if (index->is_valid()) { assert(scale != Address::no_scale, "inconsistent address"); int indexenc = index->encoding(); if (indexenc >= 8) { indexenc -= 8; } int baseenc = base->encoding(); if (baseenc >= 8) { baseenc -= 8; } // [base + index*scale + disp] if (disp == 0 && rtype == relocInfo::none && base != rbp && base != r13) { // [base + index*scale] // [00 reg 100][ss index base] assert(index != rsp, "illegal addressing mode"); emit_byte(0x04 | regenc << 3); emit_byte(scale << 6 | indexenc << 3 | baseenc); } else if (is8bit(disp) && rtype == relocInfo::none) { // [base + index*scale + imm8] // [01 reg 100][ss index base] imm8 assert(index != rsp, "illegal addressing mode"); emit_byte(0x44 | regenc << 3); emit_byte(scale << 6 | indexenc << 3 | baseenc); emit_byte(disp & 0xFF); } else { // [base + index*scale + disp32] // [10 reg 100][ss index base] disp32 assert(index != rsp, "illegal addressing mode"); emit_byte(0x84 | regenc << 3); emit_byte(scale << 6 | indexenc << 3 | baseenc); emit_data(disp, rspec, disp32_operand); } } else if (base == rsp || base == r12) { // [rsp + disp] if (disp == 0 && rtype == relocInfo::none) { // [rsp] // [00 reg 100][00 100 100] emit_byte(0x04 | regenc << 3); emit_byte(0x24); } else if (is8bit(disp) && rtype == relocInfo::none) { // [rsp + imm8] // [01 reg 100][00 100 100] disp8 emit_byte(0x44 | regenc << 3); emit_byte(0x24); emit_byte(disp & 0xFF); } else { // [rsp + imm32] // [10 reg 100][00 100 100] disp32 emit_byte(0x84 | regenc << 3); emit_byte(0x24); emit_data(disp, rspec, disp32_operand); } } else { // [base + disp] assert(base != rsp && base != r12, "illegal addressing mode"); int baseenc = base->encoding(); if (baseenc >= 8) { baseenc -= 8; } if (disp == 0 && rtype == relocInfo::none && base != rbp && base != r13) { // [base] // [00 reg base] emit_byte(0x00 | regenc << 3 | baseenc); } else if (is8bit(disp) && rtype == relocInfo::none) { // [base + disp8] // [01 reg base] disp8 emit_byte(0x40 | regenc << 3 | baseenc); emit_byte(disp & 0xFF); } else { // [base + disp32] // [10 reg base] disp32 emit_byte(0x80 | regenc << 3 | baseenc); emit_data(disp, rspec, disp32_operand); } } } else { if (index->is_valid()) { assert(scale != Address::no_scale, "inconsistent address"); int indexenc = index->encoding(); if (indexenc >= 8) { indexenc -= 8; } // [index*scale + disp] // [00 reg 100][ss index 101] disp32 assert(index != rsp, "illegal addressing mode"); emit_byte(0x04 | regenc << 3); emit_byte(scale << 6 | indexenc << 3 | 0x05); emit_data(disp, rspec, disp32_operand); #ifdef _LP64 } else if (rtype != relocInfo::none ) { // [disp] RIP-RELATIVE // [00 000 101] disp32 emit_byte(0x05 | regenc << 3); // Note that the RIP-rel. correction applies to the generated // disp field, but _not_ to the target address in the rspec. // disp was created by converting the target address minus the pc // at the start of the instruction. That needs more correction here. // intptr_t disp = target - next_ip; assert(inst_mark() != NULL, "must be inside InstructionMark"); address next_ip = pc() + sizeof(int32_t) + rip_relative_correction; int64_t adjusted = (int64_t) disp - (next_ip - inst_mark()); assert(is_simm32(adjusted), "must be 32bit offset (RIP relative address)"); emit_data((int) adjusted, rspec, disp32_operand); #endif // _LP64 } else { // [disp] ABSOLUTE // [00 reg 100][00 100 101] disp32 emit_byte(0x04 | regenc << 3); emit_byte(0x25); emit_data(disp, rspec, disp32_operand); } } } void Assembler::emit_operand(XMMRegister reg, Register base, Register index, Address::ScaleFactor scale, int disp, RelocationHolder const& rspec, int rip_relative_correction) { relocInfo::relocType rtype = (relocInfo::relocType) rspec.type(); int regenc = reg->encoding(); if (regenc >= 8) { regenc -= 8; } if (base->is_valid()) { if (index->is_valid()) { assert(scale != Address::no_scale, "inconsistent address"); int indexenc = index->encoding(); if (indexenc >= 8) { indexenc -= 8; } int baseenc = base->encoding(); if (baseenc >= 8) { baseenc -= 8; } // [base + index*scale + disp] if (disp == 0 && rtype == relocInfo::none && base != rbp && base != r13) { // [base + index*scale] // [00 reg 100][ss index base] assert(index != rsp, "illegal addressing mode"); emit_byte(0x04 | regenc << 3); emit_byte(scale << 6 | indexenc << 3 | baseenc); } else if (is8bit(disp) && rtype == relocInfo::none) { // [base + index*scale + disp8] // [01 reg 100][ss index base] disp8 assert(index != rsp, "illegal addressing mode"); emit_byte(0x44 | regenc << 3); emit_byte(scale << 6 | indexenc << 3 | baseenc); emit_byte(disp & 0xFF); } else { // [base + index*scale + disp32] // [10 reg 100][ss index base] disp32 assert(index != rsp, "illegal addressing mode"); emit_byte(0x84 | regenc << 3); emit_byte(scale << 6 | indexenc << 3 | baseenc); emit_data(disp, rspec, disp32_operand); } } else if (base == rsp || base == r12) { // [rsp + disp] if (disp == 0 && rtype == relocInfo::none) { // [rsp] // [00 reg 100][00 100 100] emit_byte(0x04 | regenc << 3); emit_byte(0x24); } else if (is8bit(disp) && rtype == relocInfo::none) { // [rsp + imm8] // [01 reg 100][00 100 100] disp8 emit_byte(0x44 | regenc << 3); emit_byte(0x24); emit_byte(disp & 0xFF); } else { // [rsp + imm32] // [10 reg 100][00 100 100] disp32 emit_byte(0x84 | regenc << 3); emit_byte(0x24); emit_data(disp, rspec, disp32_operand); } } else { // [base + disp] assert(base != rsp && base != r12, "illegal addressing mode"); int baseenc = base->encoding(); if (baseenc >= 8) { baseenc -= 8; } if (disp == 0 && rtype == relocInfo::none && base != rbp && base != r13) { // [base] // [00 reg base] emit_byte(0x00 | regenc << 3 | baseenc); } else if (is8bit(disp) && rtype == relocInfo::none) { // [base + imm8] // [01 reg base] disp8 emit_byte(0x40 | regenc << 3 | baseenc); emit_byte(disp & 0xFF); } else { // [base + imm32] // [10 reg base] disp32 emit_byte(0x80 | regenc << 3 | baseenc); emit_data(disp, rspec, disp32_operand); } } } else { if (index->is_valid()) { assert(scale != Address::no_scale, "inconsistent address"); int indexenc = index->encoding(); if (indexenc >= 8) { indexenc -= 8; } // [index*scale + disp] // [00 reg 100][ss index 101] disp32 assert(index != rsp, "illegal addressing mode"); emit_byte(0x04 | regenc << 3); emit_byte(scale << 6 | indexenc << 3 | 0x05); emit_data(disp, rspec, disp32_operand); #ifdef _LP64 } else if ( rtype != relocInfo::none ) { // [disp] RIP-RELATIVE // [00 reg 101] disp32 emit_byte(0x05 | regenc << 3); // Note that the RIP-rel. correction applies to the generated // disp field, but _not_ to the target address in the rspec. // disp was created by converting the target address minus the pc // at the start of the instruction. That needs more correction here. // intptr_t disp = target - next_ip; assert(inst_mark() != NULL, "must be inside InstructionMark"); address next_ip = pc() + sizeof(int32_t) + rip_relative_correction; int64_t adjusted = (int64_t) disp - (next_ip - inst_mark()); assert(is_simm32(adjusted), "must be 32bit offset (RIP relative address)"); emit_data((int) adjusted, rspec, disp32_operand); #endif // _LP64 } else { // [disp] ABSOLUTE // [00 reg 100][00 100 101] disp32 emit_byte(0x04 | regenc << 3); emit_byte(0x25); emit_data(disp, rspec, disp32_operand); } } } // Secret local extension to Assembler::WhichOperand: #define end_pc_operand (_WhichOperand_limit) address Assembler::locate_operand(address inst, WhichOperand which) { // Decode the given instruction, and return the address of // an embedded 32-bit operand word. // If "which" is disp32_operand, selects the displacement portion // of an effective address specifier. // If "which" is imm64_operand, selects the trailing immediate constant. // If "which" is call32_operand, selects the displacement of a call or jump. // Caller is responsible for ensuring that there is such an operand, // and that it is 32/64 bits wide. // If "which" is end_pc_operand, find the end of the instruction. address ip = inst; bool is_64bit = false; debug_only(bool has_disp32 = false); int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn again_after_prefix: switch (0xFF & *ip++) { // These convenience macros generate groups of "case" labels for the switch. #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \ case (x)+4: case (x)+5: case (x)+6: case (x)+7 #define REP16(x) REP8((x)+0): \ case REP8((x)+8) case CS_segment: case SS_segment: case DS_segment: case ES_segment: case FS_segment: case GS_segment: assert(0, "shouldn't have that prefix"); assert(ip == inst + 1 || ip == inst + 2, "only two prefixes allowed"); goto again_after_prefix; case 0x67: case REX: case REX_B: case REX_X: case REX_XB: case REX_R: case REX_RB: case REX_RX: case REX_RXB: // assert(ip == inst + 1, "only one prefix allowed"); goto again_after_prefix; case REX_W: case REX_WB: case REX_WX: case REX_WXB: case REX_WR: case REX_WRB: case REX_WRX: case REX_WRXB: is_64bit = true; // assert(ip == inst + 1, "only one prefix allowed"); goto again_after_prefix; case 0xFF: // pushq a; decl a; incl a; call a; jmp a case 0x88: // movb a, r case 0x89: // movl a, r case 0x8A: // movb r, a case 0x8B: // movl r, a case 0x8F: // popl a debug_only(has_disp32 = true;) break; case 0x68: // pushq #32 if (which == end_pc_operand) { return ip + 4; } assert(0, "pushq has no disp32 or imm64"); ShouldNotReachHere(); case 0x66: // movw ... (size prefix) again_after_size_prefix2: switch (0xFF & *ip++) { case REX: case REX_B: case REX_X: case REX_XB: case REX_R: case REX_RB: case REX_RX: case REX_RXB: case REX_W: case REX_WB: case REX_WX: case REX_WXB: case REX_WR: case REX_WRB: case REX_WRX: case REX_WRXB: goto again_after_size_prefix2; case 0x8B: // movw r, a case 0x89: // movw a, r break; case 0xC7: // movw a, #16 tail_size = 2; // the imm16 break; case 0x0F: // several SSE/SSE2 variants ip--; // reparse the 0x0F goto again_after_prefix; default: ShouldNotReachHere(); } break; case REP8(0xB8): // movl/q r, #32/#64(oop?) if (which == end_pc_operand) return ip + (is_64bit ? 8 : 4); assert((which == call32_operand || which == imm64_operand) && is_64bit, ""); return ip; case 0x69: // imul r, a, #32 case 0xC7: // movl a, #32(oop?) tail_size = 4; debug_only(has_disp32 = true); // has both kinds of operands! break; case 0x0F: // movx..., etc. switch (0xFF & *ip++) { case 0x12: // movlps case 0x28: // movaps case 0x2E: // ucomiss case 0x2F: // comiss case 0x54: // andps case 0x57: // xorps case 0x6E: // movd case 0x7E: // movd case 0xAE: // ldmxcsr a debug_only(has_disp32 = true); // has both kinds of operands! break; case 0xAD: // shrd r, a, %cl case 0xAF: // imul r, a case 0xBE: // movsbl r, a case 0xBF: // movswl r, a case 0xB6: // movzbl r, a case 0xB7: // movzwl r, a case REP16(0x40): // cmovl cc, r, a case 0xB0: // cmpxchgb case 0xB1: // cmpxchg case 0xC1: // xaddl case 0xC7: // cmpxchg8 case REP16(0x90): // setcc a debug_only(has_disp32 = true); // fall out of the switch to decode the address break; case 0xAC: // shrd r, a, #8 debug_only(has_disp32 = true); tail_size = 1; // the imm8 break; case REP16(0x80): // jcc rdisp32 if (which == end_pc_operand) return ip + 4; assert(which == call32_operand, "jcc has no disp32 or imm64"); return ip; default: ShouldNotReachHere(); } break; case 0x81: // addl a, #32; addl r, #32 // also: orl, adcl, sbbl, andl, subl, xorl, cmpl tail_size = 4; debug_only(has_disp32 = true); // has both kinds of operands! break; case 0x83: // addl a, #8; addl r, #8 // also: orl, adcl, sbbl, andl, subl, xorl, cmpl debug_only(has_disp32 = true); // has both kinds of operands! tail_size = 1; break; case 0x9B: switch (0xFF & *ip++) { case 0xD9: // fnstcw a debug_only(has_disp32 = true); break; default: ShouldNotReachHere(); } break; case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a case REP4(0x10): // adc... case REP4(0x20): // and... case REP4(0x30): // xor... case REP4(0x08): // or... case REP4(0x18): // sbb... case REP4(0x28): // sub... case 0xF7: // mull a case 0x87: // xchg r, a debug_only(has_disp32 = true); break; case REP4(0x38): // cmp... case 0x8D: // lea r, a case 0x85: // test r, a debug_only(has_disp32 = true); // has both kinds of operands! break; case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8 case 0xC6: // movb a, #8 case 0x80: // cmpb a, #8 case 0x6B: // imul r, a, #8 debug_only(has_disp32 = true); // has both kinds of operands! tail_size = 1; // the imm8 break; case 0xE8: // call rdisp32 case 0xE9: // jmp rdisp32 if (which == end_pc_operand) return ip + 4; assert(which == call32_operand, "call has no disp32 or imm32"); return ip; case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1 case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a case 0xDD: // fld_d a; fst_d a; fstp_d a case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a case 0xDF: // fild_d a; fistp_d a case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a debug_only(has_disp32 = true); break; case 0xF3: // For SSE case 0xF2: // For SSE2 switch (0xFF & *ip++) { case REX: case REX_B: case REX_X: case REX_XB: case REX_R: case REX_RB: case REX_RX: case REX_RXB: case REX_W: case REX_WB: case REX_WX: case REX_WXB: case REX_WR: case REX_WRB: case REX_WRX: case REX_WRXB: ip++; default: ip++; } debug_only(has_disp32 = true); // has both kinds of operands! break; default: ShouldNotReachHere(); #undef REP8 #undef REP16 } assert(which != call32_operand, "instruction is not a call, jmp, or jcc"); assert(which != imm64_operand, "instruction is not a movq reg, imm64"); assert(which != disp32_operand || has_disp32, "instruction has no disp32 field"); // parse the output of emit_operand int op2 = 0xFF & *ip++; int base = op2 & 0x07; int op3 = -1; const int b100 = 4; const int b101 = 5; if (base == b100 && (op2 >> 6) != 3) { op3 = 0xFF & *ip++; base = op3 & 0x07; // refetch the base } // now ip points at the disp (if any) switch (op2 >> 6) { case 0: // [00 reg 100][ss index base] // [00 reg 100][00 100 esp] // [00 reg base] // [00 reg 100][ss index 101][disp32] // [00 reg 101] [disp32] if (base == b101) { if (which == disp32_operand) return ip; // caller wants the disp32 ip += 4; // skip the disp32 } break; case 1: // [01 reg 100][ss index base][disp8] // [01 reg 100][00 100 esp][disp8] // [01 reg base] [disp8] ip += 1; // skip the disp8 break; case 2: // [10 reg 100][ss index base][disp32] // [10 reg 100][00 100 esp][disp32] // [10 reg base] [disp32] if (which == disp32_operand) return ip; // caller wants the disp32 ip += 4; // skip the disp32 break; case 3: // [11 reg base] (not a memory addressing mode) break; } if (which == end_pc_operand) { return ip + tail_size; } assert(0, "fix locate_operand"); return ip; } address Assembler::locate_next_instruction(address inst) { // Secretly share code with locate_operand: return locate_operand(inst, end_pc_operand); } #ifdef ASSERT void Assembler::check_relocation(RelocationHolder const& rspec, int format) { address inst = inst_mark(); assert(inst != NULL && inst < pc(), "must point to beginning of instruction"); address opnd; Relocation* r = rspec.reloc(); if (r->type() == relocInfo::none) { return; } else if (r->is_call() || format == call32_operand) { opnd = locate_operand(inst, call32_operand); } else if (r->is_data()) { assert(format == imm64_operand || format == disp32_operand, "format ok"); opnd = locate_operand(inst, (WhichOperand) format); } else { assert(format == 0, "cannot specify a