/* * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved. * Copyright 2012, 2014 SAP AG. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "asm/macroAssembler.inline.hpp" #include "compiler/disassembler.hpp" #include "gc_interface/collectedHeap.inline.hpp" #include "interpreter/interpreter.hpp" #include "memory/cardTableModRefBS.hpp" #include "memory/resourceArea.hpp" #include "prims/methodHandles.hpp" #include "runtime/biasedLocking.hpp" #include "runtime/interfaceSupport.hpp" #include "runtime/objectMonitor.hpp" #include "runtime/os.hpp" #include "runtime/sharedRuntime.hpp" #include "runtime/stubRoutines.hpp" #include "utilities/macros.hpp" #if INCLUDE_ALL_GCS #include "gc_implementation/g1/g1CollectedHeap.inline.hpp" #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp" #include "gc_implementation/g1/heapRegion.hpp" #endif // INCLUDE_ALL_GCS #ifdef PRODUCT #define BLOCK_COMMENT(str) // nothing #else #define BLOCK_COMMENT(str) block_comment(str) #endif #ifdef ASSERT // On RISC, there's no benefit to verifying instruction boundaries. bool AbstractAssembler::pd_check_instruction_mark() { return false; } #endif void MacroAssembler::ld_largeoffset_unchecked(Register d, int si31, Register a, int emit_filler_nop) { assert(Assembler::is_simm(si31, 31) && si31 >= 0, "si31 out of range"); if (Assembler::is_simm(si31, 16)) { ld(d, si31, a); if (emit_filler_nop) nop(); } else { const int hi = MacroAssembler::largeoffset_si16_si16_hi(si31); const int lo = MacroAssembler::largeoffset_si16_si16_lo(si31); addis(d, a, hi); ld(d, lo, d); } } void MacroAssembler::ld_largeoffset(Register d, int si31, Register a, int emit_filler_nop) { assert_different_registers(d, a); ld_largeoffset_unchecked(d, si31, a, emit_filler_nop); } void MacroAssembler::load_sized_value(Register dst, RegisterOrConstant offs, Register base, size_t size_in_bytes, bool is_signed) { switch (size_in_bytes) { case 8: ld(dst, offs, base); break; case 4: is_signed ? lwa(dst, offs, base) : lwz(dst, offs, base); break; case 2: is_signed ? lha(dst, offs, base) : lhz(dst, offs, base); break; case 1: lbz(dst, offs, base); if (is_signed) extsb(dst, dst); break; // lba doesn't exist :( default: ShouldNotReachHere(); } } void MacroAssembler::store_sized_value(Register dst, RegisterOrConstant offs, Register base, size_t size_in_bytes) { switch (size_in_bytes) { case 8: std(dst, offs, base); break; case 4: stw(dst, offs, base); break; case 2: sth(dst, offs, base); break; case 1: stb(dst, offs, base); break; default: ShouldNotReachHere(); } } void MacroAssembler::align(int modulus, int max, int rem) { int padding = (rem + modulus - (offset() % modulus)) % modulus; if (padding > max) return; for (int c = (padding >> 2); c > 0; --c) { nop(); } } // Issue instructions that calculate given TOC from global TOC. void MacroAssembler::calculate_address_from_global_toc(Register dst, address addr, bool hi16, bool lo16, bool add_relocation, bool emit_dummy_addr) { int offset = -1; if (emit_dummy_addr) { offset = -128; // dummy address } else if (addr != (address)(intptr_t)-1) { offset = MacroAssembler::offset_to_global_toc(addr); } if (hi16) { addis(dst, R29, MacroAssembler::largeoffset_si16_si16_hi(offset)); } if (lo16) { if (add_relocation) { // Relocate at the addi to avoid confusion with a load from the method's TOC. relocate(internal_word_Relocation::spec(addr)); } addi(dst, dst, MacroAssembler::largeoffset_si16_si16_lo(offset)); } } int MacroAssembler::patch_calculate_address_from_global_toc_at(address a, address bound, address addr) { const int offset = MacroAssembler::offset_to_global_toc(addr); const address inst2_addr = a; const int inst2 = *(int *)inst2_addr; // The relocation points to the second instruction, the addi, // and the addi reads and writes the same register dst. const int dst = inv_rt_field(inst2); assert(is_addi(inst2) && inv_ra_field(inst2) == dst, "must be addi reading and writing dst"); // Now, find the preceding addis which writes to dst. int inst1 = 0; address inst1_addr = inst2_addr - BytesPerInstWord; while (inst1_addr >= bound) { inst1 = *(int *) inst1_addr; if (is_addis(inst1) && inv_rt_field(inst1) == dst) { // Stop, found the addis which writes dst. break; } inst1_addr -= BytesPerInstWord; } assert(is_addis(inst1) && inv_ra_field(inst1) == 29 /* R29 */, "source must be global TOC"); set_imm((int *)inst1_addr, MacroAssembler::largeoffset_si16_si16_hi(offset)); set_imm((int *)inst2_addr, MacroAssembler::largeoffset_si16_si16_lo(offset)); return (int)((intptr_t)addr - (intptr_t)inst1_addr); } address MacroAssembler::get_address_of_calculate_address_from_global_toc_at(address a, address bound) { const address inst2_addr = a; const int inst2 = *(int *)inst2_addr; // The relocation points to the second instruction, the addi, // and the addi reads and writes the same register dst. const int dst = inv_rt_field(inst2); assert(is_addi(inst2) && inv_ra_field(inst2) == dst, "must be addi reading and writing dst"); // Now, find the preceding addis which writes to dst. int inst1 = 0; address inst1_addr = inst2_addr - BytesPerInstWord; while (inst1_addr >= bound) { inst1 = *(int *) inst1_addr; if (is_addis(inst1) && inv_rt_field(inst1) == dst) { // stop, found the addis which writes dst break; } inst1_addr -= BytesPerInstWord; } assert(is_addis(inst1) && inv_ra_field(inst1) == 29 /* R29 */, "source must be global TOC"); int offset = (get_imm(inst1_addr, 0) << 16) + get_imm(inst2_addr, 0); // -1 is a special case if (offset == -1) { return (address)(intptr_t)-1; } else { return global_toc() + offset; } } #ifdef _LP64 // Patch compressed oops or klass constants. // Assembler sequence is // 1) compressed oops: // lis rx = const.hi // ori rx = rx | const.lo // 2) compressed klass: // lis rx = const.hi // clrldi rx = rx & 0xFFFFffff // clearMS32b, optional // ori rx = rx | const.lo // Clrldi will be passed by. int MacroAssembler::patch_set_narrow_oop(address a, address bound, narrowOop data) { assert(UseCompressedOops, "Should only patch compressed oops"); const address inst2_addr = a; const int inst2 = *(int *)inst2_addr; // The relocation points to the second instruction, the ori, // and the ori reads and writes the same register dst. const int dst = inv_rta_field(inst2); assert(is_ori(inst2) && inv_rs_field(inst2) == dst, "must be ori reading and writing dst"); // Now, find the preceding addis which writes to dst. int inst1 = 0; address inst1_addr = inst2_addr - BytesPerInstWord; bool inst1_found = false; while (inst1_addr >= bound) { inst1 = *(int *)inst1_addr; if (is_lis(inst1) && inv_rs_field(inst1) == dst) { inst1_found = true; break; } inst1_addr -= BytesPerInstWord; } assert(inst1_found, "inst is not lis"); int xc = (data >> 16) & 0xffff; int xd = (data >> 0) & 0xffff; set_imm((int *)inst1_addr, (short)(xc)); // see enc_load_con_narrow_hi/_lo set_imm((int *)inst2_addr, (xd)); // unsigned int return (int)((intptr_t)inst2_addr - (intptr_t)inst1_addr); } // Get compressed oop or klass constant. narrowOop MacroAssembler::get_narrow_oop(address a, address bound) { assert(UseCompressedOops, "Should only patch compressed oops"); const address inst2_addr = a; const int inst2 = *(int *)inst2_addr; // The relocation points to the second instruction, the ori, // and the ori reads and writes the same register dst. const int dst = inv_rta_field(inst2); assert(is_ori(inst2) && inv_rs_field(inst2) == dst, "must be ori reading and writing dst"); // Now, find the preceding lis which writes to dst. int inst1 = 0; address inst1_addr = inst2_addr - BytesPerInstWord; bool inst1_found = false; while (inst1_addr >= bound) { inst1 = *(int *) inst1_addr; if (is_lis(inst1) && inv_rs_field(inst1) == dst) { inst1_found = true; break;} inst1_addr -= BytesPerInstWord; } assert(inst1_found, "inst is not lis"); uint xl = ((unsigned int) (get_imm(inst2_addr, 0) & 0xffff)); uint xh = (((get_imm(inst1_addr, 0)) & 0xffff) << 16); return (int) (xl | xh); } #endif // _LP64 void MacroAssembler::load_const_from_method_toc(Register dst, AddressLiteral& a, Register toc) { int toc_offset = 0; // Use RelocationHolder::none for the constant pool entry, otherwise // we will end up with a failing NativeCall::verify(x) where x is // the address of the constant pool entry. // FIXME: We should insert relocation information for oops at the constant // pool entries instead of inserting it at the loads; patching of a constant // pool entry should be less expensive. address oop_address = address_constant((address)a.value(), RelocationHolder::none); // Relocate at the pc of the load. relocate(a.rspec()); toc_offset = (int)(oop_address - code()->consts()->start()); ld_largeoffset_unchecked(dst, toc_offset, toc, true); } bool MacroAssembler::is_load_const_from_method_toc_at(address a) { const address inst1_addr = a; const int inst1 = *(int *)inst1_addr; // The relocation points to the ld or the addis. return (is_ld(inst1)) || (is_addis(inst1) && inv_ra_field(inst1) != 0); } int MacroAssembler::get_offset_of_load_const_from_method_toc_at(address a) { assert(is_load_const_from_method_toc_at(a), "must be load_const_from_method_toc"); const address inst1_addr = a; const int inst1 = *(int *)inst1_addr; if (is_ld(inst1)) { return inv_d1_field(inst1); } else if (is_addis(inst1)) { const int dst = inv_rt_field(inst1); // Now, find the succeeding ld which reads and writes to dst. address inst2_addr = inst1_addr + BytesPerInstWord; int inst2 = 0; while (true) { inst2 = *(int *) inst2_addr; if (is_ld(inst2) && inv_ra_field(inst2) == dst && inv_rt_field(inst2) == dst) { // Stop, found the ld which reads and writes dst. break; } inst2_addr += BytesPerInstWord; } return (inv_d1_field(inst1) << 16) + inv_d1_field(inst2); } ShouldNotReachHere(); return 0; } // Get the constant from a `load_const' sequence. long MacroAssembler::get_const(address a) { assert(is_load_const_at(a), "not a load of a constant"); const int *p = (const int*) a; unsigned long x = (((unsigned long) (get_imm(a,0) & 0xffff)) << 48); if (is_ori(*(p+1))) { x |= (((unsigned long) (get_imm(a,1) & 0xffff)) << 32); x |= (((unsigned long) (get_imm(a,3) & 0xffff)) << 16); x |= (((unsigned long) (get_imm(a,4) & 0xffff))); } else if (is_lis(*(p+1))) { x |= (((unsigned long) (get_imm(a,2) & 0xffff)) << 32); x |= (((unsigned long) (get_imm(a,1) & 0xffff)) << 16); x |= (((unsigned long) (get_imm(a,3) & 0xffff))); } else { ShouldNotReachHere(); return (long) 0; } return (long) x; } // Patch the 64 bit constant of a `load_const' sequence. This is a low // level procedure. It neither flushes the instruction cache nor is it // mt safe. void MacroAssembler::patch_const(address a, long x) { assert(is_load_const_at(a), "not a load of a constant"); int *p = (int*) a; if (is_ori(*(p+1))) { set_imm(0 + p, (x >> 48) & 0xffff); set_imm(1 + p, (x >> 32) & 0xffff); set_imm(3 + p, (x >> 16) & 0xffff); set_imm(4 + p, x & 0xffff); } else if (is_lis(*(p+1))) { set_imm(0 + p, (x >> 48) & 0xffff); set_imm(2 + p, (x >> 32) & 0xffff); set_imm(1 + p, (x >> 16) & 0xffff); set_imm(3 + p, x & 0xffff); } else { ShouldNotReachHere(); } } AddressLiteral MacroAssembler::allocate_metadata_address(Metadata* obj) { assert(oop_recorder() != NULL, "this assembler needs a Recorder"); int index = oop_recorder()->allocate_metadata_index(obj); RelocationHolder rspec = metadata_Relocation::spec(index); return AddressLiteral((address)obj, rspec); } AddressLiteral MacroAssembler::constant_metadata_address(Metadata* obj) { assert(oop_recorder() != NULL, "this assembler needs a Recorder"); int index = oop_recorder()->find_index(obj); RelocationHolder rspec = metadata_Relocation::spec(index); return AddressLiteral((address)obj, rspec); } AddressLiteral MacroAssembler::allocate_oop_address(jobject obj) { assert(oop_recorder() != NULL, "this assembler needs an OopRecorder"); int oop_index = oop_recorder()->allocate_oop_index(obj); return AddressLiteral(address(obj), oop_Relocation::spec(oop_index)); } AddressLiteral MacroAssembler::constant_oop_address(jobject obj) { assert(oop_recorder() != NULL, "this assembler needs an OopRecorder"); int oop_index = oop_recorder()->find_index(obj); return AddressLiteral(address(obj), oop_Relocation::spec(oop_index)); } RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr, Register tmp, int offset) { intptr_t value = *delayed_value_addr; if (value != 0) { return RegisterOrConstant(value + offset); } // Load indirectly to solve generation ordering problem. // static address, no relocation int simm16_offset = load_const_optimized(tmp, delayed_value_addr, noreg, true); ld(tmp, simm16_offset, tmp); // must be aligned ((xa & 3) == 0) if (offset != 0) { addi(tmp, tmp, offset); } return RegisterOrConstant(tmp); } #ifndef PRODUCT void MacroAssembler::pd_print_patched_instruction(address branch) { Unimplemented(); // TODO: PPC port } #endif // ndef PRODUCT // Conditional far branch for destinations encodable in 24+2 bits. void MacroAssembler::bc_far(int boint, int biint, Label& dest, int optimize) { // If requested by flag optimize, relocate the bc_far as a // runtime_call and prepare for optimizing it when the code gets // relocated. if (optimize == bc_far_optimize_on_relocate) { relocate(relocInfo::runtime_call_type); } // variant 2: // // b!cxx SKIP // bxx DEST // SKIP: // const int opposite_boint = add_bhint_to_boint(opposite_bhint(inv_boint_bhint(boint)), opposite_bcond(inv_boint_bcond(boint))); // We emit two branches. // First, a conditional branch which jumps around the far branch. const address not_taken_pc = pc() + 2 * BytesPerInstWord; const address bc_pc = pc(); bc(opposite_boint, biint, not_taken_pc); const int bc_instr = *(int*)bc_pc; assert(not_taken_pc == (address)inv_bd_field(bc_instr, (intptr_t)bc_pc), "postcondition"); assert(opposite_boint == inv_bo_field(bc_instr), "postcondition"); assert(boint == add_bhint_to_boint(opposite_bhint(inv_boint_bhint(inv_bo_field(bc_instr))), opposite_bcond(inv_boint_bcond(inv_bo_field(bc_instr)))), "postcondition"); assert(biint == inv_bi_field(bc_instr), "postcondition"); // Second, an unconditional far branch which jumps to dest. // Note: target(dest) remembers the current pc (see CodeSection::target) // and returns the current pc if the label is not bound yet; when // the label gets bound, the unconditional far branch will be patched. const address target_pc = target(dest); const address b_pc = pc(); b(target_pc); assert(not_taken_pc == pc(), "postcondition"); assert(dest.is_bound() || target_pc == b_pc, "postcondition"); } bool MacroAssembler::is_bc_far_at(address instruction_addr) { return is_bc_far_variant1_at(instruction_addr) || is_bc_far_variant2_at(instruction_addr) || is_bc_far_variant3_at(instruction_addr); } address MacroAssembler::get_dest_of_bc_far_at(address instruction_addr) { if (is_bc_far_variant1_at(instruction_addr)) { const address instruction_1_addr = instruction_addr; const int instruction_1 = *(int*)instruction_1_addr; return (address)inv_bd_field(instruction_1, (intptr_t)instruction_1_addr); } else if (is_bc_far_variant2_at(instruction_addr)) { const address instruction_2_addr = instruction_addr + 4; return bxx_destination(instruction_2_addr); } else if (is_bc_far_variant3_at(instruction_addr)) { return instruction_addr + 8; } // variant 4 ??? ShouldNotReachHere(); return NULL; } void MacroAssembler::set_dest_of_bc_far_at(address instruction_addr, address dest) { if (is_bc_far_variant3_at(instruction_addr)) { // variant 3, far cond branch to the next instruction, already patched to nops: // // nop // endgroup // SKIP/DEST: // return; } // first, extract boint and biint from the current branch int boint = 0; int biint = 0; ResourceMark rm; const int code_size = 2 * BytesPerInstWord; CodeBuffer buf(instruction_addr, code_size); MacroAssembler masm(&buf); if (is_bc_far_variant2_at(instruction_addr) && dest == instruction_addr + 8) { // Far branch to next instruction: Optimize it by patching nops (produce variant 3). masm.nop(); masm.endgroup(); } else { if (is_bc_far_variant1_at(instruction_addr)) { // variant 1, the 1st instruction contains the destination address: // // bcxx DEST // endgroup // const int instruction_1 = *(int*)(instruction_addr); boint = inv_bo_field(instruction_1); biint = inv_bi_field(instruction_1); } else if (is_bc_far_variant2_at(instruction_addr)) { // variant 2, the 2nd instruction contains the destination address: // // b!cxx SKIP // bxx DEST // SKIP: // const int instruction_1 = *(int*)(instruction_addr); boint = add_bhint_to_boint(opposite_bhint(inv_boint_bhint(inv_bo_field(instruction_1))), opposite_bcond(inv_boint_bcond(inv_bo_field(instruction_1)))); biint = inv_bi_field(instruction_1); } else { // variant 4??? ShouldNotReachHere(); } // second, set the new branch destination and optimize the code if (dest != instruction_addr + 4 && // the bc_far is still unbound! masm.is_within_range_of_bcxx(dest, instruction_addr)) { // variant 1: // // bcxx DEST // endgroup // masm.bc(boint, biint, dest); masm.endgroup(); } else { // variant 2: // // b!cxx SKIP // bxx DEST // SKIP: // const int opposite_boint = add_bhint_to_boint(opposite_bhint(inv_boint_bhint(boint)), opposite_bcond(inv_boint_bcond(boint))); const address not_taken_pc = masm.pc() + 2 * BytesPerInstWord; masm.bc(opposite_boint, biint, not_taken_pc); masm.b(dest); } } ICache::ppc64_flush_icache_bytes(instruction_addr, code_size); } // Emit a NOT mt-safe patchable 64 bit absolute call/jump. void MacroAssembler::bxx64_patchable(address dest, relocInfo::relocType rt, bool link) { // get current pc uint64_t start_pc = (uint64_t) pc(); const address pc_of_bl = (address) (start_pc + (6*BytesPerInstWord)); // bl is last const address pc_of_b = (address) (start_pc + (0*BytesPerInstWord)); // b is first // relocate here if (rt != relocInfo::none) { relocate(rt); } if ( ReoptimizeCallSequences && (( link && is_within_range_of_b(dest, pc_of_bl)) || (!link && is_within_range_of_b(dest, pc_of_b)))) { // variant 2: // Emit an optimized, pc-relative call/jump. if (link) { // some padding nop(); nop(); nop(); nop(); nop(); nop(); // do the call assert(pc() == pc_of_bl, "just checking"); bl(dest, relocInfo::none); } else { // do the jump assert(pc() == pc_of_b, "just checking"); b(dest, relocInfo::none); // some padding nop(); nop(); nop(); nop(); nop(); nop(); } // Assert that we can identify the emitted call/jump. assert(is_bxx64_patchable_variant2_at((address)start_pc, link), "can't identify emitted call"); } else { // variant 1: #if defined(ABI_ELFv2) nop(); calculate_address_from_global_toc(R12, dest, true, true, false); mtctr(R12); nop(); nop(); #else mr(R0, R11); // spill R11 -> R0. // Load the destination address into CTR, // calculate destination relative to global toc. calculate_address_from_global_toc(R11, dest, true, true, false); mtctr(R11); mr(R11, R0); // spill R11 <- R0. nop(); #endif // do the call/jump if (link) { bctrl(); } else{ bctr(); } // Assert that we can identify the emitted call/jump. assert(is_bxx64_patchable_variant1b_at((address)start_pc, link), "can't identify emitted call"); } // Assert that we can identify the emitted call/jump. assert(is_bxx64_patchable_at((address)start_pc, link), "can't identify emitted call"); assert(get_dest_of_bxx64_patchable_at((address)start_pc, link) == dest, "wrong encoding of dest address"); } // Identify a bxx64_patchable instruction. bool MacroAssembler::is_bxx64_patchable_at(address instruction_addr, bool link) { return is_bxx64_patchable_variant1b_at(instruction_addr, link) //|| is_bxx64_patchable_variant1_at(instruction_addr, link) || is_bxx64_patchable_variant2_at(instruction_addr, link); } // Does the call64_patchable instruction use a pc-relative encoding of // the call destination? bool MacroAssembler::is_bxx64_patchable_pcrelative_at(address instruction_addr, bool link) { // variant 2 is pc-relative return is_bxx64_patchable_variant2_at(instruction_addr, link); } // Identify variant 1. bool MacroAssembler::is_bxx64_patchable_variant1_at(address instruction_addr, bool link) { unsigned int* instr = (unsigned int*) instruction_addr; return (link ? is_bctrl(instr[6]) : is_bctr(instr[6])) // bctr[l] && is_mtctr(instr[5]) // mtctr && is_load_const_at(instruction_addr); } // Identify variant 1b: load destination relative to global toc. bool MacroAssembler::is_bxx64_patchable_variant1b_at(address instruction_addr, bool link) { unsigned int* instr = (unsigned int*) instruction_addr; return (link ? is_bctrl(instr[6]) : is_bctr(instr[6])) // bctr[l] && is_mtctr(instr[3]) // mtctr && is_calculate_address_from_global_toc_at(instruction_addr + 2*BytesPerInstWord, instruction_addr); } // Identify variant 2. bool MacroAssembler::is_bxx64_patchable_variant2_at(address instruction_addr, bool link) { unsigned int* instr = (unsigned int*) instruction_addr; if (link) { return is_bl (instr[6]) // bl dest is last && is_nop(instr[0]) // nop && is_nop(instr[1]) // nop && is_nop(instr[2]) // nop && is_nop(instr[3]) // nop && is_nop(instr[4]) // nop && is_nop(instr[5]); // nop } else { return is_b (instr[0]) // b dest is first && is_nop(instr[1]) // nop && is_nop(instr[2]) // nop && is_nop(instr[3]) // nop && is_nop(instr[4]) // nop && is_nop(instr[5]) // nop && is_nop(instr[6]); // nop } } // Set dest address of a bxx64_patchable instruction. void MacroAssembler::set_dest_of_bxx64_patchable_at(address instruction_addr, address dest, bool link) { ResourceMark rm; int code_size = MacroAssembler::bxx64_patchable_size; CodeBuffer buf(instruction_addr, code_size); MacroAssembler masm(&buf); masm.bxx64_patchable(dest, relocInfo::none, link); ICache::ppc64_flush_icache_bytes(instruction_addr, code_size); } // Get dest address of a bxx64_patchable instruction. address MacroAssembler::get_dest_of_bxx64_patchable_at(address instruction_addr, bool link) { if (is_bxx64_patchable_variant1_at(instruction_addr, link)) { return (address) (unsigned long) get_const(instruction_addr); } else if (is_bxx64_patchable_variant2_at(instruction_addr, link)) { unsigned int* instr = (unsigned int*) instruction_addr; if (link) { const int instr_idx = 6; // bl is last int branchoffset = branch_destination(instr[instr_idx], 0); return instruction_addr + branchoffset + instr_idx*BytesPerInstWord; } else { const int instr_idx = 0; // b is first int branchoffset = branch_destination(instr[instr_idx], 0); return instruction_addr + branchoffset + instr_idx*BytesPerInstWord; } // Load dest relative to global toc. } else if (is_bxx64_patchable_variant1b_at(instruction_addr, link)) { return get_address_of_calculate_address_from_global_toc_at(instruction_addr + 2*BytesPerInstWord, instruction_addr); } else { ShouldNotReachHere(); return NULL; } } // Uses ordering which corresponds to ABI: // _savegpr0_14: std r14,-144(r1) // _savegpr0_15: std r15,-136(r1) // _savegpr0_16: std r16,-128(r1) void MacroAssembler::save_nonvolatile_gprs(Register dst, int offset) { std(R14, offset, dst); offset += 8; std(R15, offset, dst); offset += 8; std(R16, offset, dst); offset += 8; std(R17, offset, dst); offset += 8; std(R18, offset, dst); offset += 8; std(R19, offset, dst); offset += 8; std(R20, offset, dst); offset += 8; std(R21, offset, dst); offset += 8; std(R22, offset, dst); offset += 8; std(R23, offset, dst); offset += 8; std(R24, offset, dst); offset += 8; std(R25, offset, dst); offset += 8; std(R26, offset, dst); offset += 8; std(R27, offset, dst); offset += 8; std(R28, offset, dst); offset += 8; std(R29, offset, dst); offset += 8; std(R30, offset, dst); offset += 8; std(R31, offset, dst); offset += 8; stfd(F14, offset, dst); offset += 8; stfd(F15, offset, dst); offset += 8; stfd(F16, offset, dst); offset += 8; stfd(F17, offset, dst); offset += 8; stfd(F18, offset, dst); offset += 8; stfd(F19, offset, dst); offset += 8; stfd(F20, offset, dst); offset += 8; stfd(F21, offset, dst); offset += 8; stfd(F22, offset, dst); offset += 8; stfd(F23, offset, dst); offset += 8; stfd(F24, offset, dst); offset += 8; stfd(F25, offset, dst); offset += 8; stfd(F26, offset, dst); offset += 8; stfd(F27, offset, dst); offset += 8; stfd(F28, offset, dst); offset += 8; stfd(F29, offset, dst); offset += 8; stfd(F30, offset, dst); offset += 8; stfd(F31, offset, dst); } // Uses ordering which corresponds to ABI: // _restgpr0_14: ld r14,-144(r1) // _restgpr0_15: ld r15,-136(r1) // _restgpr0_16: ld r16,-128(r1) void MacroAssembler::restore_nonvolatile_gprs(Register src, int offset) { ld(R14, offset, src); offset += 8; ld(R15, offset, src); offset += 8; ld(R16, offset, src); offset += 8; ld(R17, offset, src); offset += 8; ld(R18, offset, src); offset += 8; ld(R19, offset, src); offset += 8; ld(R20, offset, src); offset += 8; ld(R21, offset, src); offset += 8; ld(R22, offset, src); offset += 8; ld(R23, offset, src); offset += 8; ld(R24, offset, src); offset += 8; ld(R25, offset, src); offset += 8; ld(R26, offset, src); offset += 8; ld(R27, offset, src); offset += 8; ld(R28, offset, src); offset += 8; ld(R29, offset, src); offset += 8; ld(R30, offset, src); offset += 8; ld(R31, offset, src); offset += 8; // FP registers lfd(F14, offset, src); offset += 8; lfd(F15, offset, src); offset += 8; lfd(F16, offset, src); offset += 8; lfd(F17, offset, src); offset += 8; lfd(F18, offset, src); offset += 8; lfd(F19, offset, src); offset += 8; lfd(F20, offset, src); offset += 8; lfd(F21, offset, src); offset += 8; lfd(F22, offset, src); offset += 8; lfd(F23, offset, src); offset += 8; lfd(F24, offset, src); offset += 8; lfd(F25, offset, src); offset += 8; lfd(F26, offset, src); offset += 8; lfd(F27, offset, src); offset += 8; lfd(F28, offset, src); offset += 8; lfd(F29, offset, src); offset += 8; lfd(F30, offset, src); offset += 8; lfd(F31, offset, src); } // For