/* * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "compiler/compileLog.hpp" #include "interpreter/linkResolver.hpp" #include "memory/universe.inline.hpp" #include "oops/objArrayKlass.hpp" #include "opto/addnode.hpp" #include "opto/memnode.hpp" #include "opto/parse.hpp" #include "opto/rootnode.hpp" #include "opto/runtime.hpp" #include "opto/subnode.hpp" #include "runtime/deoptimization.hpp" #include "runtime/handles.inline.hpp" //============================================================================= // Helper methods for _get* and _put* bytecodes //============================================================================= bool Parse::static_field_ok_in_clinit(ciField *field, ciMethod *method) { // Could be the field_holder's method, or for a subklass. // Better to check now than to Deoptimize as soon as we execute assert( field->is_static(), "Only check if field is static"); // is_being_initialized() is too generous. It allows access to statics // by threads that are not running the before the finishes. // return field->holder()->is_being_initialized(); // The following restriction is correct but conservative. // It is also desirable to allow compilation of methods called from // but this generated code will need to be made safe for execution by // other threads, or the transition from interpreted to compiled code would // need to be guarded. ciInstanceKlass *field_holder = field->holder(); bool access_OK = false; if (method->holder()->is_subclass_of(field_holder)) { if (method->is_static()) { if (method->name() == ciSymbol::class_initializer_name()) { // OK to access static fields inside initializer access_OK = true; } } else { if (method->name() == ciSymbol::object_initializer_name()) { // It's also OK to access static fields inside a constructor, // because any thread calling the constructor must first have // synchronized on the class by executing a '_new' bytecode. access_OK = true; } } } return access_OK; } void Parse::do_field_access(bool is_get, bool is_field) { bool will_link; ciField* field = iter().get_field(will_link); assert(will_link, "getfield: typeflow responsibility"); ciInstanceKlass* field_holder = field->holder(); if (is_field == field->is_static()) { // Interpreter will throw java_lang_IncompatibleClassChangeError // Check this before allowing methods to access static fields uncommon_trap(Deoptimization::Reason_unhandled, Deoptimization::Action_none); return; } if (!is_field && !field_holder->is_initialized()) { if (!static_field_ok_in_clinit(field, method())) { uncommon_trap(Deoptimization::Reason_uninitialized, Deoptimization::Action_reinterpret, NULL, "!static_field_ok_in_clinit"); return; } } // Deoptimize on putfield writes to call site target field. if (!is_get && field->is_call_site_target()) { uncommon_trap(Deoptimization::Reason_unhandled, Deoptimization::Action_reinterpret, NULL, "put to call site target field"); return; } assert(field->will_link(method()->holder(), bc()), "getfield: typeflow responsibility"); // Note: We do not check for an unloaded field type here any more. // Generate code for the object pointer. Node* obj; if (is_field) { int obj_depth = is_get ? 0 : field->type()->size(); obj = null_check(peek(obj_depth)); // Compile-time detect of null-exception? if (stopped()) return; #ifdef ASSERT const TypeInstPtr *tjp = TypeInstPtr::make(TypePtr::NotNull, iter().get_declared_field_holder()); assert(_gvn.type(obj)->higher_equal(tjp), "cast_up is no longer needed"); #endif if (is_get) { (void) pop(); // pop receiver before getting do_get_xxx(obj, field, is_field); } else { do_put_xxx(obj, field, is_field); (void) pop(); // pop receiver after putting } } else { const TypeInstPtr* tip = TypeInstPtr::make(field_holder->java_mirror()); obj = _gvn.makecon(tip); if (is_get) { do_get_xxx(obj, field, is_field); } else { do_put_xxx(obj, field, is_field); } } } void Parse::do_get_xxx(Node* obj, ciField* field, bool is_field) { // Does this field have a constant value? If so, just push the value. if (field->is_constant()) { // final or stable field const Type* stable_type = NULL; if (FoldStableValues && field->is_stable()) { stable_type = Type::get_const_type(field->type()); if (field->type()->is_array_klass()) { int stable_dimension = field->type()->as_array_klass()->dimension(); stable_type = stable_type->is_aryptr()->cast_to_stable(true, stable_dimension); } } if (field->is_static()) { // final static field if (C->eliminate_boxing()) { // The pointers