format"); return; } assert(opnd == pc(), "must put operand where relocs can find it"); } #endif int Assembler::prefix_and_encode(int reg_enc, bool byteinst) { if (reg_enc >= 8) { prefix(REX_B); reg_enc -= 8; } else if (byteinst && reg_enc >= 4) { prefix(REX); } return reg_enc; } int Assembler::prefixq_and_encode(int reg_enc) { if (reg_enc < 8) { prefix(REX_W); } else { prefix(REX_WB); reg_enc -= 8; } return reg_enc; } int Assembler::prefix_and_encode(int dst_enc, int src_enc, bool byteinst) { if (dst_enc < 8) { if (src_enc >= 8) { prefix(REX_B); src_enc -= 8; } else if (byteinst && src_enc >= 4) { prefix(REX); } } else { if (src_enc < 8) { prefix(REX_R); } else { prefix(REX_RB); src_enc -= 8; } dst_enc -= 8; } return dst_enc << 3 | src_enc; } int Assembler::prefixq_and_encode(int dst_enc, int src_enc) { if (dst_enc < 8) { if (src_enc < 8) { prefix(REX_W); } else { prefix(REX_WB); src_enc -= 8; } } else { if (src_enc < 8) { prefix(REX_WR); } else { prefix(REX_WRB); src_enc -= 8; } dst_enc -= 8; } return dst_enc << 3 | src_enc; } void Assembler::prefix(Register reg) { if (reg->encoding() >= 8) { prefix(REX_B); } } void Assembler::prefix(Address adr) { if (adr.base_needs_rex()) { if (adr.index_needs_rex()) { prefix(REX_XB); } else { prefix(REX_B); } } else { if (adr.index_needs_rex()) { prefix(REX_X); } } } void Assembler::prefixq(Address adr) { if (adr.base_needs_rex()) { if (adr.index_needs_rex()) { prefix(REX_WXB); } else { prefix(REX_WB); } } else { if (adr.index_needs_rex()) { prefix(REX_WX); } else { prefix(REX_W); } } } void Assembler::prefix(Address adr, Register reg, bool byteinst) { if (reg->encoding() < 8) { if (adr.base_needs_rex()) { if (adr.index_needs_rex()) { prefix(REX_XB); } else { prefix(REX_B); } } else { if (adr.index_needs_rex()) { prefix(REX_X); } else if (reg->encoding() >= 4 ) { prefix(REX); } } } else { if (adr.base_needs_rex()) { if (adr.index_needs_rex()) { prefix(REX_RXB); } else { prefix(REX_RB); } } else { if (adr.index_needs_rex()) { prefix(REX_RX); } else { prefix(REX_R); } } } } void Assembler::prefixq(Address adr, Register src) { if (src->encoding() < 8) { if (adr.base_needs_rex()) { if (adr.index_needs_rex()) { prefix(REX_WXB); } else { prefix(REX_WB); } } else { if (adr.index_needs_rex()) { prefix(REX_WX); } else { prefix(REX_W); } } } else { if (adr.base_needs_rex()) { if (adr.index_needs_rex()) { prefix(REX_WRXB); } else { prefix(REX_WRB); } } else { if (adr.index_needs_rex()) { prefix(REX_WRX); } else { prefix(REX_WR); } } } } void Assembler::prefix(Address adr, XMMRegister reg) { if (reg->encoding() < 8) { if (adr.base_needs_rex()) { if (adr.index_needs_rex()) { prefix(REX_XB); } else { prefix(REX_B); } } else { if (adr.index_needs_rex()) { prefix(REX_X); } } } else { if (adr.base_needs_rex()) { if (adr.index_needs_rex()) { prefix(REX_RXB); } else { prefix(REX_RB); } } else { if (adr.index_needs_rex()) { prefix(REX_RX); } else { prefix(REX_R); } } } } void Assembler::emit_operand(Register reg, Address adr, int rip_relative_correction) { emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec, rip_relative_correction); } void Assembler::emit_operand(XMMRegister reg, Address adr, int rip_relative_correction) { emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec, rip_relative_correction); } void Assembler::emit_farith(int b1, int b2, int i) { assert(isByte(b1) && isByte(b2), "wrong opcode"); assert(0 <= i && i < 8, "illegal stack offset"); emit_byte(b1); emit_byte(b2 + i); } // pushad is invalid, use this instead. // NOTE: Kills flags!! void Assembler::pushaq() { // we have to store original rsp. ABI says that 128 bytes // below rsp are local scratch. movq(Address(rsp, -5 * wordSize), rsp); subq(rsp, 16 * wordSize); movq(Address(rsp, 15 * wordSize), rax); movq(Address(rsp, 14 * wordSize), rcx); movq(Address(rsp, 13 * wordSize), rdx); movq(Address(rsp, 12 * wordSize), rbx); // skip rsp movq(Address(rsp, 10 * wordSize), rbp); movq(Address(rsp, 9 * wordSize), rsi); movq(Address(rsp, 8 * wordSize), rdi); movq(Address(rsp, 7 * wordSize), r8); movq(Address(rsp, 6 * wordSize), r9); movq(Address(rsp, 5 * wordSize), r10); movq(Address(rsp, 4 * wordSize), r11); movq(Address(rsp, 3 * wordSize), r12); movq(Address(rsp, 2 * wordSize), r13); movq(Address(rsp, wordSize), r14); movq(Address(rsp, 0), r15); } // popad is invalid, use this instead // NOTE: Kills flags!! void Assembler::popaq() { movq(r15, Address(rsp, 0)); movq(r14, Address(rsp, wordSize)); movq(r13, Address(rsp, 2 * wordSize)); movq(r12, Address(rsp, 3 * wordSize)); movq(r11, Address(rsp, 4 * wordSize)); movq(r10, Address(rsp, 5 * wordSize)); movq(r9, Address(rsp, 6 * wordSize)); movq(r8, Address(rsp, 7 * wordSize)); movq(rdi, Address(rsp, 8 * wordSize)); movq(rsi, Address(rsp, 9 * wordSize)); movq(rbp, Address(rsp, 10 * wordSize)); // skip rsp movq(rbx, Address(rsp, 12 * wordSize)); movq(rdx, Address(rsp, 13 * wordSize)); movq(rcx, Address(rsp, 14 * wordSize)); movq(rax, Address(rsp, 15 * wordSize)); addq(rsp, 16 * wordSize); } void Assembler::pushfq() { emit_byte(0x9C); } void Assembler::popfq() { emit_byte(0x9D); } void Assembler::pushq(int imm32) { emit_byte(0x68); emit_long(imm32); } void Assembler::pushq(Register src) { int encode = prefix_and_encode(src->encoding()); emit_byte(0x50 | encode); } void Assembler::pushq(Address src) { InstructionMark im(this); prefix(src); emit_byte(0xFF); emit_operand(rsi, src); } void Assembler::popq(Register dst) { int encode = prefix_and_encode(dst->encoding()); emit_byte(0x58 | encode); } void Assembler::popq(Address dst) { InstructionMark im(this); prefix(dst); emit_byte(0x8F); emit_operand(rax, dst); } void Assembler::prefix(Prefix p) { a_byte(p); } void Assembler::movb(Register dst, Address src) { InstructionMark im(this); prefix(src, dst, true); emit_byte(0x8A); emit_operand(dst, src); } void Assembler::movb(Address dst, int imm8) { InstructionMark im(this); prefix(dst); emit_byte(0xC6); emit_operand(rax, dst, 1); emit_byte(imm8); } void Assembler::movb(Address dst, Register src) { InstructionMark im(this); prefix(dst, src, true); emit_byte(0x88); emit_operand(src, dst); } void Assembler::movw(Address dst, int imm16) { InstructionMark im(this); emit_byte(0x66); // switch to 16-bit mode prefix(dst); emit_byte(0xC7); emit_operand(rax, dst, 2); emit_word(imm16); } void Assembler::movw(Register dst, Address src) { InstructionMark im(this); emit_byte(0x66); prefix(src, dst); emit_byte(0x8B); emit_operand(dst, src); } void Assembler::movw(Address dst, Register src) { InstructionMark im(this); emit_byte(0x66); prefix(dst, src); emit_byte(0x89); emit_operand(src, dst); } // Uses zero extension. void Assembler::movl(Register dst, int imm32) { int encode = prefix_and_encode(dst->encoding()); emit_byte(0xB8 | encode); emit_long(imm32); } void Assembler::movl(Register dst, Register src) { int encode = prefix_and_encode(dst->encoding(), src->encoding()); emit_byte(0x8B); emit_byte(0xC0 | encode); } void Assembler::movl(Register dst, Address src) { InstructionMark im(this); prefix(src, dst); emit_byte(0x8B); emit_operand(dst, src); } void Assembler::movl(Address dst, int imm32) { InstructionMark im(this); prefix(dst); emit_byte(0xC7); emit_operand(rax, dst, 4); emit_long(imm32); } void Assembler::movl(Address dst, Register src) { InstructionMark im(this); prefix(dst, src); emit_byte(0x89); emit_operand(src, dst); } void Assembler::mov64(Register dst, intptr_t imm64) { InstructionMark im(this); int encode = prefixq_and_encode(dst->encoding()); emit_byte(0xB8 | encode); emit_long64(imm64); } void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) { InstructionMark im(this); int encode = prefixq_and_encode(dst->encoding()); emit_byte(0xB8 | encode); emit_data64(imm64, rspec); } void Assembler::movq(Register dst, Register src) { int encode = prefixq_and_encode(dst->encoding(), src->encoding()); emit_byte(0x8B); emit_byte(0xC0 | encode); } void Assembler::movq(Register dst, Address src) { InstructionMark im(this); prefixq(src, dst); emit_byte(0x8B); emit_operand(dst, src); } void Assembler::mov64(Address dst, intptr_t imm32) { assert(is_simm32(imm32), "lost bits"); InstructionMark im(this); prefixq(dst); emit_byte(0xC7); emit_operand(rax, dst, 4); emit_long(imm32); } void Assembler::movq(Address dst, Register src) { InstructionMark im(this); prefixq(dst, src); emit_byte(0x89); emit_operand(src, dst); } void Assembler::movsbl(Register dst, Address src) { InstructionMark im(this); prefix(src, dst); emit_byte(0x0F); emit_byte(0xBE); emit_operand(dst, src); } void Assembler::movsbl(Register dst, Register src) { int encode = prefix_and_encode(dst->encoding(), src->encoding(), true); emit_byte(0x0F); emit_byte(0xBE); emit_byte(0xC0 | encode); } void Assembler::movswl(Register dst, Address src) { InstructionMark im(this); prefix(src, dst); emit_byte(0x0F); emit_byte(0xBF); emit_operand(dst, src); } void Assembler::movswl(Register dst, Register src) { int encode = prefix_and_encode(dst->encoding(), src->encoding()); emit_byte(0x0F); emit_byte(0xBF); emit_byte(0xC0 | encode); } void Assembler::movslq(Register dst, Address src) { InstructionMark im(this); prefixq(src, dst); emit_byte(0x63); emit_operand(dst, src); } void Assembler::movslq(Register dst, Register src) { int encode = prefixq_and_encode(dst->encoding(), src->encoding()); emit_byte(0x63); emit_byte(0xC0 | encode); } void Assembler::movzbl(Register dst, Address src) { InstructionMark im(this); prefix(src, dst); emit_byte(0x0F); emit_byte(0xB6); emit_operand(dst, src); } void Assembler::movzbl(Register dst, Register src) { int encode = prefix_and_encode(dst->encoding(), src->encoding(), true); emit_byte(0x0F); emit_byte(0xB6); emit_byte(0xC0 | encode); } void Assembler::movzwl(Register dst, Address src) { InstructionMark im(this); prefix(src, dst); emit_byte(0x0F); emit_byte(0xB7); emit_operand(dst, src); } void Assembler::movzwl(Register dst, Register src) { int encode = prefix_and_encode(dst->encoding(), src->encoding()); emit_byte(0x0F); emit_byte(0xB7); emit_byte(0xC0 | encode); } void Assembler::movss(XMMRegister dst, XMMRegister src) { emit_byte(0xF3); int encode = prefix_and_encode(dst->encoding(), src->encoding()); emit_byte(0x0F); emit_byte(0x10); emit_byte(0xC0 | encode); } void Assembler::movss(XMMRegister dst, Address src) { InstructionMark im(this); emit_byte(0xF3); prefix(src, dst); emit_byte(0x0F); emit_byte(0x10); emit_operand(dst, src); } void Assembler::movss(Address dst, XMMRegister src) { InstructionMark im(this); emit_byte(0xF3); prefix(dst, src); emit_byte(0x0F); emit_byte(0x11); emit_operand(src, dst); } void Assembler::movsd(XMMRegister dst, XMMRegister src) { emit_byte(0xF2); int encode = prefix_and_encode(dst->encoding(), src->encoding()); emit_byte(0x0F); emit_byte(0x10); emit_byte(0xC0 | encode); } void Assembler::movsd(XMMRegister dst, Address src) { InstructionMark im(this); emit_byte(0xF2); prefix(src, dst); emit_byte(0x0F); emit_byte(0x10); emit_operand(dst, src); } void Assembler::movsd(Address dst, XMMRegister src) { InstructionMark im(this); emit_byte(0xF2); prefix(dst, src); emit_byte(0x0F); emit_byte(0x11); emit_operand(src, dst); } // New cpus require to use movsd and movss to avoid partial register stall // when loading from memory. But for old Opteron use movlpd instead of movsd. // The selection is done in MacroAssembler::movdbl() and movflt(). void Assembler::movlpd(XMMRegister dst, Address src) { InstructionMark im(this); emit_byte(0x66); prefix(src, dst); emit_byte(0x0F); emit_byte(0x12); emit_operand(dst, src); } void Assembler::movapd(XMMRegister dst, XMMRegister src) { int dstenc = dst->encoding(); int srcenc = src->encoding(); emit_byte(0x66); if (dstenc < 8) { if (srcenc >= 8) { prefix(REX_B); srcenc -= 8; } } else { if (srcenc < 8) { prefix(REX_R); } else { prefix(REX_RB); srcenc -= 8; } dstenc -= 8; } emit_byte(0x0F); emit_byte(0x28); emit_byte(0xC0 | dstenc << 3 | srcenc); } void Assembler::movaps(XMMRegister dst, XMMRegister src) { int dstenc = dst->encoding(); int srcenc = src->encoding(); if (dstenc < 8) { if (srcenc >= 8) { prefix(REX_B); srcenc -= 8; } } else { if (srcenc < 8) { prefix(REX_R); } else { prefix(REX_RB); srcenc -= 8; } dstenc -= 8; } emit_byte(0x0F); emit_byte(0x28); emit_byte(0xC0 | dstenc << 3 | srcenc); } void Assembler::movdl(XMMRegister dst, Register src) { emit_byte(0x66); int encode = prefix_and_encode(dst->encoding(), src->encoding()); emit_byte(0x0F); emit_byte(0x6E); emit_byte(0xC0 | encode); } void Assembler::movdl(Register dst, XMMRegister src) { emit_byte(0x66); // swap src/dst to get correct prefix int encode = prefix_and_encode(src->encoding(), dst->encoding()); emit_byte(0x0F); emit_byte(0x7E); emit_byte(0xC0 | encode); } void Assembler::movdq(XMMRegister dst, Register src) { emit_byte(0x66); int encode = prefixq_and_encode(dst->encoding(), src->encoding()); emit_byte(0x0F); emit_byte(0x6E); emit_byte(0xC0 | encode); } void Assembler::movdq(Register dst, XMMRegister src) { emit_byte(0x66); // swap src/dst to get correct prefix int encode = prefixq_and_encode(src->encoding(), dst->encoding()); emit_byte(0x0F); emit_byte(0x7E); emit_byte(0xC0 | encode); } void Assembler::pxor(XMMRegister dst, Address src) { InstructionMark im(this); emit_byte(0x66); prefix(src, dst); emit_byte(0x0F); emit_byte(0xEF); emit_operand(dst, src); } void Assembler::pxor(XMMRegister dst, XMMRegister src) { InstructionMark im(this); emit_byte(0x66); int encode = prefix_and_encode(dst->encoding(), src->encoding()); emit_byte(0x0F); emit_byte(0xEF); emit_byte(0xC0 | encode); } void Assembler::movdqa(XMMRegister dst, Address src) { InstructionMark im(this); emit_byte(0x66); prefix(src, dst); emit_byte(0x0F); emit_byte(0x6F); emit_operand(dst, src); } void Assembler::movdqa(XMMRegister dst, XMMRegister src) { emit_byte(0x66); int encode = prefixq_and_encode(dst->encoding(), src->encoding()); emit_byte(0x0F); emit_byte(0x6F); emit_byte(0xC0 | encode); } void Assembler::movdqa(Address dst, XMMRegister src) { InstructionMark im(this); emit_byte(0x66); prefix(dst, src); emit_byte(0x0F); emit_byte(0x7F); emit_operand(src, dst); } void Assembler::movq(XMMRegister dst, Address src) { InstructionMark im(this); emit_byte(0xF3); prefix(src, dst); emit_byte(0x0F); emit_byte(0x7E); emit_operand(dst, src); } void Assembler::movq(Address dst, XMMRegister src) { InstructionMark im(this); emit_byte(0x66); prefix(dst, src); emit_byte(0x0F); emit_byte(0xD6); emit_operand(src, dst); } void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) { assert(isByte(mode), "invalid value"); emit_byte(0x66); int encode = prefix_and_encode(dst->encoding(), src->encoding()); emit_byte(0x0F); emit_byte(0x70); emit_byte(0xC0 | encode); emit_byte(mode & 0xFF); } void Assembler::pshufd(XMMRegister dst, Address src, int mode) { assert(isByte(mode), "invalid value"); InstructionMark im(this); emit_byte(0x66); emit_byte(0x0F); emit_byte(0x70); emit_operand(dst, src); emit_byte(mode & 0xFF); } void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) { assert(isByte(mode), "invalid value"); emit_byte(0xF2); int encode = prefix_and_encode(dst->encoding(), src->encoding()); emit_byte(0x0F); emit_byte(0x70); emit_byte(0xC0 | encode); emit_byte(mode & 0xFF); } void Assembler::pshuflw(XMMRegister dst, Address src, int mode) { assert(isByte(mode), "invalid value"); InstructionMark im(this); emit_byte(0xF2); emit_byte(0x0F); emit_byte(0x70); emit_operand(dst, src); emit_byte(mode & 0xFF); } void Assembler::cmovl(Condition cc, Register dst, Register src) { int encode = prefix_and_encode(dst->encoding(), src->encoding()); emit_byte(0x0F); emit_byte(0x40 | cc); emit_byte(0xC0 | encode); } void Assembler::cmovl(Condition cc, Register dst, Address src) { InstructionMark im(this); prefix(src, dst); emit_byte(0x0F); emit_byte(0x40 | cc); emit_operand(dst, src); } void Assembler::cmovq(Condition cc, Register dst, Register src) { int encode = prefixq_and_encode(dst->encoding(), src->encoding()); emit_byte(0x0F); emit_byte(0x40 | cc); emit_byte(0xC0 | encode); } void Assembler::cmovq(Condition cc, Register dst, Address src) { InstructionMark im(this); prefixq(src, dst); emit_byte(0x0F); emit_byte(0x40 | cc); emit_operand(dst, src); } void Assembler::prefetch_prefix(Address src) { prefix(src); emit_byte(0x0F); } void Assembler::prefetcht0(Address src) { InstructionMark im(this); prefetch_prefix(src); emit_byte(0x18); emit_operand(rcx, src); // 1, src } void Assembler::prefetcht1(Address src) { InstructionMark im(this); prefetch_prefix(src); emit_byte(0x18); emit_operand(rdx, src); // 2, src } void Assembler::prefetcht2(Address src) { InstructionMark im(this); prefetch_prefix(src); emit_byte(0x18); emit_operand(rbx, src); // 3, src } void Assembler::prefetchnta(Address src) { InstructionMark im(this); prefetch_prefix(src); emit_byte(0x18); emit_operand(rax, src); // 0, src } void Assembler::prefetchw(Address src) { InstructionMark im(this); prefetch_prefix(src); emit_byte(0x0D); emit_operand(rcx, src); // 1, src } void Assembler::adcl(Register dst, int imm32) { prefix(dst); emit_arith(0x81, 0xD0, dst, imm32); } void Assembler::adcl(Register dst, Address src) { InstructionMark im(this); prefix(src, dst); emit_byte(0x13); emit_operand(dst, src); } void Assembler::adcl(Register dst, Register src) { (void) prefix_and_encode(dst->encoding(), src->encoding()); emit_arith(0x13, 0xC0, dst, src); } void Assembler::adcq(Register dst, int imm32) { (void) prefixq_and_encode(dst->encoding()); emit_arith(0x81, 0xD0, dst, imm32); } void Assembler::adcq(Register dst, Address src) { InstructionMark im(this); prefixq(src, dst); emit_byte(0x13); emit_operand(dst, src); } void Assembler::adcq(Register dst, Register src) { (int) prefixq_and_encode(dst->encoding(), src->encoding()); emit_arith(0x13, 0xC0, dst, src); } void Assembler::addl(Address dst, int imm32) { InstructionMark im(this); prefix(dst); emit_arith_operand(0x81, rax, dst,imm32); } void Assembler::addl(Address dst, Register src) { InstructionMark im(this); prefix(dst, src); emit_byte(0x01); emit_operand(src, dst); } void Assembler::addl(Register dst, int imm32) { prefix(dst); emit_arith(0x81, 0xC0, dst, imm32); } void Assembler::addl(Register dst, Address src) { InstructionMark im(this); prefix(src, dst); emit_byte(0x03); emit_operand(dst, src); } void Assembler::addl(Register dst, Register src) { (void) prefix_and_encode(dst->encoding(), src->encoding()); emit_arith(0x03, 0xC0, dst, src); } void Assembler::addq(Address dst, int imm32) { InstructionMark im(this); prefixq(dst); emit_arith_operand(0x81, rax, dst,imm32); } void Assembler::addq(Address dst, Register src) { InstructionMark im(this); prefixq(dst, src); emit_byte(0x01); emit_operand(src, dst); } void Assembler::addq(Register dst, int imm32) { (void) prefixq_and_encode(dst->encoding()); emit_arith(0x81, 0xC0, dst, imm32); } void Assembler::addq(Register dst, Address src) { InstructionMark im(this); prefixq(src, dst); emit_byte(0x03); emit_operand(dst, src); } void Assembler::addq(Register dst, Register src) { (void) prefixq_and_encode(dst->encoding(), src->encoding()); emit_arith(0x03, 0xC0, dst, src); } void Assembler::andl(Register dst, int imm32) { prefix(dst); emit_arith(0x81, 0xE0, dst, imm32); } void Assembler::andl(Register dst, Address src) { InstructionMark im(this); prefix(src, dst); emit_byte(0x23); emit_operand(dst, src); } void Assembler::andl(Register dst, Register src) { (void) prefix_and_encode(dst->encoding(), src->encoding()); emit_arith(0x23, 0xC0, dst, src); } void Assembler::andq(Register dst, int imm32) { (void) prefixq_and_encode(dst->encoding()); emit_arith(0x81, 0xE0, dst, imm32); } void Assembler::andq(Register dst, Address src) { InstructionMark im(this); prefixq(src, dst); emit_byte(0x23); emit_operand(dst, src); } void Assembler::andq(Register dst, Register src) { (int) prefixq_and_encode(dst->encoding(), src->encoding()); emit_arith(0x23, 0xC0, dst, src); } void Assembler::cmpb(Address dst, int imm8) { InstructionMark im(this); prefix(dst); emit_byte(0x80); emit_operand(rdi, dst, 1); emit_byte(imm8); } void Assembler::cmpl(Address dst, int imm32) { InstructionMark im(this); prefix(dst); emit_byte(0x81); emit_operand(rdi, dst, 4); emit_long(imm32); } void Assembler::cmpl(Register dst, int imm32) { prefix(dst); emit_arith(0x81, 0xF8, dst, imm32); } void Assembler::cmpl(Register dst, Register src) { (void) prefix_and_encode(dst->encoding(), src->encoding()); emit_arith(0x3B, 0xC0, dst, src); } void Assembler::cmpl(Register dst, Address src) { InstructionMark im(this); prefix(src, dst); emit_byte(0x3B); emit_operand(dst, src); } void Assembler::cmpq(Address dst, int imm32) { InstructionMark im(this); prefixq(dst); emit_byte(0x81); emit_operand(rdi, dst, 4); emit_long(imm32); } void Assembler::cmpq(Register dst, int imm32) { (void) prefixq_and_encode(dst->encoding()); emit_arith(0x81, 0xF8, dst, imm32); } void Assembler::cmpq(Address dst, Register src) { prefixq(dst, src); emit_byte(0x3B); emit_operand(src, dst); } void Assembler::cmpq(Register dst, Register src) { (void) prefixq_and_encode(dst->encoding(), src->encoding()); emit_arith(0x3B, 0xC0, dst, src); } void Assembler::cmpq(Register dst, Address src) { InstructionMark im(this); prefixq(src, dst); emit_byte(0x3B); emit_operand(dst, src); } void Assembler::ucomiss(XMMRegister dst, XMMRegister src) { int encode = prefix_and_encode(dst->encoding(), src->encoding()); emit_byte(0x0F); emit_byte(0x2E); emit_byte(0xC0 | encode); } void Assembler::ucomisd(XMMRegister dst, XMMRegister src) { emit_byte(0x66); ucomiss(dst, src); } void Assembler::decl(Register dst) { // Don't use it directly. Use MacroAssembler::decrementl() instead. // Use two-byte form (one-byte from is a REX prefix in 64-bit mode) int encode = prefix_and_encode(dst->encoding()); emit_byte(0xFF); emit_byte(0xC8 | encode); } void Assembler::decl(Address dst) { // Don't use it directly. Use MacroAssembler::decrementl() instead. InstructionMark im(this); prefix(dst); emit_byte(0xFF); emit_operand(rcx, dst); } void Assembler::decq(Register dst) { // Don't use it directly. Use MacroAssembler::decrementq() instead. // Use two-byte form (one-byte from is a REX prefix in 64-bit mode) int encode = prefixq_and_encode(dst->encoding()); emit_byte(0xFF); emit_byte(0xC8 | encode); } void Assembler::decq(Address dst) { // Don't use it directly. Use MacroAssembler::decrementq() instead. InstructionMark im(this); prefixq(dst); emit_byte(0xFF); emit_operand(rcx, dst); } void Assembler::idivl(Register src) { int encode = prefix_and_encode(src->encoding()); emit_byte(0xF7); emit_byte(0xF8 | encode); } void Assembler::idivq(Register src) { int encode = prefixq_and_encode(src->encoding()); emit_byte(0xF7); emit_byte(0xF8 | encode); } void Assembler::cdql() { emit_byte(0x99); } void Assembler::cdqq() { prefix(REX_W); emit_byte(0x99); } void Assembler::imull(Register dst, Register src) { int encode = prefix_and_encode(dst->encoding(), src->encoding()); emit_byte(0x0F); emit_byte(0xAF); emit_byte(0xC0 | encode); } void Assembler::imull(Register dst, Register src, int value) { int encode = prefix_and_encode(dst->encoding(), src->encoding()); if (is8bit(value)) { emit_byte(0x6B); emit_byte(0xC0 | encode); emit_byte(value); } else { emit_byte(0x69); emit_byte(0xC0 | encode); emit_long(value); } } void Assembler::imulq(Register dst, Register src) { int encode = prefixq_and_encode(dst->encoding(), src->encoding()); emit_byte(0x0F); emit_byte(0xAF); emit_byte(0xC0 | encode); } void Assembler::imulq(Register dst, Register src, int value) { int encode = prefixq_and_encode(dst->encoding(), src->encoding()); if (is8bit(value)) { emit_byte(0x6B); emit_byte(0xC0 | encode); emit_byte(value); } else { emit_byte(0x69); emit_byte(0xC0 | encode); emit_long(value); } } void Assembler::incl(Register dst) { // Don't use it directly. Use MacroAssembler::incrementl() instead. // Use two-byte form (one-byte from is a REX prefix in 64-bit mode) int encode = prefix_and_encode(dst->encoding()); emit_byte(0xFF); emit_byte(0xC0 | encode); } void Assembler::incl(Address dst) { // Don't use it directly. Use MacroAssembler::incrementl() instead. InstructionMark im(this); prefix(dst); emit_byte(0xFF); emit_operand(rax, dst); } void Assembler::incq(Register dst) { // Don't use it directly. Use MacroAssembler::incrementq() instead. // Use two-byte form (one-byte from is a REX prefix in 64-bit mode) int encode = prefixq_and_encode(dst->encoding()); emit_byte(0xFF); emit_byte(0xC0 | encode); } void Assembler::incq(Address dst) { // Don't use it directly. Use MacroAssembler::incrementq() instead. InstructionMark im(this); prefixq(dst); emit_byte(0xFF); emit_operand(rax, dst); } void Assembler::leal(Register dst, Address src) { InstructionMark im(this); emit_byte(0x67); // addr32 prefix(src, dst); emit_byte(0x8D); emit_operand(dst, src); } void Assembler::leaq(Register dst, Address src) { InstructionMark im(this); prefixq(src, dst); emit_byte(0x8D); emit_operand(dst, src); } void Assembler::mull(Address src) { InstructionMark im(this); // was missing prefix(src); emit_byte(0xF7); emit_operand(rsp, src); } void Assembler::mull(Register src) { // was missing int encode = prefix_and_encode(src->encoding()); emit_byte(0xF7); emit_byte(0xE0 | encode); } void Assembler::negl(Register dst) { int encode = prefix_and_encode(dst->encoding()); emit_byte(0xF7); emit_byte(0xD8 | encode); } void Assembler::negq(Register dst) { int encode = prefixq_and_encode(dst->encoding()); emit_byte(0xF7); emit_byte(0xD8 | encode); } void Assembler::notl(Register dst) { int encode = prefix_and_encode(dst->encoding()); emit_byte(0xF7); emit_byte(0xD0 | encode); } void Assembler::notq(Register dst) { int encode = prefixq_and_encode(dst->encoding()); emit_byte(0xF7); emit_byte(0xD0 | encode); } void Assembler::orl(Address dst, int imm32) { InstructionMark im(this); prefix(dst); emit_byte(0x81); emit_operand(rcx, dst, 4); emit_long(imm32); } void Assembler::orl(Register dst, int imm32) { prefix(dst); emit_arith(0x81, 0xC8, dst, imm32); } void Assembler::orl(Register dst, Address src) { InstructionMark im(this); prefix(src, dst); emit_byte(0x0B); emit_operand(dst, src); } void Assembler::orl(Register dst, Register src) { (void) prefix_and_encode(dst->encoding(), src->encoding()); emit_arith(0x0B, 0xC0, dst, src); } void Assembler::orq(Address dst, int imm32) { InstructionMark im(this); prefixq(dst); emit_byte(0x81); emit_operand(rcx, dst, 4); emit_long(imm32); } void Assembler::orq(Register dst, int imm32) { (void) prefixq_and_encode(dst->encoding()); emit_arith(0x81, 0xC8, dst, imm32); } void Assembler::orq(Register dst, Address src) { InstructionMark im(this); prefixq(src, dst); emit_byte(0x0B); emit_operand(dst, src); } void Assembler::orq(Register dst, Register src) { (void) prefixq_and_encode(dst->encoding(), src->encoding()); emit_arith(0x0B, 0xC0, dst, src); } void Assembler::rcll(Register dst, int imm8) { assert(isShiftCount(imm8), "illegal shift count"); int encode = prefix_and_encode(dst->encoding()); if (imm8 == 1) { emit_byte(0xD1); emit_byte(0xD0 | encode); } else { emit_byte(0xC1); emit_byte(0xD0 | encode); emit_byte(imm8); } } void Assembler::rclq(Register dst, int imm8) { assert(isShiftCount(imm8 >> 1), "illegal shift count"); int encode = prefixq_and_encode(dst->encoding()); if (imm8 == 1) { emit_byte(0xD1); emit_byte(0xD0 | encode); } else { emit_byte(0xC1); emit_byte(0xD0 | encode); emit_byte(imm8); } } void Assembler::sarl(Register dst, int imm8) { int encode = prefix_and_encode(dst->encoding()); assert(isShiftCount(imm8), "illegal shift count"); if (imm8 == 1) { emit_byte(0xD1); emit_byte(0xF8 | encode); } else { emit_byte(0xC1); emit_byte(0xF8 | encode); emit_byte(imm8); } } void Assembler::sarl(Register dst) { int encode = prefix_and_encode(dst->encoding()); emit_byte(0xD3); emit_byte(0xF8 | encode); } void Assembler::sarq(Register dst, int imm8) { assert(isShiftCount(imm8 >> 1), "illegal shift count"); int encode = prefixq_and_encode(dst->encoding()); if (imm8 == 1) { emit_byte(0xD1); emit_byte(0xF8 | encode); } else { emit_byte(0xC1); emit_byte(0xF8 | encode); emit_byte(imm8); } } void Assembler::sarq(Register dst) { int encode = prefixq_and_encode(dst->encoding()); emit_byte(0xD3); emit_byte(0xF8 | encode); } void Assembler::sbbl(Address dst, int imm32) { InstructionMark im(this); prefix(dst); emit_arith_operand(0x81, rbx, dst, imm32); } void Assembler::sbbl(Register dst, int imm32) { prefix(dst); emit_arith(0x81, 0xD8, dst, imm32); } void Assembler::sbbl(Register dst, Address src) { InstructionMark im(this); prefix(src, dst); emit_byte(0x1B); emit_operand(dst, src); } void Assembler::sbbl(Register dst, Register src) { (void) prefix_and_encode(dst->encoding(), src->encoding()); emit_arith(0x1B, 0xC0, dst, src); } void Assembler::sbbq(Address dst, int imm32) { InstructionMark im(this); prefixq(dst); emit_arith_operand(0x81, rbx, dst, imm32); } void Assembler::sbbq(Register dst, int imm32) { (void) prefixq_and_encode(dst->encoding()); emit_arith(0x81, 0xD8, dst, imm32); } void Assembler::sbbq(Register dst, Address src) { InstructionMark im(this); prefixq(src, dst); emit_byte(0x1B); emit_operand(dst, src); } void Assembler::sbbq(Register dst, Register src) { (void) prefixq_and_encode(dst->encoding(), src->encoding()); emit_arith(0x1B, 0xC0, dst, src); } void Assembler::shll(Register dst, int imm8) { assert(isShiftCount(imm8), "illegal shift count"); int encode = prefix_and_encode(dst->encoding()); if (imm8 == 1 ) { emit_byte(0xD1); emit_byte(0xE0 | encode); } else { emit_byte(0xC1); emit_byte(0xE0 | encode); emit_byte(imm8); } } void Assembler::shll(Register dst) { int encode = prefix_and_encode(dst->encoding()); emit_byte(0xD3); emit_byte(0xE0 | encode); } void Assembler::shlq(Register dst, int imm8) { assert(isShiftCount(imm8 >> 1), "illegal shift count"); int encode = prefixq_and_encode(dst->encoding()); if (imm8 == 1) { emit_byte(0xD1); emit_byte(0xE0 | encode); } else { emit_byte(0xC1); emit_byte(0xE0 | encode); emit_byte(imm8); } } void Assembler::shlq(Register dst) { int encode = prefixq_and_encode(dst->encoding()); emit_byte(0xD3); emit_byte(0xE0 | encode); } void Assembler::shrl(Register dst, int imm8) { assert(isShiftCount(imm8), "illegal shift count"); int encode = prefix_and_encode(dst->encoding()); emit_byte(0xC1); emit_byte(0xE8 | encode); emit_byte(imm8); } void Assembler::shrl(Register dst) { int encode = prefix_and_encode(dst->encoding()); emit_byte(0xD3); emit_byte(0xE8 | encode); } void Assembler::shrq(Register dst, int imm8) { assert(isShiftCount(imm8 >> 1), "illegal shift count"); int encode = prefixq_and_encode(dst->encoding()); emit_byte(0xC1); emit_byte(0xE8 | encode); emit_byte(imm8); } void Assembler::shrq(Register dst) { int encode = prefixq_and_encode(dst->encoding()); emit_byte(0xD3); emit_byte(0xE8 | encode); } void Assembler::subl(Address dst, int imm32) { InstructionMark im(this); prefix(dst); if (is8bit(imm32)) { emit_byte(0x83); emit_operand(rbp, dst, 1); emit_byte(imm32 & 0xFF); } else { emit_byte(0x81); emit_operand(rbp, dst, 4); emit_long(imm32); } } void Assembler::subl(Register dst, int imm32) { prefix(dst); emit_arith(0x81, 0xE8, dst, imm32); } void Assembler::subl(Address dst, Register src) { InstructionMark im(this); prefix(dst, src); emit_byte(0x29); emit_operand(src, dst); } void Assembler::subl(Register dst, Address src) { InstructionMark im(this); prefix(src, dst); emit_byte(0x2B); emit_operand(dst, src); } void Assembler::subl(Register dst, Register src) { (void) prefix_and_encode(dst->encoding(), src->encoding()); emit_arith(0x2B, 0xC0, dst, src); } void Assembler::subq(Address dst, int imm32) { InstructionMark im(this); prefixq(dst); if (is8bit(imm32)) { emit_byte(0x83); emit_operand(rbp, dst, 1); emit_byte(imm32 & 0xFF); } else { emit_byte(0x81); emit_operand(rbp, dst, 4); emit_long(imm32); } } void Assembler::subq(Register dst, int imm32) { (void) prefixq_and_encode(dst->encoding()); emit_arith(0x81, 0xE8, dst, imm32); } void Assembler::subq(Address dst, Register src) { InstructionMark im(this); prefixq(dst, src); emit_byte(0x29); emit_operand(src, dst); } void Assembler::subq(Register dst, Address src) { InstructionMark im(this); prefixq(src, dst); emit_byte(0x2B); emit_operand(dst, src); } void Assembler::subq(Register dst, Register src) { (void) prefixq_and_encode(dst->encoding(), src->encoding()); emit_arith(0x2B, 0xC0, dst, src); } void Assembler::testb(Register dst, int imm8) { (void) prefix_and_encode(dst->encoding(), true); emit_arith_b(0xF6, 0xC0, dst, imm8); } void Assembler::testl(Register dst, int imm32) { // not using emit_arith because test // doesn't support sign-extension of // 8bit operands int encode = dst->encoding(); if (encode == 0) { emit_byte(0xA9); } else { encode = prefix_and_encode(encode); emit_byte(0xF7); emit_byte(0xC0 | encode); } emit_long(imm32); } void Assembler::testl(Register dst, Register src) { (void) prefix_and_encode(dst->encoding(), src->encoding()); emit_arith(0x85, 0xC0, dst, src); } void Assembler::testq(Register dst, int imm32) { // not using emit_arith because test // doesn't support sign-extension of // 8bit operands int encode = dst->encoding(); if (encode == 0) { prefix(REX_W); emit_byte(0xA9); } else { encode = prefixq_and_encode(encode); emit_byte(0xF7); emit_byte(0xC0 | encode); } emit_long(imm32); } void Assembler::testq(Register dst, Register src) { (void) prefixq_and_encode(dst->encoding(), src->encoding()); emit_arith(0x85, 0xC0, dst, src); } void Assembler::xaddl(Address dst, Register src) { InstructionMark im(this); prefix(dst, src); emit_byte(0x0F); emit_byte(0xC1); emit_operand(src, dst); } void Assembler::xaddq(Address dst, Register src) { InstructionMark im(this); prefixq(dst, src); emit_byte(0x0F); emit_byte(0xC1); emit_operand(src, dst); } void Assembler::xorl(Register dst, int imm32) { prefix(dst); emit_arith(0x81, 0xF0, dst, imm32); } void Assembler::xorl(Register dst, Register src) { (void) prefix_and_encode(dst->encoding(), src->encoding()); emit_arith(0x33, 0xC0, dst, src); } void Assembler::xorl(Register dst, Address src) { InstructionMark im(this); prefix(src, dst); emit_byte(0x33); emit_operand(dst, src); } void Assembler::xorq(Register dst, int imm32) { (void) prefixq_and_encode(dst->encoding()); emit_arith(0x81, 0xF0, dst, imm32); } void Assembler::xorq(Register dst, Register src) { (void) prefixq_and_encode(dst->encoding(), src->encoding()); emit_arith(0x33, 0xC0, dst, src); } void Assembler::xorq(Register dst, Address src) { InstructionMark im(this); prefixq(src, dst); emit_byte(0x33); emit_operand(dst, src); } void Assembler::bswapl(Register reg) { int encode = prefix_and_encode(reg->encoding()); emit_byte(0x0F); emit_byte(0xC8 | encode); } void Assembler::bswapq(Register reg) { int encode = prefixq_and_encode(reg->encoding()); emit_byte(0x0F); emit_byte(0xC8 | encode); } void Assembler::lock() { emit_byte(0xF0); } void Assembler::xchgl(Register dst, Address src) { InstructionMark im(this); prefix(src, dst); emit_byte(0x87); emit_operand(dst, src); } void Assembler::xchgl(Register dst, Register src) { int encode = prefix_and_encode(dst->encoding(), src->encoding()); emit_byte(0x87); emit_byte(0xc0 | encode); } void Assembler::xchgq(Register dst, Address src) { InstructionMark im(this); prefixq(src, dst); emit_byte(0x87); emit_operand(dst, src); } void Assembler::xchgq(Register dst, Register src) { int encode = prefixq_and_encode(dst->encoding(), src->encoding()); emit_byte(0x87); emit_byte(0xc0 | encode); } void Assembler::cmpxchgl(Register reg, Address adr) { InstructionMark im(this); prefix(adr, reg); emit_byte(0x0F); emit_byte(0xB1); emit_operand(reg, adr); } void Assembler::cmpxchgq(Register reg, Address adr) { InstructionMark im(this); prefixq(adr, reg); emit_byte(0x0F); emit_byte(0xB1); emit_operand(reg, adr); } void Assembler::hlt() { emit_byte(0xF4); } void Assembler::addr_nop_4() { // 4 bytes: NOP DWORD PTR [EAX+0] emit_byte(0x0F); emit_byte(0x1F); emit_byte(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc); emit_byte(0); // 8-bits offset (1 byte) } void Assembler::addr_nop_5() { // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset emit_byte(0x0F); emit_byte(0x1F); emit_byte(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4); emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc); emit_byte(0); // 8-bits offset (1 byte) } void Assembler::addr_nop_7() { // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset emit_byte(0x0F); emit_byte(0x1F); emit_byte(0x80); // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc); emit_long(0); // 32-bits offset (4 bytes) } void Assembler::addr_nop_8() { // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset emit_byte(0x0F); emit_byte(0x1F); emit_byte(0x84); // emit_rm(cbuf, 0x2, EAX_enc, 0x4); emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc); emit_long(0); // 32-bits offset (4 bytes) } void Assembler::nop(int i) { assert(i > 0, " "); if (UseAddressNop && VM_Version::is_intel()) { // // Using multi-bytes nops "0x0F 0x1F [address]" for Intel // 1: 0x90 // 2: 0x66 0x90 // 3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding) // 4: 0x0F 0x1F 0x40 0x00 // 5: 0x0F 0x1F 0x44 0x00 0x00 // 6: 0x66 0x0F 0x1F 0x44 0x00 0x00 // 7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 // 8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 // 9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 // The rest coding is Intel specific - don't use consecutive address nops // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90 // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90 // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90 // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90 while(i >= 15) { // For Intel don't generate consecutive addess nops (mix with regular nops) i -= 15; emit_byte(0x66); // size prefix emit_byte(0x66); // size prefix emit_byte(0x66); // size prefix addr_nop_8(); emit_byte(0x66); // size prefix emit_byte(0x66); // size prefix emit_byte(0x66); // size prefix emit_byte(0x90); // nop } switch (i) { case 14: emit_byte(0x66); // size prefix case 13: emit_byte(0x66); // size prefix case 12: addr_nop_8(); emit_byte(0x66); // size prefix emit_byte(0x66); // size prefix emit_byte(0x66); // size prefix emit_byte(0x90); // nop break; case 11: emit_byte(0x66); // size prefix case 10: emit_byte(0x66); // size prefix case 9: emit_byte(0x66); // size prefix case 8: addr_nop_8(); break; case 7: addr_nop_7(); break; case 6: emit_byte(0x66); // size prefix case 5: addr_nop_5(); break; case 4: addr_nop_4(); break; case 3: // Don't use "0x0F 0x1F 0x00" - need patching safe padding emit_byte(0x66); // size prefix case 2: emit_byte(0x66); // size prefix case 1: emit_byte(0x90); // nop break; default: assert(i == 0, " "); } return; } if (UseAddressNop && VM_Version::is_amd()) { // // Using multi-bytes nops "0x0F 0x1F [address]" for AMD. // 1: 0x90 // 2: 0x66 0x90 // 3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding) // 4: 0x0F 0x1F 0x40 0x00 // 5: 0x0F 0x1F 0x44 0x00 0x00 // 6: 0x66 0x0F 0x1F 0x44 0x00 0x00 // 7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 // 8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 // 9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 // The rest coding is AMD specific - use consecutive address nops // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00 // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00 // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 // Size prefixes (0x66) are added for larger sizes while(i >= 22) { i -= 11; emit_byte(0x66); // size prefix emit_byte(0x66); // size prefix emit_byte(0x66); // size prefix addr_nop_8(); } // Generate first nop for size between 21-12 switch (i) { case 21: i -= 1; emit_byte(0x66); // size prefix case 20: case 19: i -= 1; emit_byte(0x66); // size prefix case 18: case 17: i -= 1; emit_byte(0x66); // size prefix case 16: case 15: i -= 8; addr_nop_8(); break; case 14: case 13: i -= 7; addr_nop_7(); break; case 12: i -= 6; emit_byte(0x66); // size prefix addr_nop_5(); break; default: assert(i < 12, " "); } // Generate second nop for size between 11-1 switch (i) { case 11: emit_byte(0x66); // size prefix case 10: emit_byte(0x66); // size prefix case 9: emit_byte(0x66); // size prefix case 8: addr_nop_8(); break; case 7: addr_nop_7(); break; case 6: emit_byte(0x66); // size prefix case 5: addr_nop_5(); break; case 4: addr_nop_4(); break; case 3: // Don't use "0x0F 0x1F 0x00" - need patching safe padding emit_byte(0x66); // size prefix case 2: emit_byte(0x66); // size prefix case 1: emit_byte(0x90); // nop break; default: assert(i == 0, " "); } return; } // Using nops with size prefixes "0x66 0x90". // From AMD Optimization Guide: // 1: 0x90 // 2: 0x66 0x90 // 3: 0x66 0x66 0x90 // 4: 0x66 0x66 0x66 0x90 // 5: 0x66 0x66 0x90 0x66 0x90 // 6: 0x66 0x66 0x90 0x66 0x66 0x90 // 7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 // 8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90 // 9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90 // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90 // while(i > 12) { i -= 4; emit_byte(0x66); // size prefix emit_byte(0x66); emit_byte(0x66); emit_byte(0x90); // nop } // 1 - 12 nops if(i > 8) { if(i > 9) { i -= 1; emit_byte(0x66); } i -= 3; emit_byte(0x66); emit_byte(0x66); emit_byte(0x90); } // 1 - 8 nops if(i > 4) { if(i > 6) { i -= 1; emit_byte(0x66); } i -= 3; emit_byte(0x66); emit_byte(0x66); emit_byte(0x90); } switch (i) { case 4: emit_byte(0x66); case 3: emit_byte(0x66); case 2: emit_byte(0x66); case 1: emit_byte(0x90); break; default: assert(i == 0, " "); } } void Assembler::ret(int imm16) { if (imm16 == 0) { emit_byte(0xC3); } else { emit_byte(0xC2); emit_word(imm16); } } // copies a single word from [esi] to [edi] void Assembler::smovl() { emit_byte(0xA5); } // copies data from [rsi] to [rdi] using rcx words (m32) void Assembler::rep_movl() { // REP emit_byte(0xF3); // MOVSL emit_byte(0xA5); } // copies data from [rsi] to [rdi] using rcx double words (m64) void Assembler::rep_movq() { // REP emit_byte(0xF3); // MOVSQ prefix(REX_W); emit_byte(0xA5); } // sets rcx double words (m64) with rax value at [rdi] void Assembler::rep_set() { // REP emit_byte(0xF3); // STOSQ prefix(REX_W); emit_byte(0xAB); } // scans rcx double words (m64) at [rdi] for occurance of rax void Assembler::repne_scanq() { // REPNE/REPNZ emit_byte(0xF2); // SCASQ prefix(REX_W); emit_byte(0xAF); } void Assembler::repne_scanl() { // REPNE/REPNZ emit_byte(0xF2); // SCASL emit_byte(0xAF); } void Assembler::setb(Condition cc, Register dst) { assert(0 <= cc && cc < 16, "illegal cc"); int encode = prefix_and_encode(dst->encoding(), true); emit_byte(0x0F); emit_byte(0x90 | cc); emit_byte(0xC0 | encode); } void Assembler::clflush(Address adr) { prefix(adr); emit_byte(0x0F); emit_byte(0xAE); emit_operand(rdi, adr); } void Assembler::call(Label& L, relocInfo::relocType rtype) { if (L.is_bound()) { const int long_size = 5; int offs = (int)( target(L) - pc() ); assert(offs <= 0, "assembler error"); InstructionMark im(this); // 1110 1000 #32-bit disp emit_byte(0xE8); emit_data(offs - long_size, rtype, disp32_operand); } else { InstructionMark im(this); // 1110 1000 #32-bit disp L.add_patch_at(code(), locator()); emit_byte(0xE8); emit_data(int(0), rtype, disp32_operand); } } void Assembler::call_literal(address entry, RelocationHolder const& rspec) { assert(entry != NULL, "call most probably wrong"); InstructionMark im(this); emit_byte(0xE8); intptr_t disp = entry - (_code_pos + sizeof(int32_t)); assert(is_simm32(disp), "must be 32bit offset (call2)"); // Technically, should use call32_operand, but this format is // implied by the fact that we're emitting a call instruction. emit_data((int) disp, rspec, disp32_operand); } void Assembler::call(Register dst) { // This was originally using a 32bit register encoding // and surely we want 64bit! // this is a 32bit encoding but in 64bit mode the default // operand size is 64bit so there is no need for the // wide prefix. So prefix only happens if we use the // new registers. Much like push/pop. int encode = prefixq_and_encode(dst->encoding()); emit_byte(0xFF); emit_byte(0xD0 | encode); } void Assembler::call(Address adr) { InstructionMark im(this); prefix(adr); emit_byte(0xFF); emit_operand(rdx, adr); } void Assembler::jmp(Register reg) { int encode = prefix_and_encode(reg->encoding()); emit_byte(0xFF); emit_byte(0xE0 | encode); } void Assembler::jmp(Address adr) { InstructionMark im(this); prefix(adr); emit_byte(0xFF); emit_operand(rsp, adr); } void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) { InstructionMark im(this); emit_byte(0xE9); assert(dest != NULL, "must have a target"); intptr_t disp = dest - (_code_pos + sizeof(int32_t)); assert(is_simm32(disp), "must be 32bit offset (jmp)"); emit_data(disp, rspec.reloc(), call32_operand); } void Assembler::jmp(Label& L, relocInfo::relocType rtype) { if (L.is_bound()) { address entry = target(L); assert(entry != NULL, "jmp most probably wrong"); InstructionMark im(this); const int short_size = 2; const int long_size = 5; intptr_t offs = entry - _code_pos; if (rtype == relocInfo::none && is8bit(offs - short_size)) { emit_byte(0xEB); emit_byte((offs - short_size) & 0xFF); } else { emit_byte(0xE9); emit_long(offs - long_size); } } else { // By default, forward jumps are always 32-bit displacements, since // we can't yet know where the label will be bound. If you're sure that // the forward jump will not run beyond 256 bytes, use jmpb to // force an 8-bit displacement. InstructionMark im(this); relocate(rtype); L.add_patch_at(code(), locator()); emit_byte(0xE9); emit_long(0); } } void Assembler::jmpb(Label& L) { if (L.is_bound()) { const int short_size = 2; address entry = target(L); assert(is8bit((entry - _code_pos) + short_size), "Dispacement too large for a short jmp"); assert(entry != NULL, "jmp most probably wrong"); intptr_t offs = entry - _code_pos; emit_byte(0xEB); emit_byte((offs - short_size) & 0xFF); } else { InstructionMark im(this); L.add_patch_at(code(), locator()); emit_byte(0xEB); emit_byte(0); } } void Assembler::jcc(Condition