verify_oops. void MacroAssembler::save_volatile_gprs(Register dst, int offset) { std(R3, offset, dst); offset += 8; std(R4, offset, dst); offset += 8; std(R5, offset, dst); offset += 8; std(R6, offset, dst); offset += 8; std(R7, offset, dst); offset += 8; std(R8, offset, dst); offset += 8; std(R9, offset, dst); offset += 8; std(R10, offset, dst); offset += 8; std(R11, offset, dst); offset += 8; std(R12, offset, dst); } // For verify_oops. void MacroAssembler::restore_volatile_gprs(Register src, int offset) { ld(R3, offset, src); offset += 8; ld(R4, offset, src); offset += 8; ld(R5, offset, src); offset += 8; ld(R6, offset, src); offset += 8; ld(R7, offset, src); offset += 8; ld(R8, offset, src); offset += 8; ld(R9, offset, src); offset += 8; ld(R10, offset, src); offset += 8; ld(R11, offset, src); offset += 8; ld(R12, offset, src); } void MacroAssembler::save_LR_CR(Register tmp) { mfcr(tmp); std(tmp, _abi(cr), R1_SP); mflr(tmp); std(tmp, _abi(lr), R1_SP); // Tmp must contain lr on exit! (see return_addr and prolog in ppc64.ad) } void MacroAssembler::restore_LR_CR(Register tmp) { assert(tmp != R1_SP, "must be distinct"); ld(tmp, _abi(lr), R1_SP); mtlr(tmp); ld(tmp, _abi(cr), R1_SP); mtcr(tmp); } address MacroAssembler::get_PC_trash_LR(Register result) { Label L; bl(L); bind(L); address lr_pc = pc(); mflr(result); return lr_pc; } void MacroAssembler::resize_frame(Register offset, Register tmp) { #ifdef ASSERT assert_different_registers(offset, tmp, R1_SP); andi_(tmp, offset, frame::alignment_in_bytes-1); asm_assert_eq("resize_frame: unaligned", 0x204); #endif // tmp <- *(SP) ld(tmp, _abi(callers_sp), R1_SP); // addr <- SP + offset; // *(addr) <- tmp; // SP <- addr stdux(tmp, R1_SP, offset); } void MacroAssembler::resize_frame(int offset, Register tmp) { assert(is_simm(offset, 16), "too big an offset"); assert_different_registers(tmp, R1_SP); assert((offset & (frame::alignment_in_bytes-1))==0, "resize_frame: unaligned"); // tmp <- *(SP) ld(tmp, _abi(callers_sp), R1_SP); // addr <- SP + offset; // *(addr) <- tmp; // SP <- addr stdu(tmp, offset, R1_SP); } void MacroAssembler::resize_frame_absolute(Register addr, Register tmp1, Register tmp2) { // (addr == tmp1) || (addr == tmp2) is allowed here! assert(tmp1 != tmp2, "must be distinct"); // compute offset w.r.t. current stack pointer // tmp_1 <- addr - SP (!) subf(tmp1, R1_SP, addr); // atomically update SP keeping back link. resize_frame(tmp1/* offset */, tmp2/* tmp */); } void MacroAssembler::push_frame(Register bytes, Register tmp) { #ifdef ASSERT assert(bytes != R0, "r0 not allowed here"); andi_(R0, bytes, frame::alignment_in_bytes-1); asm_assert_eq("push_frame(Reg, Reg): unaligned", 0x203); #endif neg(tmp, bytes); stdux(R1_SP, R1_SP, tmp); } // Push a frame of size `bytes'. void MacroAssembler::push_frame(unsigned int bytes, Register tmp) { long offset = align_addr(bytes, frame::alignment_in_bytes); if (is_simm(-offset, 16)) { stdu(R1_SP, -offset, R1_SP); } else { load_const(tmp, -offset); stdux(R1_SP, R1_SP, tmp); } } // Push a frame of size `bytes' plus abi_reg_args on top. void MacroAssembler::push_frame_reg_args(unsigned int bytes, Register tmp) { push_frame(bytes + frame::abi_reg_args_size, tmp); } // Setup up a new C frame with a spill area for non-volatile GPRs and // additional space for local variables. void MacroAssembler::push_frame_reg_args_nonvolatiles(unsigned int bytes, Register tmp) { push_frame(bytes + frame::abi_reg_args_size + frame::spill_nonvolatiles_size, tmp); } // Pop current C frame. void MacroAssembler::pop_frame() { ld(R1_SP, _abi(callers_sp), R1_SP); } #if defined(ABI_ELFv2) address MacroAssembler::branch_to(Register r_function_entry, bool and_link) { // TODO(asmundak): make sure the caller uses R12 as function descriptor // most of the times. if (R12 != r_function_entry) { mr(R12, r_function_entry); } mtctr(R12); // Do a call or a branch. if (and_link) { bctrl(); } else { bctr(); } _last_calls_return_pc = pc(); return _last_calls_return_pc; } // Call a C function via a function descriptor and use full C // calling conventions. Updates and returns _last_calls_return_pc. address MacroAssembler::call_c(Register r_function_entry) { return branch_to(r_function_entry, /*and_link=*/true); } // For tail calls: only branch, don't link, so callee returns to caller of this function. address MacroAssembler::call_c_and_return_to_caller(Register r_function_entry) { return branch_to(r_function_entry, /*and_link=*/false); } address MacroAssembler::call_c(address function_entry, relocInfo::relocType rt) { load_const(R12, function_entry, R0); return branch_to(R12, /*and_link=*/true); } #else // Generic version of a call to C function via a function descriptor // with variable support for C calling conventions (TOC, ENV, etc.). // Updates and returns _last_calls_return_pc. address MacroAssembler::branch_to(Register function_descriptor, bool and_link, bool save_toc_before_call, bool restore_toc_after_call, bool load_toc_of_callee, bool load_env_of_callee) { // we emit standard ptrgl glue code here assert((function_descriptor != R0), "function_descriptor cannot be R0"); // retrieve necessary entries from the function descriptor ld(R0, in_bytes(FunctionDescriptor::entry_offset()), function_descriptor); mtctr(R0); if (load_toc_of_callee) { ld(R2_TOC, in_bytes(FunctionDescriptor::toc_offset()), function_descriptor); } if (load_env_of_callee) { ld(R11, in_bytes(FunctionDescriptor::env_offset()), function_descriptor); } else if (load_toc_of_callee) { li(R11, 0); } // do a call or a branch if (and_link) { bctrl(); } else { bctr(); } _last_calls_return_pc = pc(); return _last_calls_return_pc; } // Call a C function via a function descriptor and use full C calling // conventions. // We don't use the TOC in generated code, so there is no need to save // and restore its value. address MacroAssembler::call_c(Register fd) { return branch_to(fd, /*and_link=*/true, /*save toc=*/false, /*restore toc=*/false, /*load toc=*/true, /*load env=*/true); } address MacroAssembler::call_c_and_return_to_caller(Register fd) { return branch_to(fd, /*and_link=*/false, /*save toc=*/false, /*restore toc=*/false, /*load toc=*/true, /*load env=*/true); } address MacroAssembler::call_c(const FunctionDescriptor* fd, relocInfo::relocType rt) { if (rt != relocInfo::none) { // this call needs to be relocatable if (!ReoptimizeCallSequences || (rt != relocInfo::runtime_call_type && rt != relocInfo::none) || fd == NULL // support code-size estimation || !fd->is_friend_function() || fd->entry() == NULL) { // it's not a friend function as defined by class FunctionDescriptor, // so do a full call-c here. load_const(R11, (address)fd, R0); bool has_env = (fd != NULL && fd->env() != NULL); return branch_to(R11, /*and_link=*/true, /*save toc=*/false, /*restore toc=*/false, /*load toc=*/true, /*load env=*/has_env); } else { // It's a friend function. Load the entry point and don't care about // toc and env. Use an optimizable call instruction, but ensure the // same code-size as in the case of a non-friend function. nop(); nop(); nop(); bl64_patchable(fd->entry(), rt); _last_calls_return_pc = pc(); return _last_calls_return_pc; } } else { // This call does not need to be relocatable, do more aggressive // optimizations. if (!ReoptimizeCallSequences || !fd->is_friend_function()) { // It's not a friend function as defined by class FunctionDescriptor, // so do a full call-c here. load_const(R11, (address)fd, R0); return branch_to(R11, /*and_link=*/true, /*save toc=*/false, /*restore toc=*/false, /*load toc=*/true, /*load env=*/true); } else { // it's a friend function, load the entry point and don't care about // toc and env. address dest = fd->entry(); if (is_within_range_of_b(dest, pc())) { bl(dest); } else { bl64_patchable(dest, rt); } _last_calls_return_pc = pc(); return _last_calls_return_pc; } } } // Call a C function. All constants needed reside in TOC. // // Read the address to call from the TOC. // Read env from TOC, if fd specifies an env. // Read new TOC from TOC. address MacroAssembler::call_c_using_toc(const FunctionDescriptor* fd, relocInfo::relocType rt, Register toc) { if (!ReoptimizeCallSequences || (rt != relocInfo::runtime_call_type && rt != relocInfo::none) || !fd->is_friend_function()) { // It's not a friend function as defined by class FunctionDescriptor, // so do a full call-c here. assert(fd->entry() != NULL, "function must be linked"); AddressLiteral fd_entry(fd->entry()); load_const_from_method_toc(R11, fd_entry, toc); mtctr(R11); if (fd->env() == NULL) { li(R11, 0); nop(); } else { AddressLiteral fd_env(fd->env()); load_const_from_method_toc(R11, fd_env, toc); } AddressLiteral fd_toc(fd->toc()); load_toc_from_toc(R2_TOC, fd_toc, toc); // R2_TOC is killed. bctrl(); _last_calls_return_pc = pc(); } else { // It's a friend function, load the entry point and don't care about // toc and env. Use an optimizable call instruction, but ensure the // same code-size as in the case of a non-friend function. nop(); bl64_patchable(fd->entry(), rt); _last_calls_return_pc = pc(); } return _last_calls_return_pc; } #endif // ABI_ELFv2 void MacroAssembler::call_VM_base(Register oop_result, Register last_java_sp, address entry_point, bool check_exceptions) { BLOCK_COMMENT("call_VM {"); // Determine last_java_sp register. if (!last_java_sp->is_valid()) { last_java_sp = R1_SP; } set_top_ijava_frame_at_SP_as_last_Java_frame(last_java_sp, R11_scratch1); // ARG1 must hold thread address. mr(R3_ARG1, R16_thread); #if defined(ABI_ELFv2) address return_pc = call_c(entry_point, relocInfo::none); #else address return_pc = call_c((FunctionDescriptor*)entry_point, relocInfo::none); #endif reset_last_Java_frame(); // Check for pending exceptions. if (check_exceptions) { // We don't check for exceptions here. ShouldNotReachHere(); } // Get oop result if there is one and reset the value in the thread. if (oop_result->is_valid()) { get_vm_result(oop_result); } _last_calls_return_pc = return_pc; BLOCK_COMMENT("} call_VM"); } void MacroAssembler::call_VM_leaf_base(address entry_point) { BLOCK_COMMENT("call_VM_leaf {"); #if defined(ABI_ELFv2) call_c(entry_point, relocInfo::none); #else call_c(CAST_FROM_FN_PTR(FunctionDescriptor*, entry_point), relocInfo::none); #endif BLOCK_COMMENT("} call_VM_leaf"); } void MacroAssembler::call_VM(Register oop_result, address entry_point, bool check_exceptions) { call_VM_base(oop_result, noreg, entry_point, check_exceptions); } void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) { // R3_ARG1 is reserved for the thread. mr_if_needed(R4_ARG2, arg_1); call_VM(oop_result, entry_point, check_exceptions); } void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) { // R3_ARG1 is reserved for the thread mr_if_needed(R4_ARG2, arg_1); assert(arg_2 != R4_ARG2, "smashed argument"); mr_if_needed(R5_ARG3, arg_2); call_VM(oop_result, entry_point, check_exceptions); } void MacroAssembler::call_VM_leaf(address entry_point) { call_VM_leaf_base(entry_point); } void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1) { mr_if_needed(R3_ARG1, arg_1); call_VM_leaf(entry_point); } void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1, Register arg_2) { mr_if_needed(R3_ARG1, arg_1); assert(arg_2 != R3_ARG1, "smashed argument"); mr_if_needed(R4_ARG2, arg_2); call_VM_leaf(entry_point); } void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3) { mr_if_needed(R3_ARG1, arg_1); assert(arg_2 != R3_ARG1, "smashed argument"); mr_if_needed(R4_ARG2, arg_2); assert(arg_3 != R3_ARG1 && arg_3 != R4_ARG2, "smashed argument"); mr_if_needed(R5_ARG3, arg_3); call_VM_leaf(entry_point); } // Check whether instruction is a read access to the polling page // which was emitted by load_from_polling_page(..). bool MacroAssembler::is_load_from_polling_page(int instruction, void* ucontext, address* polling_address_ptr) { if (!is_ld(instruction)) return false; // It's not a ld. Fail. int rt = inv_rt_field(instruction); int ra = inv_ra_field(instruction); int ds = inv_ds_field(instruction); if (!