in the autobox arrays are always non-null. ciSymbol* klass_name = field->holder()->name(); if (field->name() == ciSymbol::cache_field_name() && field->holder()->uses_default_loader() && (klass_name == ciSymbol::java_lang_Character_CharacterCache() || klass_name == ciSymbol::java_lang_Byte_ByteCache() || klass_name == ciSymbol::java_lang_Short_ShortCache() || klass_name == ciSymbol::java_lang_Integer_IntegerCache() || klass_name == ciSymbol::java_lang_Long_LongCache())) { bool require_const = true; bool autobox_cache = true; if (push_constant(field->constant_value(), require_const, autobox_cache)) { return; } } } if (push_constant(field->constant_value(), false, false, stable_type)) return; } else { // final or stable non-static field // Treat final non-static fields of trusted classes (classes in // java.lang.invoke and sun.invoke packages and subpackages) as // compile time constants. if (obj->is_Con()) { const TypeOopPtr* oop_ptr = obj->bottom_type()->isa_oopptr(); ciObject* constant_oop = oop_ptr->const_oop(); ciConstant constant = field->constant_value_of(constant_oop); if (FoldStableValues && field->is_stable() && constant.is_null_or_zero()) { // fall through to field load; the field is not yet initialized } else { if (push_constant(constant, true, false, stable_type)) return; } } } } ciType* field_klass = field->type(); bool is_vol = field->is_volatile(); // Compute address and memory type. int offset = field->offset_in_bytes(); const TypePtr* adr_type = C->alias_type(field)->adr_type(); Node *adr = basic_plus_adr(obj, obj, offset); BasicType bt = field->layout_type(); // Build the resultant type of the load const Type *type; bool must_assert_null = false; if( bt == T_OBJECT ) { if (!field->type()->is_loaded()) { type = TypeInstPtr::BOTTOM; must_assert_null = true; } else if (field->is_constant() && field->is_static()) { // This can happen if the constant oop is non-perm. ciObject* con = field->constant_value().as_object(); // Do not "join" in the previous type; it doesn't add value, // and may yield a vacuous result if the field is of interface type. type = TypeOopPtr::make_from_constant(con)->isa_oopptr(); assert(type != NULL, "field singleton type must be consistent"); } else { type = TypeOopPtr::make_from_klass(field_klass->as_klass()); } } else { type = Type::get_const_basic_type(bt); } // Build the load. Node* ld = make_load(NULL, adr, type, bt, adr_type, is_vol); // Adjust Java stack if (type2size[bt] == 1) push(ld); else push_pair(ld); if (must_assert_null) { // Do not take a trap here. It's possible that the program // will never load the field's class, and will happily see // null values in this field forever. Don't stumble into a // trap for such a program, or we might get a long series // of useless recompilations. (Or, we might load a class // which should not be loaded.) If we ever see a non-null // value, we will then trap and recompile. (The trap will // not need to mention the class index, since the class will // already have been loaded if we ever see a non-null value.) // uncommon_trap(iter().get_field_signature_index()); #ifndef PRODUCT if (PrintOpto && (Verbose || WizardMode)) { method()->print_name(); tty->print_cr(" asserting nullness of field at bci: %d", bci()); } #endif if (C->log() != NULL) { C->log()->elem("assert_null reason='field' klass='%d'", C->log()->identify(field->type())); } // If there is going to be a trap, put it at the next bytecode: set_bci(iter().next_bci()); null_assert(peek()); set_bci(iter().cur_bci()); // put it back } // If reference is volatile, prevent following memory ops from // floating up past the volatile read. Also prevents commoning // another volatile read. if (field->is_volatile()) { // Memory barrier includes bogus read of value to force load BEFORE membar insert_mem_bar(Op_MemBarAcquire, ld); } } void Parse::do_put_xxx(Node* obj, ciField* field, bool is_field) { bool is_vol = field->is_volatile(); // If reference is volatile, prevent following memory ops from // floating down past the volatile write. Also prevents commoning // another volatile read. if (is_vol) insert_mem_bar(Op_MemBarRelease); // Compute address and memory type. int offset = field->offset_in_bytes(); const TypePtr* adr_type = C->alias_type(field)->adr_type(); Node* adr = basic_plus_adr(obj, obj, offset); BasicType bt = field->layout_type(); // Value to be stored Node* val = type2size[bt] == 1 ? pop() : pop_pair(); // Round doubles before storing if (bt == T_DOUBLE) val = dstore_rounding(val); // Store the value. Node* store; if (bt == T_OBJECT) { const TypeOopPtr* field_type; if (!field->type()->is_loaded()) { field_type = TypeInstPtr::BOTTOM; } else { field_type = TypeOopPtr::make_from_klass(field->type()->as_klass()); } store = store_oop_to_object( control(), obj, adr, adr_type, val, field_type, bt); } else { store = store_to_memory( control(), adr, val, bt, adr_type, is_vol ); } // If reference is volatile, prevent following volatiles ops from // floating up before the volatile write. if (is_vol) { insert_mem_bar(Op_MemBarVolatile); // Use fat membar } // If the field is final, the rules of Java say we are in or . // Note the presence of writes to final non-static fields, so that we // can insert a memory barrier later on to keep the writes from floating // out of the constructor. // Any method can write a @Stable field; insert memory barriers after those also. if (is_field && (field->is_final() || field->is_stable())) { set_wrote_final(true); // Preserve allocation ptr to create precedent edge to it in membar // generated on exit from constructor. if (C->eliminate_boxing() && adr_type->isa_oopptr() && adr_type->is_oopptr()->is_ptr_to_boxed_value() && AllocateNode::Ideal_allocation(obj, &_gvn) != NULL) { set_alloc_with_final(obj); } } } bool Parse::push_constant(ciConstant constant, bool require_constant, bool is_autobox_cache, const Type* stable_type) { const Type* con_type = Type::make_from_constant(constant, require_constant, is_autobox_cache); switch (constant.basic_type()) { case T_ARRAY: case T_OBJECT: // cases: // can_be_constant = (oop not scavengable || ScavengeRootsInCode != 0) // should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2) // An oop is not scavengable if it is in the perm gen. if (stable_type != NULL && con_type != NULL && con_type->isa_oopptr()) con_type = con_type->join_speculative(stable_type); break; case T_ILLEGAL: // Invalid ciConstant returned due to OutOfMemoryError in the CI assert(C->env()->failing(), "otherwise should not see this"); // These always occur because of object types; we are going to // bail out anyway, so make the stack depths match up push( zerocon(T_OBJECT) ); return false; } if (con_type == NULL) // we cannot inline the oop, but we can use it later to narrow a type return false; push_node(constant.basic_type(), makecon(con_type)); return true; } //============================================================================= void Parse::do_anewarray() { bool will_link; ciKlass* klass = iter().get_klass(will_link); // Uncommon Trap when class that array contains is not loaded // we need the loaded class for the rest of graph; do not // initialize the container class (see Java spec)!!! assert(will_link, "anewarray: typeflow responsibility"); ciObjArrayKlass* array_klass = ciObjArrayKlass::make(klass); // Check that array_klass object is loaded if (!array_klass->is_loaded()) { // Generate uncommon_trap for unloaded array_class uncommon_trap(Deoptimization::Reason_unloaded, Deoptimization::Action_reinterpret, array_klass); return; } kill_dead_locals(); const TypeKlassPtr* array_klass_type = TypeKlassPtr::make(array_klass); Node* count_val = pop(); Node* obj = new_array(makecon(array_klass_type), count_val, 1); push(obj); } void Parse::do_newarray(BasicType elem_type) { kill_dead_locals(); Node* count_val = pop(); const TypeKlassPtr* array_klass = TypeKlassPtr::make(ciTypeArrayKlass::make(elem_type)); Node* obj = new_array(makecon(array_klass), count_val, 1); // Push resultant oop onto stack push(obj); } // Expand simple expressions like new int[3][5] and new Object[2][nonConLen]. // Also handle the degenerate 1-dimensional case of anewarray. Node* Parse::expand_multianewarray(ciArrayKlass* array_klass, Node* *lengths, int ndimensions, int nargs) { Node* length = lengths[0]; assert(length != NULL, ""); Node* array = new_array(makecon(TypeKlassPtr::make(array_klass)), length, nargs); if (ndimensions > 1) { jint length_con = find_int_con(length, -1); guarantee(length_con >= 0, "non-constant multianewarray"); ciArrayKlass* array_klass_1 = array_klass->as_obj_array_klass()->element_klass()->as_array_klass(); const TypePtr* adr_type = TypeAryPtr::OOPS; const TypeOopPtr* elemtype = _gvn.type(array)->is_aryptr()->elem()->make_oopptr(); const intptr_t header = arrayOopDesc::base_offset_in_bytes(T_OBJECT); for (jint i = 0; i < length_con; i++) { Node* elem = expand_multianewarray(array_klass_1, &lengths[1], ndimensions-1, nargs); intptr_t