cc, Label& L, relocInfo::relocType rtype) { InstructionMark im(this); relocate(rtype); assert((0 <= cc) && (cc < 16), "illegal cc"); if (L.is_bound()) { address dst = target(L); assert(dst != NULL, "jcc most probably wrong"); const int short_size = 2; const int long_size = 6; intptr_t offs = (intptr_t)dst - (intptr_t)_code_pos; if (rtype == relocInfo::none && is8bit(offs - short_size)) { // 0111 tttn #8-bit disp emit_byte(0x70 | cc); emit_byte((offs - short_size) & 0xFF); } else { // 0000 1111 1000 tttn #32-bit disp assert(is_simm32(offs - long_size), "must be 32bit offset (call4)"); emit_byte(0x0F); emit_byte(0x80 | cc); emit_long(offs - long_size); } } else { // Note: could eliminate cond. jumps to this jump if condition // is the same however, seems to be rather unlikely case. // Note: use jccb() if label to be bound is very close to get // an 8-bit displacement L.add_patch_at(code(), locator()); emit_byte(0x0F); emit_byte(0x80 | cc); emit_long(0); } } void Assembler::jccb(Condition cc, Label& L) { if (L.is_bound()) { const int short_size = 2; const int long_size = 6; address entry = target(L); assert(is8bit((intptr_t)entry - ((intptr_t)_code_pos + short_size)), "Dispacement too large for a short jmp"); intptr_t offs = (intptr_t)entry - (intptr_t)_code_pos; // 0111 tttn #8-bit disp emit_byte(0x70 | cc); emit_byte((offs - short_size) & 0xFF); } else { InstructionMark im(this); L.add_patch_at(code(), locator()); emit_byte(0x70 | cc); emit_byte(0); } } // FP instructions void Assembler::fxsave(Address dst) { prefixq(dst); emit_byte(0x0F); emit_byte(0xAE); emit_operand(as_Register(0), dst); } void Assembler::fxrstor(Address src) { prefixq(src); emit_byte(0x0F); emit_byte(0xAE); emit_operand(as_Register(1), src); } void Assembler::ldmxcsr(Address src) { InstructionMark im(this); prefix(src); emit_byte(0x0F); emit_byte(0xAE); emit_operand(as_Register(2), src); } void Assembler::stmxcsr(Address dst) { InstructionMark im(this); prefix(dst); emit_byte(0x0F); emit_byte(0xAE); emit_operand(as_Register(3), dst); } void Assembler::addss(XMMRegister dst, XMMRegister src) { emit_byte(0xF3); int encode = prefix_and_encode(dst->encoding(), src->encoding()); emit_byte(0x0F); emit_byte(0x58); emit_byte(0xC0 | encode); } void Assembler::addss(XMMRegister dst, Address src) { InstructionMark im(this); emit_byte(0xF3); prefix(src, dst); emit_byte(0x0F); emit_byte(0x58); emit_operand(dst, src); } void Assembler::subss(XMMRegister dst, XMMRegister src) { emit_byte(0xF3); int encode = prefix_and_encode(dst->encoding(), src->encoding()); emit_byte(0x0F); emit_byte(0x5C); emit_byte(0xC0 | encode); } void Assembler::subss(XMMRegister dst, Address src) { InstructionMark im(this); emit_byte(0xF3); prefix(src, dst); emit_byte(0x0F); emit_byte(0x5C); emit_operand(dst, src); } void Assembler::mulss(XMMRegister dst, XMMRegister src) { emit_byte(0xF3); int encode = prefix_and_encode(dst->encoding(), src->encoding()); emit_byte(0x0F); emit_byte(0x59); emit_byte(0xC0 | encode); } void Assembler::mulss(XMMRegister dst, Address src) { InstructionMark im(this); emit_byte(0xF3); prefix(src, dst); emit_byte(0x0F); emit_byte(0x59); emit_operand(dst, src); } void Assembler::divss(XMMRegister dst, XMMRegister src) { emit_byte(0xF3); int encode = prefix_and_encode(dst->encoding(), src->encoding()); emit_byte(0x0F); emit_byte(0x5E); emit_byte(0xC0 | encode); } void Assembler::divss(XMMRegister dst, Address src) { InstructionMark im(this); emit_byte(0xF3); prefix(src, dst); emit_byte(0x0F); emit_byte(0x5E); emit_operand(dst, src); } void Assembler::addsd(XMMRegister dst, XMMRegister src) { emit_byte(0xF2); int encode = prefix_and_encode(dst->encoding(), src->encoding()); emit_byte(0x0F); emit_byte(0x58); emit_byte(0xC0 | encode); } void Assembler::addsd(XMMRegister dst, Address src) { InstructionMark im(this); emit_byte(0xF2); prefix(src, dst); emit_byte(0x0F); emit_byte(0x58); emit_operand(dst, src); } void Assembler::subsd(XMMRegister dst, XMMRegister src) { emit_byte(0xF2); int encode = prefix_and_encode(dst->encoding(), src->encoding()); emit_byte(0x0F); emit_byte(0x5C); emit_byte(0xC0 | encode); } void Assembler::subsd(XMMRegister dst, Address src) { InstructionMark im(this); emit_byte(0xF2); prefix(src, dst); emit_byte(0x0F); emit_byte(0x5C); emit_operand(dst, src); } void Assembler::mulsd(XMMRegister dst, XMMRegister src) { emit_byte(0xF2); int encode = prefix_and_encode(dst->encoding(), src->encoding()); emit_byte(0x0F); emit_byte(0x59); emit_byte(0xC0 | encode); } void Assembler::mulsd(XMMRegister dst, Address src) { InstructionMark im(this); emit_byte(0xF2); prefix(src, dst); emit_byte(0x0F); emit_byte(0x59); emit_operand(dst, src); } void Assembler::divsd(XMMRegister dst, XMMRegister src) { emit_byte(0xF2); int encode = prefix_and_encode(dst->encoding(), src->encoding()); emit_byte(0x0F); emit_byte(0x5E); emit_byte(0xC0 | encode); } void Assembler::divsd(XMMRegister dst, Address src) { InstructionMark im(this); emit_byte(0xF2); prefix(src, dst); emit_byte(0x0F); emit_byte(0x5E); emit_operand(dst, src); } void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) { emit_byte(0xF2); int encode = prefix_and_encode(dst->encoding(), src->encoding()); emit_byte(0x0F); emit_byte(0x51); emit_byte(0xC0 | encode); } void Assembler::sqrtsd(XMMRegister dst, Address src) { InstructionMark im(this); emit_byte(0xF2); prefix(src, dst); emit_byte(0x0F); emit_byte(0x51); emit_operand(dst, src); } void Assembler::xorps(XMMRegister dst, XMMRegister src) { int encode = prefix_and_encode(dst->encoding(), src->encoding()); emit_byte(0x0F); emit_byte(0x57); emit_byte(0xC0 | encode); } void Assembler::xorps(XMMRegister dst, Address src) { InstructionMark im(this); prefix(src, dst); emit_byte(0x0F); emit_byte(0x57); emit_operand(dst, src); } void Assembler::xorpd(XMMRegister dst, XMMRegister src) { emit_byte(0x66); xorps(dst, src); } void Assembler::xorpd(XMMRegister dst, Address src) { InstructionMark im(this); emit_byte(0x66); prefix(src, dst); emit_byte(0x0F); emit_byte(0x57); emit_operand(dst, src); } void Assembler::cvtsi2ssl(XMMRegister dst, Register src) { emit_byte(0xF3); int encode = prefix_and_encode(dst->encoding(), src->encoding()); emit_byte(0x0F); emit_byte(0x2A); emit_byte(0xC0 | encode); } void Assembler::cvtsi2ssq(XMMRegister dst, Register src) { emit_byte(0xF3); int encode = prefixq_and_encode(dst->encoding(), src->encoding()); emit_byte(0x0F); emit_byte(0x2A); emit_byte(0xC0 | encode); } void Assembler::cvtsi2sdl(XMMRegister dst, Register src) { emit_byte(0xF2); int encode = prefix_and_encode(dst->encoding(), src->encoding()); emit_byte(0x0F); emit_byte(0x2A); emit_byte(0xC0 | encode); } void Assembler::cvtsi2sdq(XMMRegister dst, Register src) { emit_byte(0xF2); int encode = prefixq_and_encode(dst->encoding(), src->encoding()); emit_byte(0x0F); emit_byte(0x2A); emit_byte(0xC0 | encode); } void Assembler::cvttss2sil(Register dst, XMMRegister src) { emit_byte(0xF3); int encode = prefix_and_encode(dst->encoding(), src->encoding()); emit_byte(0x0F); emit_byte(0x2C); emit_byte(0xC0 | encode); } void Assembler::cvttss2siq(Register dst, XMMRegister src) { emit_byte(0xF3); int encode = prefixq_and_encode(dst->encoding(), src->encoding()); emit_byte(0x0F); emit_byte(0x2C); emit_byte(0xC0 | encode); } void Assembler::cvttsd2sil(Register dst, XMMRegister src) { emit_byte(0xF2); int encode = prefix_and_encode(dst->encoding(), src->encoding()); emit_byte(0x0F); emit_byte(0x2C); emit_byte(0xC0 | encode); } void Assembler::cvttsd2siq(Register dst, XMMRegister src) { emit_byte(0xF2); int encode = prefixq_and_encode(dst->encoding(), src->encoding()); emit_byte(0x0F); emit_byte(0x2C); emit_byte(0xC0 | encode); } void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) { emit_byte(0xF3); int encode = prefix_and_encode(dst->encoding(), src->encoding()); emit_byte(0x0F); emit_byte(0x5A); emit_byte(0xC0 | encode); } void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) { emit_byte(0xF3); int encode = prefix_and_encode(dst->encoding(), src->encoding()); emit_byte(0x0F); emit_byte(0xE6); emit_byte(0xC0 | encode); } void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) { int encode = prefix_and_encode(dst->encoding(), src->encoding()); emit_byte(0x0F); emit_byte(0x5B); emit_byte(0xC0 | encode); } void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) { emit_byte(0xF2); int encode = prefix_and_encode(dst->encoding(), src->encoding()); emit_byte(0x0F); emit_byte(0x5A); emit_byte(0xC0 | encode); } void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) { emit_byte(0x66); int encode = prefix_and_encode(dst->encoding(), src->encoding()); emit_byte(0x0F); emit_byte(0x60); emit_byte(0xC0 | encode); } // Implementation of MacroAssembler // On 32 bit it returns a vanilla displacement on 64 bit is a rip relative displacement Address MacroAssembler::as_Address(AddressLiteral adr) { assert(!adr.is_lval(), "must be rval"); assert(reachable(adr), "must be"); return Address((int)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc()); } Address MacroAssembler::as_Address(ArrayAddress adr) { #ifdef _LP64 AddressLiteral base = adr.base(); lea(rscratch1, base); Address index = adr.index(); assert(index._disp == 0, "must not have disp"); // maybe it can? Address array(rscratch1, index._index, index._scale, index._disp); return array; #else return Address::make_array(adr); #endif // _LP64 } void MacroAssembler::fat_nop() { // A 5 byte nop that is safe for patching (see patch_verified_entry) // Recommened sequence from 'Software Optimization Guide for the AMD // Hammer Processor' emit_byte(0x66); emit_byte(0x66); emit_byte(0x90); emit_byte(0x66); emit_byte(0x90); } static Assembler::Condition reverse[] = { Assembler::noOverflow /* overflow = 0x0 */ , Assembler::overflow /* noOverflow = 0x1 */ , Assembler::aboveEqual /* carrySet = 0x2, below = 0x2 */ , Assembler::below /* aboveEqual = 0x3, carryClear = 0x3 */ , Assembler::notZero /* zero = 0x4, equal = 0x4 */ , Assembler::zero /* notZero = 0x5, notEqual = 0x5 */ , Assembler::above /* belowEqual = 0x6 */ , Assembler::belowEqual /* above = 0x7 */ , Assembler::positive /* negative = 0x8 */ , Assembler::negative /* positive = 0x9 */ , Assembler::noParity /* parity = 0xa */ , Assembler::parity /* noParity = 0xb */ , Assembler::greaterEqual /* less = 0xc */ , Assembler::less /* greaterEqual = 0xd */ , Assembler::greater /* lessEqual = 0xe */ , Assembler::lessEqual /* greater = 0xf, */ }; // 32bit can do a case table jump in one instruction but we no longer allow the base // to be installed in the Address class void MacroAssembler::jump(ArrayAddress entry) { #ifdef _LP64 lea(rscratch1, entry.base()); Address dispatch = entry.index(); assert(dispatch._base == noreg, "must be"); dispatch._base = rscratch1; jmp(dispatch); #else jmp(as_Address(entry)); #endif // _LP64 } void MacroAssembler::jump(AddressLiteral dst) { if (reachable(dst)) { jmp_literal(dst.target(), dst.rspec()); } else { lea(rscratch1, dst); jmp(rscratch1); } } void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) { if (reachable(dst)) { InstructionMark im(this); relocate(dst.reloc()); const int short_size = 2; const int long_size = 6; int offs = (intptr_t)dst.target() - ((intptr_t)_code_pos); if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) { // 0111 tttn #8-bit disp emit_byte(0x70 | cc); emit_byte((offs - short_size) & 0xFF); } else { // 0000 1111 1000 tttn #32-bit disp emit_byte(0x0F); emit_byte(0x80 | cc); emit_long(offs - long_size); } } else { #ifdef ASSERT warning("reversing conditional branch"); #endif /* ASSERT */ Label skip; jccb(reverse[cc], skip); lea(rscratch1, dst); Assembler::jmp(rscratch1); bind(skip); } } // Wouldn't need if AddressLiteral version had new name void MacroAssembler::call(Label& L, relocInfo::relocType rtype) { Assembler::call(L, rtype); } // Wouldn't need if AddressLiteral version had new name void MacroAssembler::call(Register entry) { Assembler::call(entry); } void MacroAssembler::call(AddressLiteral entry) { if (reachable(entry)) { Assembler::call_literal(entry.target(), entry.rspec()); } else { lea(rscratch1, entry); Assembler::call(rscratch1); } } void MacroAssembler::cmp8(AddressLiteral src1, int8_t src2) { if (reachable(src1)) { cmpb(as_Address(src1), src2); } else { lea(rscratch1, src1); cmpb(Address(rscratch1, 0), src2); } } void MacroAssembler::cmp32(AddressLiteral src1, int32_t src2) { if (reachable(src1)) { cmpl(as_Address(src1), src2); } else { lea(rscratch1, src1); cmpl(Address(rscratch1, 0), src2); } } void MacroAssembler::cmp32(Register src1, AddressLiteral src2) { if (reachable(src2)) { cmpl(src1, as_Address(src2)); } else { lea(rscratch1, src2); cmpl(src1, Address(rscratch1, 0)); } } void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) { #ifdef _LP64 if (src2.is_lval()) { movptr(rscratch1, src2); Assembler::cmpq(src1, rscratch1); } else if (reachable(src2)) { cmpq(src1, as_Address(src2)); } else { lea(rscratch1, src2); Assembler::cmpq(src1, Address(rscratch1, 0)); } #else if (src2.is_lval()) { cmp_literal32(src1, (int32_t) src2.target(), src2.rspec()); } else { cmpl(src1, as_Address(src2)); } #endif // _LP64 } void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) { assert(src2.is_lval(), "not a mem-mem compare"); #ifdef _LP64 // moves src2's literal address movptr(rscratch1, src2); Assembler::cmpq(src1, rscratch1); #else cmp_literal32(src1, (int32_t) src2.target(), src2.rspec()); #endif // _LP64 } void MacroAssembler::cmp64(Register src1, AddressLiteral src2) { assert(!src2.is_lval(), "should use cmpptr"); if (reachable(src2)) { #ifdef _LP64 cmpq(src1, as_Address(src2)); #else ShouldNotReachHere(); #endif // _LP64 } else { lea(rscratch1, src2); Assembler::cmpq(src1, Address(rscratch1, 0)); } } void MacroAssembler::cmpxchgptr(Register reg, AddressLiteral adr) { if (reachable(adr)) { #ifdef _LP64 cmpxchgq(reg, as_Address(adr)); #else cmpxchgl(reg, as_Address(adr)); #endif // _LP64 } else { lea(rscratch1, adr); cmpxchgq(reg, Address(rscratch1, 0)); } } void MacroAssembler::incrementl(AddressLiteral dst) { if (reachable(dst)) { incrementl(as_Address(dst)); } else { lea(rscratch1, dst); incrementl(Address(rscratch1, 0)); } } void MacroAssembler::incrementl(ArrayAddress dst) { incrementl(as_Address(dst)); } void MacroAssembler::lea(Register dst, Address src) { #ifdef _LP64 leaq(dst, src); #else leal(dst, src); #endif // _LP64 } void MacroAssembler::lea(Register dst, AddressLiteral src) { #ifdef _LP64 mov_literal64(dst, (intptr_t)src.target(), src.rspec()); #else mov_literal32(dst, (intptr_t)src.target(), src.rspec()); #endif // _LP64 } void MacroAssembler::mov32(AddressLiteral dst, Register src) { if (reachable(dst)) { movl(as_Address(dst), src); } else { lea(rscratch1, dst); movl(Address(rscratch1, 0), src); } } void MacroAssembler::mov32(Register dst, AddressLiteral src) { if (reachable(src)) { movl(dst, as_Address(src)); } else { lea(rscratch1, src); movl(dst, Address(rscratch1, 0)); } } void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) { if (reachable(src)) { if (UseXmmLoadAndClearUpper) { movsd (dst, as_Address(src)); } else { movlpd(dst, as_Address(src)); } } else { lea(rscratch1, src); if (UseXmmLoadAndClearUpper) { movsd (dst, Address(rscratch1, 0)); } else { movlpd(dst, Address(rscratch1, 0)); } } } void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) { if (reachable(src)) { movss(dst, as_Address(src)); } else { lea(rscratch1, src); movss(dst, Address(rscratch1, 0)); } } void MacroAssembler::movoop(Register dst, jobject obj) { mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate()); } void MacroAssembler::movoop(Address dst, jobject obj) { mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate()); movq(dst, rscratch1); } void MacroAssembler::movptr(Register dst, AddressLiteral src) { #ifdef _LP64 if (src.is_lval()) { mov_literal64(dst, (intptr_t)src.target(), src.rspec()); } else { if (reachable(src)) { movq(dst, as_Address(src)); } else { lea(rscratch1, src); movq(dst, Address(rscratch1,0)); } } #else if (src.is_lval()) { mov_literal32(dst, (intptr_t)src.target(), src.rspec()); } else { movl(dst, as_Address(src)); } #endif // LP64 } void MacroAssembler::movptr(ArrayAddress dst, Register src) { #ifdef _LP64 movq(as_Address(dst), src); #else movl(as_Address(dst), src); #endif // _LP64 } void MacroAssembler::pushoop(jobject obj) { #ifdef _LP64 movoop(rscratch1, obj); pushq(rscratch1); #else push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate()); #endif // _LP64 } void MacroAssembler::pushptr(AddressLiteral src) { #ifdef _LP64 lea(rscratch1, src); if (src.is_lval()) { pushq(rscratch1); } else { pushq(Address(rscratch1, 0)); } #else if (src.is_lval()) { push_literal((int32_t)src.target(), src.rspec()); else { pushl(as_Address(src)); } #endif // _LP64 } void MacroAssembler::ldmxcsr(AddressLiteral src) { if (reachable(src)) { Assembler::ldmxcsr(as_Address(src)); } else { lea(rscratch1, src); Assembler::ldmxcsr(Address(rscratch1, 0)); } } void MacroAssembler::movlpd(XMMRegister dst, AddressLiteral src) { if (reachable(src)) { movlpd(dst, as_Address(src)); } else { lea(rscratch1, src); movlpd(dst, Address(rscratch1, 0)); } } void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) { if (reachable(src)) { movss(dst, as_Address(src)); } else { lea(rscratch1, src); movss(dst, Address(rscratch1, 0)); } } void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) { if (reachable(src)) { xorpd(dst, as_Address(src)); } else { lea(rscratch1, src); xorpd(dst, Address(rscratch1, 0)); } } void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) { if (reachable(src)) { xorps(dst, as_Address(src)); } else { lea(rscratch1, src); xorps(dst, Address(rscratch1, 0)); } } void MacroAssembler::null_check(Register reg, int offset) { if (needs_explicit_null_check(offset)) { // provoke OS NULL exception if reg = NULL by // accessing M[reg] w/o changing any (non-CC) registers cmpq(rax, Address(reg, 0)); // Note: should probably use testl(rax, Address(reg, 0)); // may be shorter code (however, this version of // testl needs to be implemented first) } else { // nothing to do, (later) access of M[reg + offset] // will provoke OS NULL exception if reg = NULL } } int MacroAssembler::load_unsigned_byte(Register dst, Address src) { int off = offset(); movzbl(dst, src); return off; } int MacroAssembler::load_unsigned_word(Register dst, Address src) { int off = offset(); movzwl(dst, src); return off; } int MacroAssembler::load_signed_byte(Register dst, Address src) { int off = offset(); movsbl(dst, src); return off; } int MacroAssembler::load_signed_word(Register dst, Address src) { int off = offset(); movswl(dst, src); return off; } void MacroAssembler::incrementl(Register reg, int value) { if (value == min_jint) { addl(reg, value); return; } if (value < 0) { decrementl(reg, -value); return; } if (value == 0) { ; return; } if (value == 1 && UseIncDec) { incl(reg) ; return; } /* else */ { addl(reg, value) ; return; } } void MacroAssembler::decrementl(Register reg, int value) { if (value == min_jint) { subl(reg, value); return; } if (value < 0) { incrementl(reg, -value); return; } if (value == 0) { ; return; } if (value == 1 && UseIncDec) { decl(reg) ; return; } /* else */ { subl(reg, value) ; return; } } void MacroAssembler::incrementq(Register reg, int value) { if (value == min_jint) { addq(reg, value); return; } if (value < 0) { decrementq(reg, -value); return; } if (value == 0) { ; return; } if (value == 1 && UseIncDec) { incq(reg) ; return; } /* else */ { addq(reg, value) ; return; } } void MacroAssembler::decrementq(Register reg, int value) { if (value == min_jint) { subq(reg, value); return; } if (value < 0) { incrementq(reg, -value); return; } if (value == 0) { ; return; } if (value == 1 && UseIncDec) { decq(reg) ; return; } /* else */ { subq(reg, value) ; return; } } void MacroAssembler::incrementl(Address dst, int value) { if (value == min_jint) { addl(dst, value); return; } if (value < 0) { decrementl(dst, -value); return; } if (value == 0) { ; return; } if (value == 1 && UseIncDec) { incl(dst) ; return; } /* else */ { addl(dst, value) ; return; } } void MacroAssembler::decrementl(Address dst, int value) { if (value == min_jint) { subl(dst, value); return; } if (value < 0) { incrementl(dst, -value); return; } if (value == 0) { ; return; } if (value == 1 && UseIncDec) { decl(dst) ; return; } /* else */ { subl(dst, value) ; return; } } void MacroAssembler::incrementq(Address dst, int value) { if (value == min_jint) { addq(dst, value); return; } if (value < 0) { decrementq(dst, -value); return; } if (value == 0) { ; return; } if (value == 1 && UseIncDec) { incq(dst) ; return; } /* else */ { addq(dst, value) ; return; } } void MacroAssembler::decrementq(Address dst, int value) { if (value == min_jint) { subq(dst, value); return; } if (value < 0) { incrementq(dst, -value); return; } if (value == 0) { ; return; } if (value == 1 && UseIncDec) { decq(dst) ; return; } /* else */ { subq(dst, value) ; return; } } void MacroAssembler::align(int modulus) { if (offset() % modulus != 0) { nop(modulus - (offset() % modulus)); } } void MacroAssembler::enter() { pushq(rbp); movq(rbp, rsp); } void MacroAssembler::leave() { emit_byte(0xC9); // LEAVE } // C++ bool manipulation void MacroAssembler::movbool(Register dst, Address src) { if(sizeof(bool) == 1) movb(dst, src); else if(sizeof(bool) == 2) movw(dst, src); else if(sizeof(bool) == 4) movl(dst, src); else { // unsupported ShouldNotReachHere(); } } void MacroAssembler::movbool(Address dst, bool boolconst) { if(sizeof(bool) == 1) movb(dst, (int) boolconst); else if(sizeof(bool) == 2) movw(dst, (int) boolconst); else if(sizeof(bool) == 4) movl(dst, (int) boolconst); else { // unsupported ShouldNotReachHere(); } } void MacroAssembler::movbool(Address dst, Register src) { if(sizeof(bool) == 1) movb(dst, src); else if(sizeof(bool) == 2) movw(dst, src); else if(sizeof(bool) == 4) movl(dst, src); else { // unsupported ShouldNotReachHere(); } } void MacroAssembler::testbool(Register dst) { if(sizeof(bool) == 1) testb(dst, (int) 0xff); else if(sizeof(bool) == 2) { // need testw impl ShouldNotReachHere(); } else if(sizeof(bool) == 4) testl(dst, dst); else { // unsupported ShouldNotReachHere(); } } void MacroAssembler::set_last_Java_frame(Register last_java_sp, Register last_java_fp, address last_java_pc) { // determine last_java_sp register if (!last_java_sp->is_valid()) { last_java_sp = rsp; } // last_java_fp is optional if (last_java_fp->is_valid()) { movq(Address(r15_thread, JavaThread::last_Java_fp_offset()), last_java_fp); } // last_java_pc is optional if (last_java_pc != NULL) { Address java_pc(r15_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()); lea(rscratch1, InternalAddress(last_java_pc)); movq(java_pc, rscratch1); } movq(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp); } void MacroAssembler::reset_last_Java_frame(bool clear_fp, bool clear_pc) { // we must set sp to zero to clear frame movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD); // must clear fp, so that compiled frames are not confused; it is // possible that we need it only for debugging if (clear_fp) { movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD); } if (clear_pc) { movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD); } } // Implementation of call_VM versions void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) { Label L, E; #ifdef _WIN64 // Windows always allocates space for it's register args assert(num_args <= 4, "only register arguments supported"); subq(rsp, frame::arg_reg_save_area_bytes); #endif // Align stack if necessary testl(rsp, 15); jcc(Assembler::zero, L); subq(rsp, 8); { call(RuntimeAddress(entry_point)); } addq(rsp, 8); jmp(E); bind(L); { call(RuntimeAddress(entry_point)); } bind(E); #ifdef _WIN64 // restore stack pointer addq(rsp, frame::arg_reg_save_area_bytes); #endif } void MacroAssembler::call_VM_base(Register oop_result, Register java_thread, Register last_java_sp, address entry_point, int num_args, bool check_exceptions) { // determine last_java_sp register if (!last_java_sp->is_valid()) { last_java_sp = rsp; } // debugging support assert(num_args >= 0, "cannot have negative number of arguments"); assert(r15_thread != oop_result, "cannot use the same register for java_thread & oop_result"); assert(r15_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp"); // set last Java frame before call // This sets last_Java_fp which is only needed from interpreted frames // and should really be done only from the interp_masm version before // calling the underlying call_VM. That doesn't happen yet so we set // last_Java_fp here even though some callers don't need it and // also clear it below. set_last_Java_frame(last_java_sp, rbp, NULL); { Label L, E; // Align stack if necessary #ifdef _WIN64 assert(num_args <= 4, "only register arguments supported"); // Windows always allocates space for it's register args subq(rsp, frame::arg_reg_save_area_bytes); #endif testl(rsp, 15); jcc(Assembler::zero, L); subq(rsp, 8); { call(RuntimeAddress(entry_point)); } addq(rsp, 8); jmp(E); bind(L); { call(RuntimeAddress(entry_point)); } bind(E); #ifdef _WIN64 // restore stack pointer addq(rsp, frame::arg_reg_save_area_bytes); #endif } #ifdef ASSERT pushq(rax); { Label L; get_thread(rax); cmpq(r15_thread, rax); jcc(Assembler::equal, L); stop("MacroAssembler::call_VM_base: register not callee saved?"); bind(L); } popq(rax); #endif // reset last Java frame // This really shouldn't have to clear fp set note above at the // call to set_last_Java_frame reset_last_Java_frame(true, false); check_and_handle_popframe(noreg); check_and_handle_earlyret(noreg); if (check_exceptions) { cmpq(Address(r15_thread, Thread::pending_exception_offset()), (int) NULL); // This used to conditionally jump to forward_exception however it is // possible if we relocate that the branch will not reach. So we must jump // around so we can always reach Label ok; jcc(Assembler::equal, ok); jump(RuntimeAddress(StubRoutines::forward_exception_entry())); bind(ok); } // get oop result if there is one and reset the value in the thread if (oop_result->is_valid()) { movq(oop_result, Address(r15_thread, JavaThread::vm_result_offset())); movptr(Address(r15_thread, JavaThread::vm_result_offset()), NULL_WORD); verify_oop(oop_result, "broken oop in call_VM_base"); } } void MacroAssembler::check_and_handle_popframe(Register java_thread) {} void MacroAssembler::check_and_handle_earlyret(Register java_thread) {} void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int num_args, bool check_exceptions) { // Java thread becomes first argument of C function movq(c_rarg0, r15_thread); // We've pushed one address, correct last_Java_sp leaq(rax, Address(rsp, wordSize)); call_VM_base(oop_result, noreg, rax, entry_point, num_args, check_exceptions); } void MacroAssembler::call_VM(Register oop_result, address entry_point, bool check_exceptions) { Label C, E; Assembler::call(C, relocInfo::none); jmp(E); bind(C); call_VM_helper(oop_result, entry_point, 0, check_exceptions); ret(0); bind(E); } void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) { assert(rax != arg_1, "smashed argument"); assert(c_rarg0 != arg_1, "smashed argument"); Label C, E; Assembler::call(C, relocInfo::none); jmp(E); bind(C); // c_rarg0 is reserved for thread if (c_rarg1 != arg_1) { movq(c_rarg1, arg_1); } call_VM_helper(oop_result, entry_point, 1, check_exceptions); ret(0); bind(E); } void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) { assert(rax != arg_1, "smashed argument"); assert(rax != arg_2, "smashed argument"); assert(c_rarg0 != arg_1, "smashed argument"); assert(c_rarg0 != arg_2, "smashed argument"); assert(c_rarg1 != arg_2, "smashed argument"); assert(c_rarg2 != arg_1, "smashed argument"); Label C, E; Assembler::call(C, relocInfo::none); jmp(E); bind(C); // c_rarg0 is reserved for thread if (c_rarg1 != arg_1) { movq(c_rarg1, arg_1); } if (c_rarg2 != arg_2) { movq(c_rarg2, arg_2); } call_VM_helper(oop_result, entry_point, 2, check_exceptions); ret(0); bind(E); } void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) { assert(rax != arg_1, "smashed argument"); assert(rax != arg_2, "smashed argument"); assert(rax != arg_3, "smashed argument"); assert(c_rarg0 != arg_1, "smashed argument"); assert(c_rarg0 != arg_2, "smashed argument"); assert(c_rarg0 != arg_3, "smashed argument"); assert(c_rarg1 != arg_2, "smashed argument"); assert(c_rarg1 != arg_3, "smashed argument"); assert(c_rarg2 != arg_1, "smashed argument"); assert(c_rarg2 != arg_3, "smashed argument"); assert(c_rarg3 != arg_1, "smashed argument"); assert(c_rarg3 != arg_2, "smashed argument"); Label C, E; Assembler::call(C, relocInfo::none); jmp(E); bind(C); // c_rarg0 is reserved for thread if (c_rarg1 != arg_1) { movq(c_rarg1, arg_1); } if (c_rarg2 != arg_2) { movq(c_rarg2, arg_2); } if (c_rarg3 != arg_3) { movq(c_rarg3, arg_3); } call_VM_helper(oop_result, entry_point, 3, check_exceptions); ret(0); bind(E); } void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, int num_args, bool check_exceptions) { call_VM_base(oop_result, noreg, last_java_sp, entry_point, num_args, check_exceptions); } void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions) { assert(c_rarg0 != arg_1, "smashed argument"); assert(c_rarg1 != last_java_sp, "smashed argument"); // c_rarg0 is reserved for thread if (c_rarg1 != arg_1) { movq(c_rarg1, arg_1); } call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions); } void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) { assert(c_rarg0 != arg_1, "smashed argument"); assert(c_rarg0 != arg_2, "smashed argument"); assert(c_rarg1 != arg_2, "smashed argument"); assert(c_rarg1 != last_java_sp, "smashed argument"); assert(c_rarg2 != arg_1, "smashed argument"); assert(c_rarg2 != last_java_sp, "smashed argument"); // c_rarg0 is reserved for thread if (c_rarg1 != arg_1) { movq(c_rarg1, arg_1); } if (c_rarg2 != arg_2) { movq(c_rarg2, arg_2); } call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions); } void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) { assert(c_rarg0 != arg_1, "smashed argument"); assert(c_rarg0 != arg_2, "smashed argument"); assert(c_rarg0 != arg_3, "smashed argument"); assert(c_rarg1 != arg_2, "smashed argument"); assert(c_rarg1 != arg_3, "smashed argument"); assert(c_rarg1 != last_java_sp, "smashed argument"); assert(c_rarg2 != arg_1, "smashed argument"); assert(c_rarg2 != arg_3, "smashed argument"); assert(c_rarg2 != last_java_sp, "smashed argument"); assert(c_rarg3 != arg_1, "smashed argument"); assert(c_rarg3 != arg_2, "smashed argument"); assert(c_rarg3 != last_java_sp, "smashed argument"); // c_rarg0 is reserved for thread if (c_rarg1 != arg_1) { movq(c_rarg1, arg_1); } if (c_rarg2 != arg_2) { movq(c_rarg2, arg_2); } if (c_rarg3 != arg_3) { movq(c_rarg2, arg_3); } call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions); } void MacroAssembler::call_VM_leaf(address entry_point, int num_args) { call_VM_leaf_base(entry_point, num_args); } void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1) { if (c_rarg0 != arg_1) { movq(c_rarg0, arg_1); } call_VM_leaf(entry_point, 1); } void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1, Register arg_2) { assert(c_rarg0 != arg_2, "smashed argument"); assert(c_rarg1 != arg_1, "smashed argument"); if (c_rarg0 != arg_1) { movq(c_rarg0, arg_1); } if (c_rarg1 != arg_2) { movq(c_rarg1, arg_2); } call_VM_leaf(entry_point, 2); } void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3) { assert(c_rarg0 != arg_2, "smashed argument"); assert(c_rarg0 != arg_3, "smashed argument"); assert(c_rarg1 != arg_1, "smashed argument"); assert(c_rarg1 != arg_3, "smashed argument"); assert(c_rarg2 != arg_1, "smashed argument"); assert(c_rarg2 != arg_2, "smashed argument"); if (c_rarg0 != arg_1) { movq(c_rarg0, arg_1); } if (c_rarg1 != arg_2) { movq(c_rarg1, arg_2); } if (c_rarg2 != arg_3) { movq(c_rarg2, arg_3); } call_VM_leaf(entry_point, 3); } // Calls to C land // // When entering C land, the rbp & rsp of the last Java frame have to // be recorded in the (thread-local) JavaThread object. When leaving C // land, the last Java fp has to be reset to 0. This is required to // allow proper stack traversal. void MacroAssembler::store_check(Register obj) { // Does a store check for the oop in register obj. The content of // register obj is destroyed afterwards. store_check_part_1(obj); store_check_part_2(obj); } void MacroAssembler::store_check(Register obj, Address dst) { store_check(obj); } // split the store check operation so that other instructions can be // scheduled inbetween void MacroAssembler::store_check_part_1(Register obj) { BarrierSet* bs = Universe::heap()->barrier_set(); assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind"); shrq(obj, CardTableModRefBS::card_shift); } void MacroAssembler::store_check_part_2(Register obj) { BarrierSet* bs = Universe::heap()->barrier_set(); assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind"); CardTableModRefBS* ct = (CardTableModRefBS*)bs; assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code"); // The calculation for byte_map_base is as follows: // byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift); // So this essentially converts an address to a displacement and // it will never need to be relocated. On 64bit however the value may be too // large for a 32bit displacement intptr_t disp = (intptr_t) ct->byte_map_base; if (is_simm32(disp)) { Address cardtable(noreg, obj, Address::times_1, disp); movb(cardtable, 0); } else { // By doing it as an ExternalAddress disp could be converted to a rip-relative // displacement and done in a single instruction given favorable mapping and // a smarter version of as_Address. Worst case it is two instructions which // is no worse off then loading disp into a register and doing as a simple // Address() as above. // We can't do as ExternalAddress as the only style since if disp == 0 we'll // assert since NULL isn't acceptable in a reloci (see 6644928). In any case // in some cases we'll get a single instruction version. ExternalAddress cardtable((address)disp); Address index(noreg, obj, Address::times_1); movb(as_Address(ArrayAddress(cardtable, index)), 0); } } void MacroAssembler::c2bool(Register x) { // implements x == 0 ? 0 : 1 // note: must only look at least-significant byte of x // since C-style booleans are stored in one byte // only! (was bug) andl(x, 0xFF); setb(Assembler::notZero, x); } int MacroAssembler::corrected_idivl(Register reg) { // Full implementation of Java idiv and irem; checks for special // case as described in JVM spec., p.243 & p.271. The function // returns the (pc) offset of the idivl instruction - may be needed // for implicit exceptions. // // normal case special case // // input : eax: dividend min_int // reg: divisor (may not be eax/edx) -1 // // output: eax: quotient (= eax idiv reg) min_int // edx: remainder (= eax irem reg) 0 assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register"); const int min_int = 0x80000000; Label normal_case, special_case; // check for special case cmpl(rax, min_int); jcc(Assembler::notEqual, normal_case); xorl(rdx, rdx); // prepare edx for possible special case (where // remainder = 0) cmpl(reg, -1); jcc(Assembler::equal, special_case); // handle normal case bind(normal_case); cdql(); int idivl_offset = offset(); idivl(reg); // normal and special case exit bind(special_case); return idivl_offset; } int MacroAssembler::corrected_idivq(Register reg) { // Full implementation of Java ldiv and lrem; checks for special // case as described in JVM spec., p.243 & p.271. The function // returns the (pc) offset of the idivl instruction - may be needed // for implicit exceptions. // // normal case special case // // input : rax: dividend min_long // reg: divisor (may not be eax/edx) -1 // // output: rax: quotient (= rax idiv reg) min_long // rdx: remainder (= rax irem reg) 0 assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register"); static const int64_t min_long = 0x8000000000000000; Label normal_case, special_case; // check for special case cmp64(rax, ExternalAddress((address) &min_long)); jcc(Assembler::notEqual, normal_case); xorl(rdx, rdx); // prepare rdx for possible special case (where // remainder = 0) cmpq(reg, -1); jcc(Assembler::equal, special_case); // handle normal case bind(normal_case); cdqq(); int idivq_offset = offset(); idivq(reg); // normal and special case exit bind(special_case); return idivq_offset; } void MacroAssembler::push_IU_state() { pushfq(); // Push flags first because pushaq kills them subq(rsp, 8); // Make sure rsp stays 16-byte aligned pushaq(); } void MacroAssembler::pop_IU_state() { popaq(); addq(rsp, 8); popfq(); } void MacroAssembler::push_FPU_state() { subq(rsp, FPUStateSizeInWords * wordSize); fxsave(Address(rsp, 0)); } void MacroAssembler::pop_FPU_state() { fxrstor(Address(rsp, 0)); addq(rsp, FPUStateSizeInWords * wordSize); } // Save Integer and Float state // Warning: Stack must be 16 byte aligned void MacroAssembler::push_CPU_state() { push_IU_state(); push_FPU_state(); } void MacroAssembler::pop_CPU_state() { pop_FPU_state(); pop_IU_state(); } void MacroAssembler::sign_extend_short(Register reg) { movswl(reg, reg); } void MacroAssembler::sign_extend_byte(Register reg) { movsbl(reg, reg); } void MacroAssembler::division_with_shift(Register reg, int shift_value) { assert (shift_value > 0, "illegal shift value"); Label _is_positive; testl (reg, reg); jcc (Assembler::positive, _is_positive); int offset = (1 << shift_value) - 1 ; if (offset == 1) { incrementl(reg); } else { addl(reg, offset); } bind (_is_positive); sarl(reg, shift_value); } void MacroAssembler::round_to_l(Register reg, int modulus) { addl(reg, modulus - 1); andl(reg, -modulus); } void MacroAssembler::round_to_q(Register reg, int modulus) { addq(reg, modulus - 1); andq(reg, -modulus); } void MacroAssembler::verify_oop(Register reg, const char* s) { if (!VerifyOops) { return; } // Pass register number to verify_oop_subroutine char* b = new char[strlen(s) + 50]; sprintf(b, "verify_oop: %s: %s", reg->name(), s); pushq(rax); // save rax, restored by receiver // pass args on stack, only touch rax pushq(reg); // avoid using pushptr, as it modifies scratch registers // and our contract is not to modify anything ExternalAddress buffer((address)b); movptr(rax, buffer.addr()); pushq(rax); // call indirectly to solve generation ordering problem movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address())); call(rax); // no alignment requirement // everything popped by receiver } void MacroAssembler::verify_oop_addr(Address addr, const char* s) { if (!VerifyOops) return; // Pass register number to verify_oop_subroutine char* b = new char[strlen(s) + 50]; sprintf(b, "verify_oop_addr: %s", s); pushq(rax); // save rax movq(addr, rax); pushq(rax); // pass register argument // avoid using pushptr, as it modifies scratch registers // and our contract is not to modify anything ExternalAddress buffer((address)b); movptr(rax, buffer.addr()); pushq(rax); // call indirectly to solve generation ordering problem movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address())); call(rax); // no alignment requirement // everything popped by receiver } void MacroAssembler::stop(const char* msg) { address rip = pc(); pushaq(); // get regs on stack lea(c_rarg0, ExternalAddress((address) msg)); lea(c_rarg1, InternalAddress(rip)); movq(c_rarg2, rsp); // pass pointer to regs array andq(rsp, -16); // align stack as required by ABI call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug))); hlt(); } void MacroAssembler::warn(const char* msg) { pushq(r12); movq(r12, rsp); andq(rsp, -16); // align stack as required by push_CPU_state and call push_CPU_state(); // keeps alignment at 16 bytes lea(c_rarg0, ExternalAddress((address) msg)); call_VM_leaf(CAST_FROM_FN_PTR(address, warning), c_rarg0); pop_CPU_state(); movq(rsp, r12); popq(r12); } #ifndef PRODUCT extern "C" void findpc(intptr_t x); #endif void MacroAssembler::debug(char* msg, int64_t pc, int64_t regs[]) { // In order to get locks to work, we need to fake a in_VM state if (ShowMessageBoxOnError ) { JavaThread* thread = JavaThread::current(); JavaThreadState saved_state = thread->thread_state(); thread->set_thread_state(_thread_in_vm); #ifndef PRODUCT if (CountBytecodes || TraceBytecodes || StopInterpreterAt) { ttyLocker ttyl; BytecodeCounter::print(); } #endif // To see where a verify_oop failed, get $ebx+40/X for this frame. // XXX correct this offset for amd64 // This is the value of eip which points to where verify_oop will return. if (os::message_box(msg, "Execution stopped, print registers?")) { ttyLocker ttyl; tty->print_cr("rip = 0x%016lx", pc); #ifndef PRODUCT tty->cr(); findpc(pc); tty->cr(); #endif tty->print_cr("rax = 0x%016lx", regs[15]); tty->print_cr("rbx = 0x%016lx", regs[12]); tty->print_cr("rcx = 0x%016lx", regs[14]); tty->print_cr("rdx = 0x%016lx", regs[13]); tty->print_cr("rdi = 0x%016lx", regs[8]); tty->print_cr("rsi = 0x%016lx", regs[9]); tty->print_cr("rbp = 0x%016lx", regs[10]); tty->print_cr("rsp = 0x%016lx", regs[11]); tty->print_cr("r8 = 0x%016lx", regs[7]); tty->print_cr("r9 = 0x%016lx", regs[6]); tty->print_cr("r10 = 0x%016lx", regs[5]); tty->print_cr("r11 = 0x%016lx", regs[4]); tty->print_cr("r12 = 0x%016lx", regs[3]); tty->print_cr("r13 = 0x%016lx", regs[2]); tty->print_cr("r14 = 0x%016lx", regs[1]); tty->print_cr("r15 = 0x%016lx", regs[0]); BREAKPOINT; } ThreadStateTransition::transition(thread, _thread_in_vm, saved_state); } else { ttyLocker ttyl; ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg); } } void MacroAssembler::os_breakpoint() { // instead of directly emitting a breakpoint, call os:breakpoint for // better debugability // This shouldn't need alignment, it's an empty function call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint))); } // Write serialization page so VM thread can do a pseudo remote membar. // We use the current thread pointer to calculate a thread specific // offset to write to within the page. This minimizes bus traffic // due to cache line collision. void MacroAssembler::serialize_memory(Register thread, Register tmp) { movl(tmp, thread); shrl(tmp, os::get_serialize_page_shift_count()); andl(tmp, (os::vm_page_size() - sizeof(int))); Address index(noreg, tmp, Address::times_1); ExternalAddress page(os::get_memory_serialize_page()); movptr(ArrayAddress(page, index), tmp); } void MacroAssembler::verify_tlab() { #ifdef ASSERT if (UseTLAB) { Label next, ok; Register t1 = rsi; pushq(t1); movq(t1, Address(r15_thread, in_bytes(JavaThread::tlab_top_offset()))); cmpq(t1, Address(r15_thread, in_bytes(JavaThread::tlab_start_offset()))); jcc(Assembler::aboveEqual, next); stop("assert(top >= start)"); should_not_reach_here(); bind(next); movq(t1, Address(r15_thread, in_bytes(JavaThread::tlab_end_offset()))); cmpq(t1, Address(r15_thread, in_bytes(JavaThread::tlab_top_offset()))); jcc(Assembler::aboveEqual, ok); stop("assert(top <= end)"); should_not_reach_here(); bind(ok); popq(t1); } #endif } // Defines obj, preserves var_size_in_bytes void MacroAssembler::eden_allocate(Register obj, Register var_size_in_bytes, int con_size_in_bytes, Register t1, Label& slow_case) { assert(obj == rax, "obj must be in rax for cmpxchg"); assert_different_registers(obj, var_size_in_bytes, t1); Register end = t1; Label retry; bind(retry); ExternalAddress heap_top((address) Universe::heap()->top_addr()); movptr(obj, heap_top); if (var_size_in_bytes == noreg) { leaq(end, Address(obj, con_size_in_bytes)); } else { leaq(end, Address(obj, var_size_in_bytes, Address::times_1)); } // if end < obj then we wrapped around => object too long => slow case cmpq(end, obj); jcc(Assembler::below, slow_case); cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr())); jcc(Assembler::above, slow_case); // Compare obj with the top addr, and if still equal, store the new // top addr in end at the address of the top addr pointer. Sets ZF // if was equal, and clears it otherwise. Use lock prefix for // atomicity on MPs. if (os::is_MP()) { lock(); } cmpxchgptr(end, heap_top); // if someone beat us on the allocation, try again, otherwise continue jcc(Assembler::notEqual, retry); } // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes. void MacroAssembler::tlab_allocate(Register obj, Register var_size_in_bytes, int con_size_in_bytes, Register t1, Register t2, Label& slow_case) { assert_different_registers(obj, t1, t2); assert_different_registers(obj, var_size_in_bytes, t1); Register end = t2; verify_tlab(); movq(obj, Address(r15_thread, JavaThread::tlab_top_offset())); if (var_size_in_bytes == noreg) { leaq(end, Address(obj, con_size_in_bytes)); } else { leaq(end, Address(obj, var_size_in_bytes, Address::times_1)); } cmpq(end, Address(r15_thread, JavaThread::tlab_end_offset())); jcc(Assembler::above, slow_case); // update the tlab top pointer movq(Address(r15_thread, JavaThread::tlab_top_offset()), end); // recover var_size_in_bytes if necessary if (var_size_in_bytes == end) { subq(var_size_in_bytes, obj); } verify_tlab(); } // Preserves rbx and rdx. void MacroAssembler::tlab_refill(Label& retry, Label& try_eden, Label& slow_case) { Register top = rax; Register t1 = rcx; Register t2 = rsi; Register t3 = r10; Register thread_reg = r15_thread; assert_different_registers(top, thread_reg, t1, t2, t3, /* preserve: */ rbx, rdx); Label do_refill, discard_tlab; if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) { // No allocation in the shared eden. jmp(slow_case); } movq(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset()))); movq(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset()))); // calculate amount of free space subq(t1, top); shrq(t1, LogHeapWordSize); // Retain tlab and allocate object in shared space if // the amount free in the tlab is too large to discard. cmpq(t1, Address(thread_reg, // size_t in_bytes(JavaThread::tlab_refill_waste_limit_offset()))); jcc(Assembler::lessEqual, discard_tlab); // Retain mov64(t2, ThreadLocalAllocBuffer::refill_waste_limit_increment()); addq(Address(thread_reg, // size_t