(ds == 0 && ra != 0 && rt == 0)) { return false; // It's not a ld(r0, X, ra). Fail. } if (!ucontext) { // Set polling address. if (polling_address_ptr != NULL) { *polling_address_ptr = NULL; } return true; // No ucontext given. Can't check value of ra. Assume true. } #ifdef LINUX // Ucontext given. Check that register ra contains the address of // the safepoing polling page. ucontext_t* uc = (ucontext_t*) ucontext; // Set polling address. address addr = (address)uc->uc_mcontext.regs->gpr[ra] + (ssize_t)ds; if (polling_address_ptr != NULL) { *polling_address_ptr = addr; } return os::is_poll_address(addr); #else // Not on Linux, ucontext must be NULL. ShouldNotReachHere(); return false; #endif } bool MacroAssembler::is_memory_serialization(int instruction, JavaThread* thread, void* ucontext) { #ifdef LINUX ucontext_t* uc = (ucontext_t*) ucontext; if (is_stwx(instruction) || is_stwux(instruction)) { int ra = inv_ra_field(instruction); int rb = inv_rb_field(instruction); // look up content of ra and rb in ucontext address ra_val=(address)uc->uc_mcontext.regs->gpr[ra]; long rb_val=(long)uc->uc_mcontext.regs->gpr[rb]; return os::is_memory_serialize_page(thread, ra_val+rb_val); } else if (is_stw(instruction) || is_stwu(instruction)) { int ra = inv_ra_field(instruction); int d1 = inv_d1_field(instruction); // look up content of ra in ucontext address ra_val=(address)uc->uc_mcontext.regs->gpr[ra]; return os::is_memory_serialize_page(thread, ra_val+d1); } else { return false; } #else // workaround not needed on !LINUX :-) ShouldNotCallThis(); return false; #endif } void MacroAssembler::bang_stack_with_offset(int offset) { // When increasing the stack, the old stack pointer will be written // to the new top of stack according to the PPC64 abi. // Therefore, stack banging is not necessary when increasing // the stack by <= os::vm_page_size() bytes. // When increasing the stack by a larger amount, this method is // called repeatedly to bang the intermediate pages. // Stack grows down, caller passes positive offset. assert(offset > 0, "must bang with positive offset"); long stdoffset = -offset; if (is_simm(stdoffset, 16)) { // Signed 16 bit offset, a simple std is ok. if (UseLoadInstructionsForStackBangingPPC64) { ld(R0, (int)(signed short)stdoffset, R1_SP); } else { std(R0,(int)(signed short)stdoffset, R1_SP); } } else if (is_simm(stdoffset, 31)) { const int hi = MacroAssembler::largeoffset_si16_si16_hi(stdoffset); const int lo = MacroAssembler::largeoffset_si16_si16_lo(stdoffset); Register tmp = R11; addis(tmp, R1_SP, hi); if (UseLoadInstructionsForStackBangingPPC64) { ld(R0, lo, tmp); } else { std(R0, lo, tmp); } } else { ShouldNotReachHere(); } } // If instruction is a stack bang of the form // std R0, x(Ry), (see bang_stack_with_offset()) // stdu R1_SP, x(R1_SP), (see push_frame(), resize_frame()) // or stdux R1_SP, Rx, R1_SP (see push_frame(), resize_frame()) // return the banged address. Otherwise, return 0. address MacroAssembler::get_stack_bang_address(int instruction, void *ucontext) { #ifdef LINUX ucontext_t* uc = (ucontext_t*) ucontext; int rs = inv_rs_field(instruction); int ra = inv_ra_field(instruction); if ( (is_ld(instruction) && rs == 0 && UseLoadInstructionsForStackBangingPPC64) || (is_std(instruction) && rs == 0 && !UseLoadInstructionsForStackBangingPPC64) || (is_stdu(instruction) && rs == 1)) { int ds = inv_ds_field(instruction); // return banged address return ds+(address)uc->uc_mcontext.regs->gpr[ra]; } else if (is_stdux(instruction) && rs == 1) { int rb = inv_rb_field(instruction); address sp = (address)uc->uc_mcontext.regs->gpr[1]; long rb_val = (long)uc->uc_mcontext.regs->gpr[rb]; return ra != 1 || rb_val >= 0 ? NULL // not a stack bang : sp + rb_val; // banged address } return NULL; // not a stack bang #else // workaround not needed on !LINUX :-) ShouldNotCallThis(); return NULL; #endif } // CmpxchgX sets condition register to cmpX(current, compare). void MacroAssembler::cmpxchgw(ConditionRegister flag, Register dest_current_value, Register compare_value, Register exchange_value, Register addr_base, int semantics, bool cmpxchgx_hint, Register int_flag_success, bool contention_hint) { Label retry; Label failed; Label done; // Save one branch if result is returned via register and // result register is different from the other ones. bool use_result_reg = (int_flag_success != noreg); bool preset_result_reg = (int_flag_success != dest_current_value && int_flag_success != compare_value && int_flag_success != exchange_value && int_flag_success != addr_base); // release/fence semantics if (semantics & MemBarRel) { release(); } if (use_result_reg && preset_result_reg) { li(int_flag_success, 0); // preset (assume cas failed) } // Add simple guard in order to reduce risk of starving under high contention (recommended by IBM). if (contention_hint) { // Don't try to reserve if cmp fails. lwz(dest_current_value, 0, addr_base); cmpw(flag, dest_current_value, compare_value); bne(flag, failed); } // atomic emulation loop bind(retry); lwarx(dest_current_value, addr_base, cmpxchgx_hint); cmpw(flag, dest_current_value, compare_value); if (UseStaticBranchPredictionInCompareAndSwapPPC64) { bne_predict_not_taken(flag, failed); } else { bne( flag, failed); } // branch to done => (flag == ne), (dest_current_value != compare_value) // fall through => (flag == eq), (dest_current_value == compare_value) stwcx_(exchange_value, addr_base); if (UseStaticBranchPredictionInCompareAndSwapPPC64) { bne_predict_not_taken(CCR0, retry); // StXcx_ sets CCR0. } else { bne( CCR0, retry); // StXcx_ sets CCR0. } // fall through => (flag == eq), (dest_current_value == compare_value), (swapped) // Result in register (must do this at the end because int_flag_success can be the // same register as one above). if (use_result_reg) { li(int_flag_success, 1); } if (semantics & MemBarFenceAfter) { fence(); } else if (semantics & MemBarAcq) { isync(); } if (use_result_reg && !preset_result_reg) { b(done); } bind(failed); if (use_result_reg && !preset_result_reg) { li(int_flag_success, 0); } bind(done); // (flag == ne) => (dest_current_value != compare_value), (!swapped) // (flag == eq) => (dest_current_value == compare_value), ( swapped) } // Preforms atomic compare exchange: // if (compare_value == *addr_base) // *addr_base = exchange_value // int_flag_success = 1; // else // int_flag_success = 0; // // ConditionRegister flag = cmp(compare_value, *addr_base) // Register dest_current_value = *addr_base // Register compare_value Used to compare with value in memory // Register exchange_value Written to memory if compare_value == *addr_base // Register addr_base The memory location to compareXChange // Register int_flag_success Set to 1 if exchange_value was written to *addr_base // // To avoid the costly compare exchange the value is tested beforehand. // Several special cases exist to avoid that unnecessary information is generated. // void MacroAssembler::cmpxchgd(ConditionRegister flag, Register dest_current_value, Register compare_value, Register exchange_value, Register addr_base, int semantics, bool cmpxchgx_hint, Register int_flag_success, Label* failed_ext, bool contention_hint) { Label retry; Label failed_int; Label& failed = (failed_ext != NULL) ? *failed_ext : failed_int; Label done; // Save one branch if result is returned via register and result register is different from the other ones. bool use_result_reg = (int_flag_success!=noreg); bool preset_result_reg = (int_flag_success!=dest_current_value && int_flag_success!=compare_value && int_flag_success!=exchange_value && int_flag_success!=addr_base); assert(int_flag_success == noreg || failed_ext == NULL, "cannot have both"); // release/fence semantics if (semantics & MemBarRel) { release(); } if (use_result_reg && preset_result_reg) { li(int_flag_success, 0); // preset (assume cas failed) } // Add simple guard in order to reduce risk of starving under high contention (recommended by IBM). if (contention_hint) { // Don't try to reserve if cmp fails. ld(dest_current_value, 0, addr_base); cmpd(flag, dest_current_value, compare_value); bne(flag, failed); } // atomic emulation loop bind(retry); ldarx(dest_current_value, addr_base, cmpxchgx_hint); cmpd(flag, dest_current_value, compare_value); if (UseStaticBranchPredictionInCompareAndSwapPPC64) { bne_predict_not_taken(flag, failed); } else { bne( flag, failed); } stdcx_(exchange_value, addr_base); if (UseStaticBranchPredictionInCompareAndSwapPPC64) { bne_predict_not_taken(CCR0, retry); // stXcx_ sets CCR0 } else { bne( CCR0, retry); // stXcx_ sets CCR0 } // result in register (must do this at the end because int_flag_success can be the same register as one above) if (use_result_reg) { li(int_flag_success, 1); } // POWER6 doesn't need isync in CAS. // Always emit isync to be on the safe side. if (semantics & MemBarFenceAfter) { fence(); } else if (semantics & MemBarAcq) { isync(); } if (use_result_reg && !preset_result_reg) { b(done); } bind(failed_int); if (use_result_reg && !preset_result_reg) { li(int_flag_success, 0); } bind(done); // (flag == ne) => (dest_current_value != compare_value), (!swapped) // (flag == eq) => (dest_current_value == compare_value), ( swapped) } // Look up the method for a megamorphic invokeinterface call. // The target method is determined by . // The receiver klass is in recv_klass. // On success, the result will be in method_result, and execution falls through. // On failure, execution transfers to the given label. void MacroAssembler::lookup_interface_method(Register recv_klass, Register intf_klass, RegisterOrConstant itable_index, Register method_result, Register scan_temp, Register sethi_temp, Label& L_no_such_interface) { assert_different_registers(recv_klass, intf_klass, method_result, scan_temp); assert(itable_index.is_constant() || itable_index.as_register() == method_result, "caller must use same register for non-constant itable index as for method"); // Compute start of first itableOffsetEntry (which is at the end of the vtable). int vtable_base = InstanceKlass::vtable_start_offset() * wordSize; int itentry_off = itableMethodEntry::method_offset_in_bytes(); int logMEsize = exact_log2(itableMethodEntry::size() * wordSize); int scan_step = itableOffsetEntry::size() * wordSize; int log_vte_size= exact_log2(vtableEntry::size() * wordSize); lwz(scan_temp, InstanceKlass::vtable_length_offset() * wordSize, recv_klass); // %%% We should store the aligned, prescaled offset in the klassoop. // Then the next several instructions would fold away. sldi(scan_temp, scan_temp, log_vte_size); addi(scan_temp, scan_temp, vtable_base); add(scan_temp, recv_klass, scan_temp); // Adjust recv_klass by scaled itable_index, so we can free itable_index. if (itable_index.is_register()) { Register itable_offset = itable_index.as_register(); sldi(itable_offset, itable_offset, logMEsize); if (itentry_off) addi(itable_offset, itable_offset, itentry_off); add(recv_klass, itable_offset, recv_klass); } else { long itable_offset = (long)itable_index.as_constant(); load_const_optimized(sethi_temp, (itable_offset<itable(); scan->interface() != NULL; scan += scan_step) { // if (scan->interface() == intf) { // result = (klass + scan->offset() + itable_index); // } // } Label search, found_method; for (int peel = 1; peel >= 0; peel--) { // %%%% Could load both offset and interface in one ldx, if they were // in the opposite order. This would save a load. ld(method_result, itableOffsetEntry::interface_offset_in_bytes(), scan_temp); // Check that this entry is non-null. A null entry means that // the receiver class doesn't implement the interface, and wasn't the // same as when the caller was compiled. cmpd(CCR0, method_result, intf_klass); if (peel) { beq(CCR0, found_method); } else { bne(CCR0, search); // (invert the test to fall through to found_method...) } if (!peel) break; bind(search); cmpdi(CCR0, method_result, 0); beq(CCR0, L_no_such_interface); addi(scan_temp, scan_temp, scan_step); } bind(found_method); // Got a hit. int ito_offset = itableOffsetEntry::offset_offset_in_bytes(); lwz(scan_temp, ito_offset, scan_temp); ldx(method_result, scan_temp, recv_klass); } // virtual method calling void MacroAssembler::lookup_virtual_method(Register recv_klass, RegisterOrConstant vtable_index, Register method_result) { assert_different_registers(recv_klass, method_result, vtable_index.register_or_noreg()); const int base = InstanceKlass::vtable_start_offset() * wordSize; assert(vtableEntry::size() * wordSize == wordSize, "adjust the scaling in the code below"); if (vtable_index.is_register()) { sldi(vtable_index.as_register(), vtable_index.as_register(), LogBytesPerWord); add(recv_klass, vtable_index.as_register(), recv_klass); } else { addi(recv_klass, recv_klass, vtable_index.as_constant() << LogBytesPerWord); } ld(R19_method, base + vtableEntry::method_offset_in_bytes(), recv_klass); } /////////////////////////////////////////// subtype checking //////////////////////////////////////////// void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass, Register super_klass, Register temp1_reg, Register temp2_reg, Label& L_success, Label& L_failure) { const Register check_cache_offset = temp1_reg; const Register cached_super = temp2_reg; assert_different_registers(sub_klass, super_klass, check_cache_offset, cached_super); int sco_offset = in_bytes(Klass::super_check_offset_offset()); int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); // If the pointers are equal, we are done (e.g., String[] elements). // This self-check enables sharing of secondary supertype arrays among // non-primary types such as array-of-interface. Otherwise, each