offset = header + ((intptr_t)i << LogBytesPerHeapOop); Node* eaddr = basic_plus_adr(array, offset); store_oop_to_array(control(), array, eaddr, adr_type, elem, elemtype, T_OBJECT); } } return array; } void Parse::do_multianewarray() { int ndimensions = iter().get_dimensions(); // the m-dimensional array bool will_link; ciArrayKlass* array_klass = iter().get_klass(will_link)->as_array_klass(); assert(will_link, "multianewarray: typeflow responsibility"); // Note: Array classes are always initialized; no is_initialized check. kill_dead_locals(); // get the lengths from the stack (first dimension is on top) Node** length = NEW_RESOURCE_ARRAY(Node*, ndimensions + 1); length[ndimensions] = NULL; // terminating null for make_runtime_call int j; for (j = ndimensions-1; j >= 0 ; j--) length[j] = pop(); // The original expression was of this form: new T[length0][length1]... // It is often the case that the lengths are small (except the last). // If that happens, use the fast 1-d creator a constant number of times. const jint expand_limit = MIN2((juint)MultiArrayExpandLimit, (juint)100); jint expand_count = 1; // count of allocations in the expansion jint expand_fanout = 1; // running total fanout for (j = 0; j < ndimensions-1; j++) { jint dim_con = find_int_con(length[j], -1); expand_fanout *= dim_con; expand_count += expand_fanout; // count the level-J sub-arrays if (dim_con <= 0 || dim_con > expand_limit || expand_count > expand_limit) { expand_count = 0; break; } } // Can use multianewarray instead of [a]newarray if only one dimension, // or if all non-final dimensions are small constants. if (ndimensions == 1 || (1 <= expand_count && expand_count <= expand_limit)) { Node* obj = NULL; // Set the original stack and the reexecute bit for the interpreter // to reexecute the multianewarray bytecode if deoptimization happens. // Do it unconditionally even for one dimension multianewarray. // Note: the reexecute bit will be set in GraphKit::add_safepoint_edges() // when AllocateArray node for newarray is created. { PreserveReexecuteState preexecs(this); inc_sp(ndimensions); // Pass 0 as nargs since uncommon trap code does not need to restore stack. obj = expand_multianewarray(array_klass, &length[0], ndimensions, 0); } //original reexecute and sp are set back here push(obj); return; } address fun = NULL; switch (ndimensions) { case 1: ShouldNotReachHere(); break; case 2: fun = OptoRuntime::multianewarray2_Java(); break; case 3: fun = OptoRuntime::multianewarray3_Java(); break; case 4: fun = OptoRuntime::multianewarray4_Java(); break; case 5: fun = OptoRuntime::multianewarray5_Java(); break; }; Node* c = NULL; if (fun != NULL) { c = make_runtime_call(RC_NO_LEAF | RC_NO_IO, OptoRuntime::multianewarray_Type(ndimensions), fun, NULL, TypeRawPtr::BOTTOM, makecon(TypeKlassPtr::make(array_klass)), length[0], length[1], length[2], (ndimensions > 2) ? length[3] : NULL, (ndimensions > 3) ? length[4] : NULL); } else { // Create a java array for dimension sizes Node* dims = NULL; { PreserveReexecuteState preexecs(this); inc_sp(ndimensions); Node* dims_array_klass = makecon(TypeKlassPtr::make(ciArrayKlass::make(ciType::make(T_INT)))); dims = new_array(dims_array_klass, intcon(ndimensions), 0); // Fill-in it with values for (j = 0; j < ndimensions; j++) { Node *dims_elem = array_element_address(dims, intcon(j), T_INT); store_to_memory(control(), dims_elem, length[j], T_INT, TypeAryPtr::INTS); } } c = make_runtime_call(RC_NO_LEAF | RC_NO_IO, OptoRuntime::multianewarrayN_Type(), OptoRuntime::multianewarrayN_Java(), NULL, TypeRawPtr::BOTTOM, makecon(TypeKlassPtr::make(array_klass)), dims); } make_slow_call_ex(c, env()->Throwable_klass(), false); Node* res = _gvn.transform(new (C) ProjNode(c, TypeFunc::Parms)); const Type* type = TypeOopPtr::make_from_klass_raw(array_klass); // Improve the type: We know it's not null, exact, and of a given length. type = type->is_ptr()->cast_to_ptr_type(TypePtr::NotNull); type = type->is_aryptr()->cast_to_exactness(true); const TypeInt* ltype = _gvn.find_int_type(length[0]); if (ltype != NULL) type = type->is_aryptr()->cast_to_size(ltype); // We cannot sharpen the nested sub-arrays, since the top level is mutable. Node* cast = _gvn.transform( new (C) CheckCastPPNode(control(), res, type) ); push(cast); // Possible improvements: // - Make a fast path for small multi-arrays. (W/ implicit init. loops.) // - Issue CastII against length[*] values, to TypeInt::POS. }