in_bytes(JavaThread::tlab_refill_waste_limit_offset())), t2); if (TLABStats) { // increment number of slow_allocations addl(Address(thread_reg, // unsigned int in_bytes(JavaThread::tlab_slow_allocations_offset())), 1); } jmp(try_eden); bind(discard_tlab); if (TLABStats) { // increment number of refills addl(Address(thread_reg, // unsigned int in_bytes(JavaThread::tlab_number_of_refills_offset())), 1); // accumulate wastage -- t1 is amount free in tlab addl(Address(thread_reg, // unsigned int in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1); } // if tlab is currently allocated (top or end != null) then // fill [top, end + alignment_reserve) with array object testq(top, top); jcc(Assembler::zero, do_refill); // set up the mark word mov64(t3, (int64_t) markOopDesc::prototype()->copy_set_hash(0x2)); movq(Address(top, oopDesc::mark_offset_in_bytes()), t3); // set the length to the remaining space subq(t1, typeArrayOopDesc::header_size(T_INT)); addq(t1, (int)ThreadLocalAllocBuffer::alignment_reserve()); shlq(t1, log2_intptr(HeapWordSize / sizeof(jint))); movq(Address(top, arrayOopDesc::length_offset_in_bytes()), t1); // set klass to intArrayKlass movptr(t1, ExternalAddress((address) Universe::intArrayKlassObj_addr())); store_klass(top, t1); // refill the tlab with an eden allocation bind(do_refill); movq(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset()))); shlq(t1, LogHeapWordSize); // add object_size ?? eden_allocate(top, t1, 0, t2, slow_case); // Check that t1 was preserved in eden_allocate. #ifdef ASSERT if (UseTLAB) { Label ok; Register tsize = rsi; assert_different_registers(tsize, thread_reg, t1); pushq(tsize); movq(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset()))); shlq(tsize, LogHeapWordSize); cmpq(t1, tsize); jcc(Assembler::equal, ok); stop("assert(t1 != tlab size)"); should_not_reach_here(); bind(ok); popq(tsize); } #endif movq(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top); movq(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top); addq(top, t1); subq(top, (int)ThreadLocalAllocBuffer::alignment_reserve_in_bytes()); movq(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top); verify_tlab(); jmp(retry); } int MacroAssembler::biased_locking_enter(Register lock_reg, Register obj_reg, Register swap_reg, Register tmp_reg, bool swap_reg_contains_mark, Label& done, Label* slow_case, BiasedLockingCounters* counters) { assert(UseBiasedLocking, "why call this otherwise?"); assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq"); assert(tmp_reg != noreg, "tmp_reg must be supplied"); assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg); assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout"); Address mark_addr (obj_reg, oopDesc::mark_offset_in_bytes()); Address saved_mark_addr(lock_reg, 0); if (PrintBiasedLockingStatistics && counters == NULL) counters = BiasedLocking::counters(); // Biased locking // See whether the lock is currently biased toward our thread and // whether the epoch is still valid // Note that the runtime guarantees sufficient alignment of JavaThread // pointers to allow age to be placed into low bits // First check to see whether biasing is even enabled for this object Label cas_label; int null_check_offset = -1; if (!swap_reg_contains_mark) { null_check_offset = offset(); movq(swap_reg, mark_addr); } movq(tmp_reg, swap_reg); andq(tmp_reg, markOopDesc::biased_lock_mask_in_place); cmpq(tmp_reg, markOopDesc::biased_lock_pattern); jcc(Assembler::notEqual, cas_label); // The bias pattern is present in the object's header. Need to check // whether the bias owner and the epoch are both still current. load_klass(tmp_reg, obj_reg); movq(tmp_reg, Address(tmp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes())); orq(tmp_reg, r15_thread); xorq(tmp_reg, swap_reg); andq(tmp_reg, ~((int) markOopDesc::age_mask_in_place)); if (counters != NULL) { cond_inc32(Assembler::zero, ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr())); } jcc(Assembler::equal, done); Label try_revoke_bias; Label try_rebias; // At this point we know that the header has the bias pattern and // that we are not the bias owner in the current epoch. We need to // figure out more details about the state of the header in order to // know what operations can be legally performed on the object's // header. // If the low three bits in the xor result aren't clear, that means // the prototype header is no longer biased and we have to revoke // the bias on this object. testq(tmp_reg, markOopDesc::biased_lock_mask_in_place); jcc(Assembler::notZero, try_revoke_bias); // Biasing is still enabled for this data type. See whether the // epoch of the current bias is still valid, meaning that the epoch // bits of the mark word are equal to the epoch bits of the // prototype header. (Note that the prototype header's epoch bits // only change at a safepoint.) If not, attempt to rebias the object // toward the current thread. Note that we must be absolutely sure // that the current epoch is invalid in order to do this because // otherwise the manipulations it performs on the mark word are // illegal. testq(tmp_reg, markOopDesc::epoch_mask_in_place); jcc(Assembler::notZero, try_rebias); // The epoch of the current bias is still valid but we know nothing // about the owner; it might be set or it might be clear. Try to // acquire the bias of the object using an atomic operation. If this // fails we will go in to the runtime to revoke the object's bias. // Note that we first construct the presumed unbiased header so we // don't accidentally blow away another thread's valid bias. andq(swap_reg, markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place); movq(tmp_reg, swap_reg); orq(tmp_reg, r15_thread); if (os::is_MP()) { lock(); } cmpxchgq(tmp_reg, Address(obj_reg, 0)); // If the biasing toward our thread failed, this means that // another thread succeeded in biasing it toward itself and we // need to revoke that bias. The revocation will occur in the // interpreter runtime in the slow case. if (counters != NULL) { cond_inc32(Assembler::zero, ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr())); } if (slow_case != NULL) { jcc(Assembler::notZero, *slow_case); } jmp(done); bind(try_rebias); // At this point we know the epoch has expired, meaning that the // current "bias owner", if any, is actually invalid. Under these // circumstances _only_, we are allowed to use the current header's // value as the comparison value when doing the cas to acquire the // bias in the current epoch. In other words, we allow transfer of // the bias from one thread to another directly in this situation. // // FIXME: due to a lack of registers we currently blow away the age // bits in this situation. Should attempt to preserve them. load_klass(tmp_reg, obj_reg); movq(tmp_reg, Address(tmp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes())); orq(tmp_reg, r15_thread); if (os::is_MP()) { lock(); } cmpxchgq(tmp_reg, Address(obj_reg, 0)); // If the biasing toward our thread failed, then another thread // succeeded in biasing it toward itself and we need to revoke that // bias. The revocation will occur in the runtime in the slow case. if (counters != NULL) { cond_inc32(Assembler::zero, ExternalAddress((address) counters->rebiased_lock_entry_count_addr())); } if (slow_case != NULL) { jcc(Assembler::notZero, *slow_case); } jmp(done); bind(try_revoke_bias); // The prototype mark in the klass doesn't have the bias bit set any // more, indicating that objects of this data type are not supposed // to be biased any more. We are going to try to reset the mark of // this object to the prototype value and fall through to the // CAS-based locking scheme. Note that if our CAS fails, it means // that another thread raced us for the privilege of revoking the // bias of this particular object, so it's okay to continue in the // normal locking code. // // FIXME: due to a lack of registers we currently blow away the age // bits in this situation. Should attempt to preserve them. load_klass(tmp_reg, obj_reg); movq(tmp_reg, Address(tmp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes())); if (os::is_MP()) { lock(); } cmpxchgq(tmp_reg, Address(obj_reg, 0)); // Fall through to the normal CAS-based lock, because no matter what // the result of the above CAS, some thread must have succeeded in // removing the bias bit from the object's header. if (counters != NULL) { cond_inc32(Assembler::zero, ExternalAddress((address) counters->revoked_lock_entry_count_addr())); } bind(cas_label); return null_check_offset; } void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) { assert(UseBiasedLocking, "why call this otherwise?"); // Check for biased locking unlock case, which is a no-op // Note: we do not have to check the thread ID for two reasons. // First, the interpreter checks for IllegalMonitorStateException at // a higher level. Second, if the bias was revoked while we held the // lock, the object could not be rebiased toward another thread, so // the bias bit would be clear. movq(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); andq(temp_reg, markOopDesc::biased_lock_mask_in_place); cmpq(temp_reg, markOopDesc::biased_lock_pattern); jcc(Assembler::equal, done); } void MacroAssembler::load_klass(Register dst, Register src) { if (UseCompressedOops) { movl(dst, Address(src, oopDesc::klass_offset_in_bytes())); decode_heap_oop_not_null(dst); } else { movq(dst, Address(src, oopDesc::klass_offset_in_bytes())); } } void MacroAssembler::store_klass(Register dst, Register src) { if (UseCompressedOops) { encode_heap_oop_not_null(src); // zero the entire klass field first as the gap needs to be zeroed too. movptr(Address(dst, oopDesc::klass_offset_in_bytes()), NULL_WORD); movl(Address(dst, oopDesc::klass_offset_in_bytes()), src); } else { movq(Address(dst, oopDesc::klass_offset_in_bytes()), src); } } void MacroAssembler::load_heap_oop(Register dst, Address src) { if (UseCompressedOops) { movl(dst, src); decode_heap_oop(dst); } else { movq(dst, src); } } void MacroAssembler::store_heap_oop(Address dst, Register src) { if (UseCompressedOops) { assert(!dst.uses(src), "not enough registers"); encode_heap_oop(src); movl(dst, src); } else { movq(dst, src); } } // Algorithm must match oop.inline.hpp encode_heap_oop. void MacroAssembler::encode_heap_oop(Register r) { assert (UseCompressedOops, "should be compressed"); #ifdef ASSERT Label ok; pushq(rscratch1); // cmpptr trashes rscratch1 cmpptr(r12_heapbase, ExternalAddress((address)Universe::heap_base_addr())); jcc(Assembler::equal, ok); stop("MacroAssembler::encode_heap_oop: heap base corrupted?"); bind(ok); popq(rscratch1); #endif verify_oop(r, "broken oop in encode_heap_oop"); testq(r, r); cmovq(Assembler::equal, r, r12_heapbase); subq(r, r12_heapbase); shrq(r, LogMinObjAlignmentInBytes); } void MacroAssembler::encode_heap_oop_not_null(Register r) { assert (UseCompressedOops, "should be compressed"); #ifdef ASSERT Label ok; testq(r, r); jcc(Assembler::notEqual, ok); stop("null oop passed to encode_heap_oop_not_null"); bind(ok); #endif verify_oop(r, "broken oop in encode_heap_oop_not_null"); subq(r, r12_heapbase); shrq(r, LogMinObjAlignmentInBytes); } void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) { assert (UseCompressedOops, "should be compressed"); #ifdef ASSERT Label ok; testq(src, src); jcc(Assembler::notEqual, ok); stop("null oop passed to encode_heap_oop_not_null2"); bind(ok); #endif verify_oop(src, "broken oop in encode_heap_oop_not_null2"); if (dst != src) { movq(dst, src); } subq(dst, r12_heapbase); shrq(dst, LogMinObjAlignmentInBytes); } void MacroAssembler::decode_heap_oop(Register r) { assert (UseCompressedOops, "should be compressed"); #ifdef ASSERT Label ok; pushq(rscratch1); cmpptr(r12_heapbase, ExternalAddress((address)Universe::heap_base_addr())); jcc(Assembler::equal, ok); stop("MacroAssembler::decode_heap_oop: heap base corrupted?"); bind(ok); popq(rscratch1); #endif Label done; shlq(r, LogMinObjAlignmentInBytes); jccb(Assembler::equal, done); addq(r, r12_heapbase); #if 0 // alternate decoding probably a wash. testq(r, r); jccb(Assembler::equal, done); leaq(r, Address(r12_heapbase, r, Address::times_8, 0)); #endif bind(done); verify_oop(r, "broken oop in decode_heap_oop"); } void MacroAssembler::decode_heap_oop_not_null(Register r) { assert (UseCompressedOops, "should only be used for compressed headers"); // Cannot assert, unverified entry point counts instructions (see .ad file) // vtableStubs also counts instructions in pd_code_size_limit. assert(Address::times_8 == LogMinObjAlignmentInBytes, "decode alg wrong"); leaq(r, Address(r12_heapbase, r, Address::times_8, 0)); } void MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) { assert (UseCompressedOops, "should only be used for compressed headers"); // Cannot assert, unverified entry point counts instructions (see .ad file) // vtableStubs also counts instructions in pd_code_size_limit. assert(Address::times_8 == LogMinObjAlignmentInBytes, "decode alg wrong"); leaq(dst, Address(r12_heapbase, src, Address::times_8, 0)); } Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) { switch (cond) { // Note some conditions are synonyms for others case Assembler::zero: return Assembler::notZero; case Assembler::notZero: return Assembler::zero; case Assembler::less: return Assembler::greaterEqual; case Assembler::lessEqual: return Assembler::greater; case Assembler::greater: return Assembler::lessEqual; case Assembler::greaterEqual: return Assembler::less; case Assembler::below: return Assembler::aboveEqual; case Assembler::belowEqual: return Assembler::above; case Assembler::above: return Assembler::belowEqual; case Assembler::aboveEqual: return Assembler::below; case Assembler::overflow: return Assembler::noOverflow; case Assembler::noOverflow: return Assembler::overflow; case Assembler::negative: return Assembler::positive; case Assembler::positive: return Assembler::negative; case Assembler::parity: return Assembler::noParity; case Assembler::noParity: return Assembler::parity; } ShouldNotReachHere(); return Assembler::overflow; } void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) { Condition negated_cond = negate_condition(cond); Label L; jcc(negated_cond, L); atomic_incl(counter_addr); bind(L); } void MacroAssembler::atomic_incl(AddressLiteral counter_addr) { pushfq(); if (os::is_MP()) lock(); incrementl(counter_addr); popfq(); } SkipIfEqual::SkipIfEqual( MacroAssembler* masm, const bool* flag_addr, bool value) { _masm = masm; _masm->cmp8(ExternalAddress((address)flag_addr), value); _masm->jcc(Assembler::equal, _label); } SkipIfEqual::~SkipIfEqual() { _masm->bind(_label); } void MacroAssembler::bang_stack_size(Register size, Register tmp) { movq(tmp, rsp); // Bang stack for total size given plus shadow page size. // Bang one page at a time because large size can bang beyond yellow and // red zones. Label loop; bind(loop); movl(Address(tmp, (-os::vm_page_size())), size ); subq(tmp, os::vm_page_size()); subl(size, os::vm_page_size()); jcc(Assembler::greater, loop); // Bang down shadow pages too. // The -1 because we already subtracted 1 page. for (int i = 0; i< StackShadowPages-1; i++) { movq(Address(tmp, (-i*os::vm_page_size())), size ); } } void MacroAssembler::reinit_heapbase() { if (UseCompressedOops) { movptr(r12_heapbase, ExternalAddress((address)Universe::heap_base_addr())); } }