such // type would need its own customized SSA. // We move this check to the front of the fast path because many // type checks are in fact trivially successful in this manner, // so we get a nicely predicted branch right at the start of the check. cmpd(CCR0, sub_klass, super_klass); beq(CCR0, L_success); // Check the supertype display: lwz(check_cache_offset, sco_offset, super_klass); // The loaded value is the offset from KlassOopDesc. ldx(cached_super, check_cache_offset, sub_klass); cmpd(CCR0, cached_super, super_klass); beq(CCR0, L_success); // This check has worked decisively for primary supers. // Secondary supers are sought in the super_cache ('super_cache_addr'). // (Secondary supers are interfaces and very deeply nested subtypes.) // This works in the same check above because of a tricky aliasing // between the super_cache and the primary super display elements. // (The 'super_check_addr' can address either, as the case requires.) // Note that the cache is updated below if it does not help us find // what we need immediately. // So if it was a primary super, we can just fail immediately. // Otherwise, it's the slow path for us (no success at this point). cmpwi(CCR0, check_cache_offset, sc_offset); bne(CCR0, L_failure); // bind(slow_path); // fallthru } void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass, Register super_klass, Register temp1_reg, Register temp2_reg, Label* L_success, Register result_reg) { const Register array_ptr = temp1_reg; // current value from cache array const Register temp = temp2_reg; assert_different_registers(sub_klass, super_klass, array_ptr, temp); int source_offset = in_bytes(Klass::secondary_supers_offset()); int target_offset = in_bytes(Klass::secondary_super_cache_offset()); int length_offset = Array::length_offset_in_bytes(); int base_offset = Array::base_offset_in_bytes(); Label hit, loop, failure, fallthru; ld(array_ptr, source_offset, sub_klass); //assert(4 == arrayOopDesc::length_length_in_bytes(), "precondition violated."); lwz(temp, length_offset, array_ptr); cmpwi(CCR0, temp, 0); beq(CCR0, result_reg!=noreg ? failure : fallthru); // length 0 mtctr(temp); // load ctr bind(loop); // Oops in table are NO MORE compressed. ld(temp, base_offset, array_ptr); cmpd(CCR0, temp, super_klass); beq(CCR0, hit); addi(array_ptr, array_ptr, BytesPerWord); bdnz(loop); bind(failure); if (result_reg!=noreg) li(result_reg, 1); // load non-zero result (indicates a miss) b(fallthru); bind(hit); std(super_klass, target_offset, sub_klass); // save result to cache if (result_reg != noreg) li(result_reg, 0); // load zero result (indicates a hit) if (L_success != NULL) b(*L_success); bind(fallthru); } // Try fast path, then go to slow one if not successful void MacroAssembler::check_klass_subtype(Register sub_klass, Register super_klass, Register temp1_reg, Register temp2_reg, Label& L_success) { Label L_failure; check_klass_subtype_fast_path(sub_klass, super_klass, temp1_reg, temp2_reg, L_success, L_failure); check_klass_subtype_slow_path(sub_klass, super_klass, temp1_reg, temp2_reg, &L_success); bind(L_failure); // Fallthru if not successful. } void MacroAssembler::check_method_handle_type(Register mtype_reg, Register mh_reg, Register temp_reg, Label& wrong_method_type) { assert_different_registers(mtype_reg, mh_reg, temp_reg); // Compare method type against that of the receiver. load_heap_oop_not_null(temp_reg, delayed_value(java_lang_invoke_MethodHandle::type_offset_in_bytes, temp_reg), mh_reg); cmpd(CCR0, temp_reg, mtype_reg); bne(CCR0, wrong_method_type); } RegisterOrConstant MacroAssembler::argument_offset(RegisterOrConstant arg_slot, Register temp_reg, int extra_slot_offset) { // cf. TemplateTable::prepare_invoke(), if (load_receiver). int stackElementSize = Interpreter::stackElementSize; int offset = extra_slot_offset * stackElementSize; if (arg_slot.is_constant()) { offset += arg_slot.as_constant() * stackElementSize; return offset; } else { assert(temp_reg != noreg, "must specify"); sldi(temp_reg, arg_slot.as_register(), exact_log2(stackElementSize)); if (offset != 0) addi(temp_reg, temp_reg, offset); return temp_reg; } } void MacroAssembler::biased_locking_enter(ConditionRegister cr_reg, Register obj_reg, Register mark_reg, Register temp_reg, Register temp2_reg, Label& done, Label* slow_case) { assert(UseBiasedLocking, "why call this otherwise?"); #ifdef ASSERT assert_different_registers(obj_reg, mark_reg, temp_reg, temp2_reg); #endif Label cas_label; // Branch to done if fast path fails and no slow_case provided. Label *slow_case_int = (slow_case != NULL) ? slow_case : &done; // Biased locking // See whether the lock is currently biased toward our thread and // whether the epoch is still valid // Note that the runtime guarantees sufficient alignment of JavaThread // pointers to allow age to be placed into low bits assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout"); if (PrintBiasedLockingStatistics) { load_const(temp_reg, (address) BiasedLocking::total_entry_count_addr(), temp2_reg); lwz(temp2_reg, 0, temp_reg); addi(temp2_reg, temp2_reg, 1); stw(temp2_reg, 0, temp_reg); } andi(temp_reg, mark_reg, markOopDesc::biased_lock_mask_in_place); cmpwi(cr_reg, temp_reg, markOopDesc::biased_lock_pattern); bne(cr_reg, cas_label); load_klass(temp_reg, obj_reg); load_const_optimized(temp2_reg, ~((int) markOopDesc::age_mask_in_place)); ld(temp_reg, in_bytes(Klass::prototype_header_offset()), temp_reg); orr(temp_reg, R16_thread, temp_reg); xorr(temp_reg, mark_reg, temp_reg); andr(temp_reg, temp_reg, temp2_reg); cmpdi(cr_reg, temp_reg, 0); if (PrintBiasedLockingStatistics) { Label l; bne(cr_reg, l); load_const(mark_reg, (address) BiasedLocking::biased_lock_entry_count_addr()); lwz(temp2_reg, 0, mark_reg); addi(temp2_reg, temp2_reg, 1); stw(temp2_reg, 0, mark_reg); // restore mark_reg ld(mark_reg, oopDesc::mark_offset_in_bytes(), obj_reg); bind(l); } beq(cr_reg, done); Label try_revoke_bias; Label try_rebias; // At this point we know that the header has the bias pattern and // that we are not the bias owner in the current epoch. We need to // figure out more details about the state of the header in order to // know what operations can be legally performed on the object's // header. // If the low three bits in the xor result aren't clear, that means // the prototype header is no longer biased and we have to revoke // the bias on this object. andi(temp2_reg, temp_reg, markOopDesc::biased_lock_mask_in_place); cmpwi(cr_reg, temp2_reg, 0); bne(cr_reg, try_revoke_bias); // Biasing is still enabled for this data type. See whether the // epoch of the current bias is still valid, meaning that the epoch // bits of the mark word are equal to the epoch bits of the // prototype header. (Note that the prototype header's epoch bits // only change at a safepoint.) If not, attempt to rebias the object // toward the current thread. Note that we must be absolutely sure // that the current epoch is invalid in order to do this because // otherwise the manipulations it performs on the mark word are // illegal. int shift_amount = 64 - markOopDesc::epoch_shift; // rotate epoch bits to right (little) end and set other bits to 0 // [ big part | epoch | little part ] -> [ 0..0 | epoch ] rldicl_(temp2_reg, temp_reg, shift_amount, 64 - markOopDesc::epoch_bits); // branch if epoch bits are != 0, i.e. they differ, because the epoch has been incremented bne(CCR0, try_rebias); // The epoch of the current bias is still valid but we know nothing // about the owner; it might be set or it might be clear. Try to // acquire the bias of the object using an atomic operation. If this // fails we will go in to the runtime to revoke the object's bias. // Note that we first construct the presumed unbiased header so we // don't accidentally blow away another thread's valid bias. andi(mark_reg, mark_reg, (markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place)); orr(temp_reg, R16_thread, mark_reg); assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0"); // CmpxchgX sets cr_reg to cmpX(temp2_reg, mark_reg). fence(); // TODO: replace by MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq ? cmpxchgd(/*flag=*/cr_reg, /*current_value=*/temp2_reg, /*compare_value=*/mark_reg, /*exchange_value=*/temp_reg, /*where=*/obj_reg, MacroAssembler::MemBarAcq, MacroAssembler::cmpxchgx_hint_acquire_lock(), noreg, slow_case_int); // bail out if failed // If the biasing toward our thread failed, this means that // another thread succeeded in biasing it toward itself and we // need to revoke that bias. The revocation will occur in the // interpreter runtime in the slow case. if (PrintBiasedLockingStatistics) { load_const(temp_reg, (address) BiasedLocking::anonymously_biased_lock_entry_count_addr(), temp2_reg); lwz(temp2_reg, 0, temp_reg); addi(temp2_reg, temp2_reg, 1); stw(temp2_reg, 0, temp_reg); } b(done); bind(try_rebias); // At this point we know the epoch has expired, meaning that the // current "bias owner", if any, is actually invalid. Under these // circumstances _only_, we are allowed to use the current header's // value as the comparison value when doing the cas to acquire the // bias in the current epoch. In other words, we allow transfer of // the bias from one thread to another directly in this situation. andi(temp_reg, mark_reg, markOopDesc::age_mask_in_place); orr(temp_reg, R16_thread, temp_reg); load_klass(temp2_reg, obj_reg); ld(temp2_reg, in_bytes(Klass::prototype_header_offset()), temp2_reg); orr(temp_reg, temp_reg, temp2_reg); assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0"); // CmpxchgX sets cr_reg to cmpX(temp2_reg, mark_reg). fence(); // TODO: replace by MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq ? cmpxchgd(/*flag=*/cr_reg, /*current_value=*/temp2_reg, /*compare_value=*/mark_reg, /*exchange_value=*/temp_reg, /*where=*/obj_reg, MacroAssembler::MemBarAcq, MacroAssembler::cmpxchgx_hint_acquire_lock(), noreg, slow_case_int); // bail out if failed // If the biasing toward our thread failed, this means that // another thread succeeded in biasing it toward itself and we // need to revoke that bias. The revocation will occur in the // interpreter runtime in the slow case. if (PrintBiasedLockingStatistics) { load_const(temp_reg, (address) BiasedLocking::rebiased_lock_entry_count_addr(), temp2_reg); lwz(temp2_reg, 0, temp_reg); addi(temp2_reg, temp2_reg, 1); stw(temp2_reg, 0, temp_reg); } b(done); bind(try_revoke_bias); // The prototype mark in the klass doesn't have the bias bit set any // more, indicating that objects of this data type are not supposed // to be biased any more. We are going to try to reset the mark of // this object to the prototype value and fall through to the // CAS-based locking scheme. Note that if our CAS fails, it means // that another thread raced us for the privilege of revoking the // bias of this particular object, so it's okay to continue in the // normal locking code. load_klass(temp_reg, obj_reg); ld(temp_reg, in_bytes(Klass::prototype_header_offset()), temp_reg); andi(temp2_reg, mark_reg, markOopDesc::age_mask_in_place); orr(temp_reg, temp_reg, temp2_reg); assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0"); // CmpxchgX sets cr_reg to cmpX(temp2_reg, mark_reg). fence(); // TODO: replace by MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq ? cmpxchgd(/*flag=*/cr_reg, /*current_value=*/temp2_reg, /*compare_value=*/mark_reg, /*exchange_value=*/temp_reg, /*where=*/obj_reg, MacroAssembler::MemBarAcq, MacroAssembler::cmpxchgx_hint_acquire_lock()); // reload markOop in mark_reg before continuing with lightweight locking ld(mark_reg, oopDesc::mark_offset_in_bytes(), obj_reg); // Fall through to the normal CAS-based lock, because no matter what // the result of the above CAS, some thread must have succeeded in // removing the bias bit from the object's header. if (PrintBiasedLockingStatistics) { Label l; bne(cr_reg, l); load_const(temp_reg, (address) BiasedLocking::revoked_lock_entry_count_addr(), temp2_reg); lwz(temp2_reg, 0, temp_reg); addi(temp2_reg, temp2_reg, 1); stw(temp2_reg, 0, temp_reg); bind(l); } bind(cas_label); } void MacroAssembler::biased_locking_exit (ConditionRegister cr_reg, Register mark_addr, Register temp_reg, Label& done) { // Check for biased locking unlock case, which is a no-op // Note: we do not have to check the thread ID for two reasons. // First, the interpreter checks for IllegalMonitorStateException at // a higher level. Second, if the bias was revoked while we held the // lock, the object could not be rebiased toward another thread, so // the bias bit would be clear. ld(temp_reg, 0, mark_addr); andi(temp_reg, temp_reg, markOopDesc::biased_lock_mask_in_place); cmpwi(cr_reg, temp_reg, markOopDesc::biased_lock_pattern); beq(cr_reg, done); } // "The box" is the space on the stack where we copy