/* * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "gc_implementation/parallelScavenge/objectStartArray.hpp" #include "memory/allocation.inline.hpp" #include "memory/cardTableModRefBS.hpp" #include "oops/oop.inline.hpp" #include "runtime/java.hpp" #include "services/memTracker.hpp" void ObjectStartArray::initialize(MemRegion reserved_region) { // We're based on the assumption that we use the same // size blocks as the card table. assert((int)block_size == (int)CardTableModRefBS::card_size, "Sanity"); assert((int)block_size <= 512, "block_size must be less than or equal to 512"); // Calculate how much space must be reserved _reserved_region = reserved_region; size_t bytes_to_reserve = reserved_region.word_size() / block_size_in_words; assert(bytes_to_reserve > 0, "Sanity"); bytes_to_reserve = align_size_up(bytes_to_reserve, os::vm_allocation_granularity()); // Do not use large-pages for the backing store. The one large page region // will be used for the heap proper. ReservedSpace backing_store(bytes_to_reserve); if (!backing_store.is_reserved()) { vm_exit_during_initialization("Could not reserve space for ObjectStartArray"); } MemTracker::record_virtual_memory_type((address)backing_store.base(), mtGC); // We do not commit any memory initially if (!_virtual_space.initialize(backing_store, 0)) { vm_exit_during_initialization("Could not commit space for ObjectStartArray"); } _raw_base = (jbyte*)_virtual_space.low_boundary(); if (_raw_base == NULL) { vm_exit_during_initialization("Could not get raw_base address"); } MemTracker::record_virtual_memory_type((address)_raw_base, mtGC); _offset_base = _raw_base - (size_t(reserved_region.start()) >> block_shift); _covered_region.set_start(reserved_region.start()); _covered_region.set_word_size(0); _blocks_region.set_start((HeapWord*)_raw_base); _blocks_region.set_word_size(0); } void ObjectStartArray::set_covered_region(MemRegion mr) { assert(_reserved_region.contains(mr), "MemRegion outside of reserved space"); assert(_reserved_region.start() == mr.start(), "Attempt to move covered region"); HeapWord* low_bound = mr.start(); HeapWord* high_bound = mr.end(); assert((uintptr_t(low_bound) & (block_size - 1)) == 0, "heap must start at block boundary"); assert((uintptr_t(high_bound) & (block_size - 1)) == 0, "heap must end at block boundary"); size_t requested_blocks_size_in_bytes = mr.word_size() / block_size_in_words; // Only commit memory in page sized chunks requested_blocks_size_in_bytes = align_size_up(requested_blocks_size_in_bytes, os::vm_page_size()); _covered_region = mr; size_t current_blocks_size_in_bytes = _blocks_region.byte_size(); if (requested_blocks_size_in_bytes > current_blocks_size_in_bytes) { // Expand size_t expand_by = requested_blocks_size_in_bytes - current_blocks_size_in_bytes; if (!_virtual_space.expand_by(expand_by)) { vm_exit_out_of_memory(expand_by, OOM_MMAP_ERROR, "object start array expansion"); } // Clear *only* the newly allocated region memset(_blocks_region.end(), clean_block, expand_by); } if (requested_blocks_size_in_bytes < current_blocks_size_in_bytes) { // Shrink size_t shrink_by = current_blocks_size_in_bytes - requested_blocks_size_in_bytes; _virtual_space.shrink_by(shrink_by); } _blocks_region.set_word_size(requested_blocks_size_in_bytes / sizeof(HeapWord)); assert(requested_blocks_size_in_bytes % sizeof(HeapWord) == 0, "Block table not expanded in word sized increment"); assert(requested_blocks_size_in_bytes == _blocks_region.byte_size(), "Sanity"); assert(block_for_addr(low_bound) == &_raw_base[0], "Checking start of map"); assert(block_for_addr(high_bound-1) <= &_raw_base[_blocks_region.byte_size()-1], "Checking end of map"); } void ObjectStartArray::reset() { memset(_blocks_region.start(), clean_block, _blocks_region.byte_size()); } bool ObjectStartArray::object_starts_in_range(HeapWord* start_addr, HeapWord* end_addr) const { assert(start_addr <= end_addr, "range is wrong"); if (start_addr > end_addr) { return false; } jbyte* start_block = block_for_addr(start_addr); jbyte* end_block = block_for_addr(end_addr); for (jbyte* block = start_block; block <= end_block; block++) { if (*block != clean_block) { return true; } } // No object starts in this slice; verify this using // more traditional methods: Note that no object can // start before the start_addr. assert(end_addr == start_addr || object_start(end_addr - 1) <= start_addr, "Oops an object does start in this slice?"); return false; }