the object mark. void MacroAssembler::compiler_fast_lock_object(ConditionRegister flag, Register oop, Register box, Register temp, Register displaced_header, Register current_header) { assert_different_registers(oop, box, temp, displaced_header, current_header); assert(flag != CCR0, "bad condition register"); Label cont; Label object_has_monitor; Label cas_failed; // Load markOop from object into displaced_header. ld(displaced_header, oopDesc::mark_offset_in_bytes(), oop); // Always do locking in runtime. if (EmitSync & 0x01) { cmpdi(flag, oop, 0); // Oop can't be 0 here => always false. return; } if (UseBiasedLocking) { biased_locking_enter(flag, oop, displaced_header, temp, current_header, cont); } // Handle existing monitor. if ((EmitSync & 0x02) == 0) { // The object has an existing monitor iff (mark & monitor_value) != 0. andi_(temp, displaced_header, markOopDesc::monitor_value); bne(CCR0, object_has_monitor); } // Set displaced_header to be (markOop of object | UNLOCK_VALUE). ori(displaced_header, displaced_header, markOopDesc::unlocked_value); // Load Compare Value application register. // Initialize the box. (Must happen before we update the object mark!) std(displaced_header, BasicLock::displaced_header_offset_in_bytes(), box); // Must fence, otherwise, preceding store(s) may float below cmpxchg. // Compare object markOop with mark and if equal exchange scratch1 with object markOop. // CmpxchgX sets cr_reg to cmpX(current, displaced). membar(Assembler::StoreStore); cmpxchgd(/*flag=*/flag, /*current_value=*/current_header, /*compare_value=*/displaced_header, /*exchange_value=*/box, /*where=*/oop, MacroAssembler::MemBarAcq, MacroAssembler::cmpxchgx_hint_acquire_lock(), noreg, &cas_failed); assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0"); // If the compare-and-exchange succeeded, then we found an unlocked // object and we have now locked it. b(cont); bind(cas_failed); // We did not see an unlocked object so try the fast recursive case. // Check if the owner is self by comparing the value in the markOop of object // (current_header) with the stack pointer. sub(current_header, current_header, R1_SP); load_const_optimized(temp, (address) (~(os::vm_page_size()-1) | markOopDesc::lock_mask_in_place)); and_(R0/*==0?*/, current_header, temp); // If condition is true we are cont and hence we can store 0 as the // displaced header in the box, which indicates that it is a recursive lock. mcrf(flag,CCR0); std(R0/*==0, perhaps*/, BasicLock::displaced_header_offset_in_bytes(), box); // Handle existing monitor. if ((EmitSync & 0x02) == 0) { b(cont); bind(object_has_monitor); // The object's monitor m is unlocked iff m->owner == NULL, // otherwise m->owner may contain a thread or a stack address. // // Try to CAS m->owner from NULL to current thread. addi(temp, displaced_header, ObjectMonitor::owner_offset_in_bytes()-markOopDesc::monitor_value); li(displaced_header, 0); // CmpxchgX sets flag to cmpX(current, displaced). cmpxchgd(/*flag=*/flag, /*current_value=*/current_header, /*compare_value=*/displaced_header, /*exchange_value=*/R16_thread, /*where=*/temp, MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq, MacroAssembler::cmpxchgx_hint_acquire_lock()); // Store a non-null value into the box. std(box, BasicLock::displaced_header_offset_in_bytes(), box); # ifdef ASSERT bne(flag, cont); // We have acquired the monitor, check some invariants. addi(/*monitor=*/temp, temp, -ObjectMonitor::owner_offset_in_bytes()); // Invariant 1: _recursions should be 0. //assert(ObjectMonitor::recursions_size_in_bytes() == 8, "unexpected size"); asm_assert_mem8_is_zero(ObjectMonitor::recursions_offset_in_bytes(), temp, "monitor->_recursions should be 0", -1); // Invariant 2: OwnerIsThread shouldn't be 0. //assert(ObjectMonitor::OwnerIsThread_size_in_bytes() == 4, "unexpected size"); //asm_assert_mem4_isnot_zero(ObjectMonitor::OwnerIsThread_offset_in_bytes(), temp, // "monitor->OwnerIsThread shouldn't be 0", -1); # endif } bind(cont); // flag == EQ indicates success // flag == NE indicates failure } void MacroAssembler::compiler_fast_unlock_object(ConditionRegister flag, Register oop, Register box, Register temp, Register displaced_header, Register current_header) { assert_different_registers(oop, box, temp, displaced_header, current_header); assert(flag != CCR0, "bad condition register"); Label cont; Label object_has_monitor; // Always do locking in runtime. if (EmitSync & 0x01) { cmpdi(flag, oop, 0); // Oop can't be 0 here => always false. return; } if (UseBiasedLocking) { biased_locking_exit(flag, oop, current_header, cont); } // Find the lock address and load the displaced header from the stack. ld(displaced_header, BasicLock::displaced_header_offset_in_bytes(), box); // If the displaced header is 0, we have a recursive unlock. cmpdi(flag, displaced_header, 0); beq(flag, cont); // Handle existing monitor. if ((EmitSync & 0x02) == 0) { // The object has an existing monitor iff (mark & monitor_value) != 0. ld(current_header, oopDesc::mark_offset_in_bytes(), oop); andi(temp, current_header, markOopDesc::monitor_value); cmpdi(flag, temp, 0); bne(flag, object_has_monitor); } // Check if it is still a light weight lock, this is is true if we see // the stack address of the basicLock in the markOop of the object. // Cmpxchg sets flag to cmpd(current_header, box). cmpxchgd(/*flag=*/flag, /*current_value=*/current_header, /*compare_value=*/box, /*exchange_value=*/displaced_header, /*where=*/oop, MacroAssembler::MemBarRel, MacroAssembler::cmpxchgx_hint_release_lock(), noreg, &cont); assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0"); // Handle existing monitor. if ((EmitSync & 0x02) == 0) { b(cont); bind(object_has_monitor); addi(current_header, current_header, -markOopDesc::monitor_value); // monitor ld(temp, ObjectMonitor::owner_offset_in_bytes(), current_header); ld(displaced_header, ObjectMonitor::recursions_offset_in_bytes(), current_header); xorr(temp, R16_thread, temp); // Will be 0 if we are the owner. orr(temp, temp, displaced_header); // Will be 0 if there are 0 recursions. cmpdi(flag, temp, 0); bne(flag, cont); ld(temp, ObjectMonitor::EntryList_offset_in_bytes(), current_header); ld(displaced_header, ObjectMonitor::cxq_offset_in_bytes(), current_header); orr(temp, temp, displaced_header); // Will be 0 if both are 0. cmpdi(flag, temp, 0); bne(flag, cont); release(); std(temp, ObjectMonitor::owner_offset_in_bytes(), current_header); } bind(cont); // flag == EQ indicates success // flag == NE indicates failure } // Write serialization page so VM thread can do a pseudo remote membar. // We use the current thread pointer to calculate a thread specific // offset to write to within the page. This minimizes bus traffic // due to cache line collision. void MacroAssembler::serialize_memory(Register thread, Register tmp1, Register tmp2) { srdi(tmp2, thread, os::get_serialize_page_shift_count()); int mask = os::vm_page_size() - sizeof(int); if (Assembler::is_simm(mask, 16)) { andi(tmp2, tmp2, mask); } else { lis(tmp1, (int)((signed short) (mask >> 16))); ori(tmp1, tmp1, mask & 0x0000ffff); andr(tmp2, tmp2, tmp1); } load_const(tmp1, (long) os::get_memory_serialize_page()); release(); stwx(R0, tmp1, tmp2); } // GC barrier helper macros // Write the card table byte if needed. void MacroAssembler::card_write_barrier_post(Register Rstore_addr, Register Rnew_val, Register Rtmp) { CardTableModRefBS* bs = (CardTableModRefBS*) Universe::heap()->barrier_set(); assert(bs->kind() == BarrierSet::CardTableModRef || bs->kind() == BarrierSet::CardTableExtension, "wrong barrier"); #ifdef ASSERT cmpdi(CCR0, Rnew_val, 0); asm_assert_ne("null oop not allowed", 0x321); #endif card_table_write(bs->byte_map_base, Rtmp, Rstore_addr); } // Write the card table byte. void MacroAssembler::card_table_write(jbyte* byte_map_base, Register Rtmp, Register Robj) { assert_different_registers(Robj, Rtmp, R0); load_const_optimized(Rtmp, (address)byte_map_base, R0); srdi(Robj, Robj, CardTableModRefBS::card_shift); li(R0, 0); // dirty if (UseConcMarkSweepGC) membar(Assembler::StoreStore); stbx(R0, Rtmp, Robj); } #if INCLUDE_ALL_GCS // General G1 pre-barrier generator. // Goal: record the previous value if it is not null. void MacroAssembler::g1_write_barrier_pre(Register Robj, RegisterOrConstant offset, Register Rpre_val, Register Rtmp1, Register Rtmp2, bool needs_frame) { Label runtime, filtered; // Is marking active? if (in_bytes(PtrQueue::byte_width_of_active()) == 4) { lwz(Rtmp1, in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_active()), R16_thread); } else { guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1, "Assumption"); lbz(Rtmp1, in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_active()), R16_thread); } cmpdi(CCR0, Rtmp1, 0); beq(CCR0, filtered); // Do we need to load the previous value? if (Robj != noreg) { // Load the previous value... if (UseCompressedOops) { lwz(Rpre_val, offset, Robj); } else { ld(Rpre_val, offset, Robj); } // Previous value has been loaded into Rpre_val. } assert(Rpre_val != noreg, "must have a real register"); // Is the previous value null? cmpdi(CCR0, Rpre_val, 0); beq(CCR0, filtered); if (Robj != noreg && UseCompressedOops) { decode_heap_oop_not_null(Rpre_val); } // OK, it's not filtered, so we'll need to call enqueue. In the normal // case, pre_val will be a scratch G-reg, but there are some cases in // which it's an O-reg. In the first case, do a normal call. In the // latter, do a save here and call the frameless version. // Can we store original value in the thread's buffer? // Is index == 0? // (The index field is typed as size_t.) const Register Rbuffer = Rtmp1, Rindex = Rtmp2; ld(Rindex, in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_index()), R16_thread); cmpdi(CCR0, Rindex, 0); beq(CCR0, runtime); // If index == 0, goto runtime. ld(Rbuffer, in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_buf()), R16_thread); addi(Rindex, Rindex, -wordSize); // Decrement index. std(Rindex, in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_index()), R16_thread); // Record the previous value. stdx(Rpre_val, Rbuffer, Rindex); b(filtered); bind(runtime); // VM call need frame to access(write) O register. if (needs_frame) { save_LR_CR(Rtmp1); push_frame_reg_args(0, Rtmp2); } if (Rpre_val->is_volatile() && Robj == noreg) mr(R31, Rpre_val); // Save pre_val across C call if it was preloaded. call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), Rpre_val, R16_thread); if (Rpre_val->is_volatile() && Robj == noreg) mr(Rpre_val, R31); // restore if (needs_frame) { pop_frame(); restore_LR_CR(Rtmp1); } bind(filtered); } // General G1 post-barrier generator // Store cross-region card. void MacroAssembler::g1_write_barrier_post(Register Rstore_addr, Register Rnew_val, Register Rtmp1, Register Rtmp2, Register Rtmp3, Label *filtered_ext) { Label runtime, filtered_int; Label& filtered = (filtered_ext != NULL) ? *filtered_ext : filtered_int; assert_different_registers(Rstore_addr, Rnew_val, Rtmp1, Rtmp2); G1SATBCardTableModRefBS* bs = (G1SATBCardTableModRefBS*) Universe::heap()->barrier_set(); assert(bs->kind() == BarrierSet::G1SATBCT || bs->kind() == BarrierSet::G1SATBCTLogging, "wrong barrier"); // Does store cross heap regions? if (G1RSBarrierRegionFilter) { xorr(Rtmp1, Rstore_addr, Rnew_val); srdi_(Rtmp1, Rtmp1, HeapRegion::LogOfHRGrainBytes); beq(CCR0, filtered); } // Crosses regions, storing NULL? #ifdef ASSERT cmpdi(CCR0, Rnew_val, 0); asm_assert_ne("null oop not allowed (G1)", 0x322); // Checked by caller on PPC64, so following branch is obsolete: //beq(CCR0, filtered); #endif // Storing region crossing non-NULL, is card already dirty? assert(sizeof(*bs->byte_map_base) == sizeof(jbyte), "adjust this code"); const Register Rcard_addr = Rtmp1; Register Rbase = Rtmp2; load_const_optimized(Rbase, (address)bs->byte_map_base, /*temp*/ Rtmp3); srdi(Rcard_addr, Rstore_addr, CardTableModRefBS::card_shift); // Get the address of the card. lbzx(/*card value*/ Rtmp3, Rbase, Rcard_addr); cmpwi(CCR0, Rtmp3, (int)G1SATBCardTableModRefBS::g1_young_card_val()); beq(CCR0, filtered); membar(Assembler::StoreLoad); lbzx(/*card value*/ Rtmp3, Rbase, Rcard_addr); // Reload after membar. cmpwi(CCR0, Rtmp3 /* card value */, CardTableModRefBS::dirty_card_val()); beq(CCR0, filtered); // Storing a region crossing, non-NULL oop, card is clean. // Dirty card and log. li(Rtmp3, CardTableModRefBS::dirty_card_val()); //release(); // G1: oops are allowed to get visible after dirty marking. stbx(Rtmp3, Rbase, Rcard_addr); add(Rcard_addr, Rbase, Rcard_addr); // This is the address which needs to get enqueued. Rbase = noreg; // end of lifetime const Register Rqueue_index = Rtmp2, Rqueue_buf = Rtmp3; ld(Rqueue_index, in_bytes(JavaThread::dirty_card_queue_offset() + PtrQueue::byte_offset_of_index()), R16_thread); cmpdi(CCR0, Rqueue_index, 0); beq(CCR0, runtime); // index == 0 then jump to runtime ld(Rqueue_buf, in_bytes(JavaThread::dirty_card_queue_offset() + PtrQueue::byte_offset_of_buf()), R16_thread); addi(Rqueue_index, Rqueue_index, -wordSize); // decrement index std(Rqueue_index, in_bytes(JavaThread::dirty_card_queue_offset() + PtrQueue::byte_offset_of_index()), R16_thread); stdx(Rcard_addr, Rqueue_buf, Rqueue_index); // store card b(filtered); bind(runtime); // Save the live input values. call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), Rcard_addr, R16_thread); bind(filtered_int); } #endif // INCLUDE_ALL_GCS // Values for last_Java_pc, and last_Java_sp must comply to the rules // in frame_ppc.hpp. void MacroAssembler::set_last_Java_frame(Register last_Java_sp, Register last_Java_pc) { // Always set last_Java_pc and flags first because once last_Java_sp // is visible has_last_Java_frame is true and users will look at the // rest of the fields. (Note: flags should always be zero before we // get here so doesn't need to be set.) // Verify that last_Java_pc was zeroed on return to Java asm_assert_mem8_is_zero(in_bytes(JavaThread::last_Java_pc_offset()), R16_thread, "last_Java_pc not zeroed before leaving Java", 0x200); // When returning from calling out from Java mode the frame anchor's // last_Java_pc will always be set to NULL. It is set here so that // if we are doing a call to native (not VM) that we capture the // known pc and don't have to rely on the native call having a // standard frame linkage where we can find the pc. if (last_Java_pc != noreg) std(last_Java_pc, in_bytes(JavaThread::last_Java_pc_offset()), R16_thread); // Set last_Java_sp last. std(last_Java_sp, in_bytes(JavaThread::last_Java_sp_offset()), R16_thread); } void MacroAssembler::reset_last_Java_frame(void) { asm_assert_mem8_isnot_zero(in_bytes(JavaThread::last_Java_sp_offset()), R16_thread, "SP was not set, still zero", 0x202); BLOCK_COMMENT("reset_last_Java_frame {"); li(R0, 0); // _last_Java_sp = 0 std(R0, in_bytes(JavaThread::last_Java_sp_offset()), R16_thread); // _last_Java_pc = 0 std(R0, in_bytes(JavaThread::last_Java_pc_offset()), R16_thread); BLOCK_COMMENT("} reset_last_Java_frame"); } void MacroAssembler::set_top_ijava_frame_at_SP_as_last_Java_frame(Register sp, Register tmp1) { assert_different_registers(sp, tmp1); // sp points to a TOP_IJAVA_FRAME, retrieve frame's PC via // TOP_IJAVA_FRAME_ABI. // FIXME: assert that we really have a TOP_IJAVA_FRAME here! #ifdef CC_INTERP ld(tmp1/*pc*/, _top_ijava_frame_abi(frame_manager_lr), sp); #else address entry = pc(); load_const_optimized(tmp1, entry); #endif set_last_Java_frame(/*sp=*/sp, /*pc=*/tmp1); } void MacroAssembler::get_vm_result(Register oop_result) { // Read: // R16_thread // R16_thread->in_bytes(JavaThread::vm_result_offset()) // // Updated: // oop_result // R16_thread->in_bytes(JavaThread::vm_result_offset()) ld(oop_result, in_bytes(JavaThread::vm_result_offset()), R16_thread); li(R0, 0); std(R0, in_bytes(JavaThread::vm_result_offset()), R16_thread); verify_oop(oop_result); } void MacroAssembler::get_vm_result_2(Register metadata_result) { // Read: // R16_thread // R16_thread->in_bytes(JavaThread::vm_result_2_offset()) // // Updated: // metadata_result // R16_thread->in_bytes(JavaThread::vm_result_2_offset()) ld(metadata_result, in_bytes(JavaThread::vm_result_2_offset()), R16_thread); li(R0, 0); std(R0, in_bytes(JavaThread::vm_result_2_offset()), R16_thread); } void MacroAssembler::encode_klass_not_null(Register dst, Register src) { Register current = (src != noreg) ? src : dst; // Klass is in dst if no src provided. if (Universe::narrow_klass_base() != 0) { // Use dst as temp if it is free. load_const(R0, Universe::narrow_klass_base(), (dst != current && dst != R0) ? dst : noreg); sub(dst, current, R0); current = dst; } if (Universe::narrow_klass_shift() != 0) { srdi(dst, current, Universe::narrow_klass_shift()); current = dst; } mr_if_needed(dst, current); // Move may be required. } void MacroAssembler::store_klass(Register dst_oop, Register klass, Register ck) { if (UseCompressedClassPointers) { encode_klass_not_null(ck, klass); stw(ck, oopDesc::klass_offset_in_bytes(), dst_oop); } else { std(klass, oopDesc::klass_offset_in_bytes(), dst_oop); } } void MacroAssembler::store_klass_gap(Register dst_oop, Register val) { if (UseCompressedClassPointers) { if (val == noreg) { val = R0; li(val, 0); } stw(val, oopDesc::klass_gap_offset_in_bytes(), dst_oop); // klass gap if compressed } } int MacroAssembler::instr_size_for_decode_klass_not_null() { if (!UseCompressedClassPointers) return 0; int num_instrs = 1; // shift or move if (Universe::narrow_klass_base() != 0) num_instrs = 7; // shift + load const + add return num_instrs * BytesPerInstWord; } void MacroAssembler::decode_klass_not_null(Register dst, Register src) { assert(dst != R0, "Dst reg may not be R0, as R0 is used here."); if (src == noreg) src = dst; Register shifted_src = src; if (Universe::narrow_klass_shift() != 0 || Universe::narrow_klass_base() == 0 && src != dst) { // Move required. shifted_src = dst; sldi(shifted_src, src, Universe::narrow_klass_shift()); } if (Universe::narrow_klass_base() != 0) { load_const(R0, Universe::narrow_klass_base()); add(dst, shifted_src, R0); } } void MacroAssembler::load_klass(Register dst, Register src) { if (UseCompressedClassPointers) { lwz(dst, oopDesc::klass_offset_in_bytes(), src); // Attention: no null check here! decode_klass_not_null(dst, dst); } else { ld(dst, oopDesc::klass_offset_in_bytes(), src); } } void MacroAssembler::load_klass_with_trap_null_check(Register dst, Register src) { if (!os::zero_page_read_protected()) { if (TrapBasedNullChecks) { trap_null_check(src); } } load_klass(dst, src); } void MacroAssembler::reinit_heapbase(Register d, Register tmp) { if (Universe::heap() != NULL) { load_const_optimized(R30, Universe::narrow_ptrs_base(), tmp); } else { // Heap not yet allocated. Load indirectly. int simm16_offset = load_const_optimized(R30, Universe::narrow_ptrs_base_addr(), tmp, true); ld(R30, simm16_offset, R30); } } // Clear Array // Kills both input registers. tmp == R0 is allowed. void MacroAssembler::clear_memory_doubleword(Register base_ptr, Register cnt_dwords, Register tmp) { // Procedure for large arrays (uses data cache block zero instruction). Label startloop, fast, fastloop, small_rest, restloop, done; const int cl_size = VM_Version::get_cache_line_size(), cl_dwords = cl_size>>3, cl_dw_addr_bits = exact_log2(cl_dwords), dcbz_min = 1; // Min count of dcbz executions, needs to be >0. //2: cmpdi(CCR1, cnt_dwords, ((dcbz_min+1)<=dcbz_min lines included). blt(CCR1, small_rest); // Too small. rldicl_(tmp, base_ptr, 64-3, 64-cl_dw_addr_bits); // Extract dword offset within first cache line. beq(CCR0, fast); // Already 128byte aligned. subfic(tmp, tmp, cl_dwords); mtctr(tmp); // Set ctr to hit 128byte boundary (00). andi(cnt_dwords, cnt_dwords, cl_dwords-1); // Rest in dwords. mtctr(tmp); // Load counter. //16: bind(fastloop); dcbz(base_ptr); // Clear 128byte aligned block. addi(base_ptr, base_ptr, cl_size); bdnz(fastloop); if (InsertEndGroupPPC64) { endgroup(); } else { nop(); } //20: bind(small_rest); cmpdi(CCR0, cnt_dwords, 0); // size 0? beq(CCR0, done); // rest == 0 li(tmp, 0); mtctr(cnt_dwords); // Load counter. //24: bind(restloop); // Clear rest. std(tmp, 0, base_ptr); // Clear 8byte aligned block. addi(base_ptr, base_ptr, 8); bdnz(restloop); //27: bind(done); } /////////////////////////////////////////// String intrinsics //////////////////////////////////////////// // Search for a single jchar in an jchar[]. // // Assumes that result differs from all other registers. // // Haystack, needle are the addresses of jchar-arrays. // NeedleChar is needle[0] if it is known at compile time. // Haycnt is the length of the haystack. We assume haycnt >=1. // // Preserves haystack, haycnt, kills all other registers. // // If needle == R0, we search for the constant needleChar. void MacroAssembler::string_indexof_1(Register result, Register haystack, Register haycnt, Register needle, jchar needleChar, Register tmp1, Register tmp2) { assert_different_registers(result, haystack, haycnt, needle, tmp1, tmp2); Label L_InnerLoop, L_FinalCheck, L_Found1, L_Found2, L_Found3, L_NotFound, L_End; Register needle0 = needle, // Contains needle[0]. addr = tmp1, ch1 = tmp2, ch2 = R0; //2 (variable) or 3 (const): if (needle != R0) lhz(needle0, 0, needle); // Preload needle character, needle has len==1. dcbtct(haystack, 0x00); // Indicate R/O access to haystack. srwi_(tmp2, haycnt, 1); // Shift right by exact_log2(UNROLL_FACTOR). mr(addr, haystack); beq(CCR0, L_FinalCheck); mtctr(tmp2); // Move to count register. //8: bind(L_InnerLoop); // Main work horse (2x unrolled search loop). lhz(ch1, 0, addr); // Load characters from haystack. lhz(ch2, 2, addr); (needle != R0) ? cmpw(CCR0, ch1, needle0) : cmplwi(CCR0, ch1, needleChar); (needle != R0) ? cmpw(CCR1, ch2, needle0) : cmplwi(CCR1, ch2, needleChar); beq(CCR0, L_Found1); // Did we find the needle? beq(CCR1, L_Found2); addi(addr, addr, 4); bdnz(L_InnerLoop); //16: bind(L_FinalCheck); andi_(R0, haycnt, 1); beq(CCR0, L_NotFound); lhz(ch1, 0, addr); // One position left at which we have to compare. (needle != R0) ? cmpw(CCR1, ch1, needle0) : cmplwi(CCR1, ch1, needleChar); beq(CCR1, L_Found3); //21: bind(L_NotFound); li(result, -1); // Not found. b(L_End); bind(L_Found2); addi(addr, addr, 2); //24: bind(L_Found1); bind(L_Found3); // Return index ... subf(addr, haystack, addr); // relative to haystack, srdi(result, addr, 1); // in characters. bind(L_End); } // Implementation of IndexOf for jchar arrays. // // The length of haystack and needle are not constant, i.e. passed in a register. // // Preserves registers haystack, needle. // Kills registers haycnt, needlecnt. // Assumes that result differs from all other registers. // Haystack, needle are the addresses of jchar-arrays. // Haycnt, needlecnt are the lengths of them, respectively. // // Needlecntval must be zero or 15-bit unsigned immediate and > 1. void MacroAssembler::string_indexof(Register result, Register haystack, Register haycnt, Register needle, ciTypeArray* needle_values, Register needlecnt, int needlecntval, Register tmp1, Register tmp2, Register tmp3, Register tmp4) { // Ensure 0=2, bail out otherwise. // ************************************************************************************************** //1 (variable) or 3 (const): dcbtct(needle, 0x00); // Indicate R/O access to str1. dcbtct(haystack, 0x00); // Indicate R/O access to str2. // Compute last haystack addr to use if no match gets found. if (needlecntval == 0) { // variable needlecnt //3: subf(ch1, needlecnt, haycnt); // Last character index to compare is haycnt-needlecnt. addi(addr, haystack, -2); // Accesses use pre-increment. cmpwi(CCR6, needlecnt, 2); blt(CCR6, L_TooShort); // Variable needlecnt: handle short needle separately. slwi(ch1, ch1, 1); // Scale to number of bytes. lwz(n_start, 0, needle); // Load first 2 characters of needle. add(last_addr, haystack, ch1); // Point to last address to compare (haystack+2*(haycnt-needlecnt)). addi(needlecnt, needlecnt, -2); // Rest of needle. } else { // constant needlecnt guarantee(needlecntval != 1, "IndexOf with single-character needle must be handled separately"); assert((needlecntval & 0x7fff) == needlecntval, "wrong immediate"); //5: addi(ch1, haycnt, -needlecntval); // Last character index to compare is haycnt-needlecnt. lwz(n_start, 0, needle); // Load first 2 characters of needle. addi(addr, haystack, -2); // Accesses use pre-increment. slwi(ch1, ch1, 1); // Scale to number of bytes. add(last_addr, haystack, ch1); // Point to last address to compare (haystack+2*(haycnt-needlecnt)). li(needlecnt, needlecntval-2); // Rest of needle. } // Main Loop (now we have at least 3 characters). //11: Label L_OuterLoop, L_InnerLoop, L_FinalCheck, L_Comp1, L_Comp2, L_Comp3; bind(L_OuterLoop); // Search for 1st 2 characters. Register addr_diff = tmp4; subf(addr_diff, addr, last_addr); // Difference between already checked address and last address to check. addi(addr, addr, 2); // This is the new address we want to use for comparing. srdi_(ch2, addr_diff, 2); beq(CCR0, L_FinalCheck); // 2 characters left? mtctr(ch2); // addr_diff/4 //16: bind(L_InnerLoop); // Main work horse (2x unrolled search loop) lwz(ch1, 0, addr); // Load 2 characters of haystack (ignore alignment). lwz(ch2, 2, addr); cmpw(CCR0, ch1, n_start); // Compare 2 characters (1 would be sufficient but try to reduce branches to CompLoop). cmpw(CCR1, ch2, n_start); beq(CCR0, L_Comp1); // Did we find the needle start? beq(CCR1, L_Comp2); addi(addr, addr, 4); bdnz(L_InnerLoop); //24: bind(L_FinalCheck); rldicl_(addr_diff, addr_diff, 64-1, 63); // Remaining characters not covered by InnerLoop: (addr_diff>>1)&1. beq(CCR0, L_NotFound); lwz(ch1, 0, addr); // One position left at which we have to compare. cmpw(CCR1, ch1, n_start); beq(CCR1, L_Comp3); //29: bind(L_NotFound); li(result, -1); // not found b(L_End); // ************************************************************************************************** // Special Case: unfortunately, the variable needle case can be called with needlecnt<2 // ************************************************************************************************** //31: if ((needlecntval>>1) !=1 ) { // Const needlecnt is 2 or 3? Reduce code size. int nopcnt = 5; if (needlecntval !=0 ) ++nopcnt; // Balance alignment (other case: see below). if (needlecntval == 0) { // We have to handle these cases separately. Label L_OneCharLoop; bind(L_TooShort); mtctr(haycnt); lhz(n_start, 0, needle); // First character of needle bind(L_OneCharLoop); lhzu(ch1, 2, addr); cmpw(CCR1, ch1, n_start); beq(CCR1, L_Found); // Did we find the one character needle? bdnz(L_OneCharLoop); li(result, -1); // Not found. b(L_End); } // 8 instructions, so no impact on alignment. for (int x = 0; x < nopcnt; ++x) nop(); } // ************************************************************************************************** // Regular Case Part II: compare rest of needle (first 2 characters have been compared already) // ************************************************************************************************** // Compare the rest //36 if needlecntval==0, else 37: bind(L_Comp2); addi(addr, addr, 2); // First comparison has failed, 2nd one hit. bind(L_Comp1); // Addr points to possible needle start. bind(L_Comp3); // Could have created a copy and use a different return address but saving code size here. if (needlecntval != 2) { // Const needlecnt==2? if (needlecntval != 3) { if (needlecntval == 0) beq(CCR6, L_Found); // Variable needlecnt==2? Register ind_reg = tmp4; li(ind_reg, 2*2); // First 2 characters are already compared, use index 2. mtctr(needlecnt); // Decremented by 2, still > 0. //40: Label L_CompLoop; bind(L_CompLoop); lhzx(ch2, needle, ind_reg); lhzx(ch1, addr, ind_reg); cmpw(CCR1, ch1, ch2); bne(CCR1, L_OuterLoop); addi(ind_reg, ind_reg, 2); bdnz(L_CompLoop); } else { // No loop required if there's only one needle character left. lhz(ch2, 2*2, needle); lhz(ch1, 2*2, addr); cmpw(CCR1, ch1, ch2); bne(CCR1, L_OuterLoop); } } // Return index ... //46: bind(L_Found); subf(addr, haystack, addr); // relative to haystack, ... srdi(result, addr, 1); // in characters. //48: bind(L_End); } // Implementation of Compare for jchar arrays. // // Kills the registers str1, str2, cnt1, cnt2. // Kills cr0, ctr. // Assumes that result differes from the input registers. void MacroAssembler::string_compare(Register str1_reg, Register str2_reg, Register cnt1_reg, Register cnt2_reg, Register result_reg, Register tmp_reg) { assert_different_registers(result_reg, str1_reg, str2_reg, cnt1_reg, cnt2_reg, tmp_reg); Label Ldone, Lslow_case, Lslow_loop, Lfast_loop; Register cnt_diff = R0, limit_reg = cnt1_reg, chr1_reg = result_reg, chr2_reg = cnt2_reg, addr_diff = str2_reg; // Offset 0 should be 32 byte aligned. //-4: dcbtct(str1_reg, 0x00); // Indicate R/O access to str1. dcbtct(str2_reg, 0x00); // Indicate R/O access to str2. //-2: // Compute min(cnt1, cnt2) and check if 0 (bail out if we don't need to compare characters). subf(result_reg, cnt2_reg, cnt1_reg); // difference between cnt1/2 subf_(addr_diff, str1_reg, str2_reg); // alias? beq(CCR0, Ldone); // return cnt difference if both ones are identical srawi(limit_reg, result_reg, 31); // generate signmask (cnt1/2 must be non-negative so cnt_diff can't overflow) mr(cnt_diff, result_reg); andr(limit_reg, result_reg, limit_reg); // difference or zero (negative): cnt14 characters for fast loop andi(limit_reg, tmp_reg, 4-1); // remaining characters // Adapt str1_reg str2_reg for the first loop iteration mtctr(chr2_reg); // (min(cnt1, cnt2)-1)/4 addi(limit_reg, limit_reg, 4+1); // compare last 5-8 characters in slow_case if mismatch found in fast_loop //16: // Compare the rest of the characters bind(Lfast_loop); ld(chr1_reg, 0, str1_reg); ldx(chr2_reg, str1_reg, addr_diff); cmpd(CCR0, chr2_reg, chr1_reg); bne(CCR0, Lslow_case); // return chr1_reg addi(str1_reg, str1_reg, 4*2); bdnz(Lfast_loop); addi(limit_reg, limit_reg, -4); // no mismatch found in fast_loop, only 1-4 characters missing //23: bind(Lslow_case); mtctr(limit_reg); //24: bind(Lslow_loop); lhz(chr1_reg, 0, str1_reg); lhzx(chr2_reg, str1_reg, addr_diff); subf_(result_reg, chr2_reg, chr1_reg); bne(CCR0, Ldone); // return chr1_reg addi(str1_reg, str1_reg, 1*2); bdnz(Lslow_loop); //30: // If strings are equal up to min length, return the length difference. mr(result_reg, cnt_diff); nop(); // alignment //32: // Otherwise, return the difference between the first mismatched chars. bind(Ldone); } // Compare char[] arrays. // // str1_reg USE only // str2_reg USE only // cnt_reg USE_DEF, due to tmp reg shortage // result_reg DEF only, might compromise USE only registers void MacroAssembler::char_arrays_equals(Register str1_reg, Register str2_reg, Register cnt_reg, Register result_reg, Register tmp1_reg, Register tmp2_reg, Register tmp3_reg, Register tmp4_reg, Register tmp5_reg) { // Str1 may be the same register as str2 which can occur e.g. after scalar replacement. assert_different_registers(result_reg, str1_reg, cnt_reg, tmp1_reg, tmp2_reg, tmp3_reg, tmp4_reg, tmp5_reg); assert_different_registers(result_reg, str2_reg, cnt_reg, tmp1_reg, tmp2_reg, tmp3_reg, tmp4_reg, tmp5_reg); // Offset 0 should be 32 byte aligned. Label Linit_cbc, Lcbc, Lloop, Ldone_true, Ldone_false; Register index_reg = tmp5_reg; Register cbc_iter = tmp4_reg; //-1: dcbtct(str1_reg, 0x00); // Indicate R/O access to str1. dcbtct(str2_reg, 0x00); // Indicate R/O access to str2. //1: andi(cbc_iter, cnt_reg, 4-1); // Remaining iterations after 4 java characters per iteration loop. li(index_reg, 0); // init li(result_reg, 0); // assume false srwi_(tmp2_reg, cnt_reg, exact_log2(4)); // Div: 4 java characters per iteration (main loop). cmpwi(CCR1, cbc_iter, 0); // CCR1 = (cbc_iter==0) beq(CCR0, Linit_cbc); // too short mtctr(tmp2_reg); //8: bind(Lloop); ldx(tmp1_reg, str1_reg, index_reg); ldx(tmp2_reg, str2_reg, index_reg); cmpd(CCR0, tmp1_reg, tmp2_reg); bne(CCR0, Ldone_false); // Unequal char pair found -> done. addi(index_reg, index_reg, 4*sizeof(jchar)); bdnz(Lloop); //14: bind(Linit_cbc); beq(CCR1, Ldone_true); mtctr(cbc_iter); //16: bind(Lcbc); lhzx(tmp1_reg, str1_reg, index_reg); lhzx(tmp2_reg, str2_reg, index_reg); cmpw(CCR0, tmp1_reg, tmp2_reg); bne(CCR0, Ldone_false); // Unequal char pair found -> done. addi(index_reg, index_reg, 1*sizeof(jchar)); bdnz(Lcbc); nop(); bind(Ldone_true); li(result_reg, 1); //24: bind(Ldone_false); } void MacroAssembler::char_arrays_equalsImm(Register str1_reg, Register str2_reg, int cntval, Register result_reg, Register tmp1_reg, Register tmp2_reg) { // Str1 may be the same register as str2 which can occur e.g. after scalar replacement. assert_different_registers(result_reg, str1_reg, tmp1_reg, tmp2_reg); assert_different_registers(result_reg, str2_reg, tmp1_reg, tmp2_reg); assert(sizeof(jchar) == 2, "must be"); assert(cntval >= 0 && ((cntval & 0x7fff) == cntval), "wrong immediate"); Label Ldone_false; if (cntval < 16) { // short case if (cntval != 0) li(result_reg, 0); // assume false const int num_bytes = cntval*sizeof(jchar); int index = 0; for (int next_index; (next_index = index + 8) <= num_bytes; index = next_index) { ld(tmp1_reg, index, str1_reg); ld(tmp2_reg, index, str2_reg); cmpd(CCR0, tmp1_reg, tmp2_reg); bne(CCR0, Ldone_false); } if (cntval & 2) { lwz(tmp1_reg, index, str1_reg); lwz(tmp2_reg, index, str2_reg); cmpw(CCR0, tmp1_reg, tmp2_reg); bne(CCR0, Ldone_false); index += 4; } if (cntval & 1) { lhz(tmp1_reg, index, str1_reg); lhz(tmp2_reg, index, str2_reg); cmpw(CCR0, tmp1_reg, tmp2_reg); bne(CCR0, Ldone_false); } // fallthrough: true } else { Label Lloop; Register index_reg = tmp1_reg; const int loopcnt = cntval/4; assert(loopcnt > 0, "must be"); // Offset 0 should be 32 byte aligned. //2: dcbtct(str1_reg, 0x00); // Indicate R/O access to str1. dcbtct(str2_reg, 0x00); // Indicate R/O access to str2. li(tmp2_reg, loopcnt); li(index_reg, 0); // init li(result_reg, 0); // assume false mtctr(tmp2_reg); //8: bind(Lloop); ldx(R0, str1_reg, index_reg); ldx(tmp2_reg, str2_reg, index_reg); cmpd(CCR0, R0, tmp2_reg); bne(CCR0, Ldone_false); // Unequal char pair found -> done. addi(index_reg, index_reg, 4*sizeof(jchar)); bdnz(Lloop); //14: if (cntval & 2) { lwzx(R0, str1_reg, index_reg); lwzx(tmp2_reg, str2_reg, index_reg); cmpw(CCR0, R0, tmp2_reg); bne(CCR0, Ldone_false); if (cntval & 1) addi(index_reg, index_reg, 2*sizeof(jchar)); } if (cntval & 1) { lhzx(R0, str1_reg, index_reg); lhzx(tmp2_reg, str2_reg, index_reg); cmpw(CCR0, R0, tmp2_reg); bne(CCR0, Ldone_false); } // fallthru: true } li(result_reg, 1); bind(Ldone_false); } void MacroAssembler::asm_assert(bool check_equal, const char *msg, int id) { #ifdef ASSERT Label ok; if (check_equal) { beq(CCR0, ok); } else { bne(CCR0, ok); } stop(msg, id); bind(ok); #endif } void MacroAssembler::asm_assert_mems_zero(bool check_equal, int size, int mem_offset, Register mem_base, const char* msg, int id) { #ifdef ASSERT switch (size) { case 4: lwz(R0, mem_offset, mem_base); cmpwi(CCR0, R0, 0); break; case 8: ld(R0, mem_offset, mem_base); cmpdi(CCR0, R0, 0); break; default: ShouldNotReachHere(); } asm_assert(check_equal, msg, id); #endif // ASSERT } void MacroAssembler::verify_thread() { if (VerifyThread) { unimplemented("'VerifyThread' currently not implemented on PPC"); } } // READ: oop. KILL: R0. Volatile floats perhaps. void MacroAssembler::verify_oop(Register oop, const char* msg) { if (!VerifyOops) { return; } // Will be preserved. Register tmp = R11; assert(oop != tmp, "precondition"); unsigned int nbytes_save = 10*8; // 10 volatile gprs address/* FunctionDescriptor** */fd = StubRoutines::verify_oop_subroutine_entry_address(); // save tmp mr(R0, tmp); // kill tmp save_LR_CR(tmp); push_frame_reg_args(nbytes_save, tmp); // restore tmp mr(tmp, R0); save_volatile_gprs(R1_SP, 112); // except R0 // load FunctionDescriptor** / entry_address * load_const(tmp, fd); // load FunctionDescriptor* / entry_address ld(tmp, 0, tmp); mr(R4_ARG2, oop); load_const(R3_ARG1, (address)msg); // call destination for its side effect call_c(tmp); restore_volatile_gprs(R1_SP, 112); // except R0 pop_frame(); // save tmp mr(R0, tmp); // kill tmp restore_LR_CR(tmp); // restore tmp mr(tmp, R0); } const char* stop_types[] = { "stop", "untested", "unimplemented", "shouldnotreachhere" }; static void stop_on_request(int tp, const char* msg) { tty->print("PPC assembly code requires stop: (%s) %s\n", (void *)stop_types[tp%/*stop_end*/4], msg); guarantee(false, err_msg("PPC assembly code requires stop: %s", msg)); } // Call a C-function that prints output. void MacroAssembler::stop(int type, const char* msg, int id) { #ifndef PRODUCT block_comment(err_msg("stop: %s %s {", stop_types[type%stop_end], msg)); #else block_comment("stop {"); #endif // setup arguments load_const_optimized(R3_ARG1, type); load_const_optimized(R4_ARG2, (void *)msg, /*tmp=*/R0); call_VM_leaf(CAST_FROM_FN_PTR(address, stop_on_request), R3_ARG1, R4_ARG2); illtrap(); emit_int32(id); block_comment("} stop;"); } #ifndef PRODUCT // Write pattern 0x0101010101010101 in memory region [low-before, high+after]. // Val, addr are temp registers. // If low == addr, addr is killed. // High is preserved. void MacroAssembler::zap_from_to(Register low, int before, Register high, int after, Register val, Register addr) { if (!ZapMemory) return; assert_different_registers(low, val); BLOCK_COMMENT("zap memory region {"); load_const_optimized(val, 0x0101010101010101); int size = before + after; if (low == high && size < 5 && size > 0) { int offset = -before*BytesPerWord; for (int i = 0; i < size; ++i) { std(val, offset, low); offset += (1*BytesPerWord); } } else { addi(addr, low, -before*BytesPerWord); assert_different_registers(high, val); if (after) addi(high, high, after * BytesPerWord); Label loop; bind(loop); std(val, 0, addr); addi(addr, addr, 8); cmpd(CCR6, addr, high); ble(CCR6, loop); if (after) addi(high, high, -after * BytesPerWord); // Correct back to old value. } BLOCK_COMMENT("} zap memory region"); } #endif // !PRODUCT SkipIfEqualZero::SkipIfEqualZero(MacroAssembler* masm, Register temp, const bool* flag_addr) : _masm(masm), _label() { int simm16_offset = masm->load_const_optimized(temp, (address)flag_addr, R0, true); assert(sizeof(bool) == 1, "PowerPC ABI"); masm->lbz(temp, simm16_offset, temp); masm->cmpwi(CCR0, temp, 0); masm->beq(CCR0, _label); } SkipIfEqualZero::~SkipIfEqualZero() { _masm->bind(_label); }