/* * Copyright 2005-2006 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. * */ class oopDesc; class ParMarkBitMapClosure; class ParMarkBitMap: public CHeapObj { public: typedef BitMap::idx_t idx_t; // Values returned by the iterate() methods. enum IterationStatus { incomplete, complete, full, would_overflow }; inline ParMarkBitMap(); inline ParMarkBitMap(MemRegion covered_region); bool initialize(MemRegion covered_region); // Atomically mark an object as live. bool mark_obj(HeapWord* addr, size_t size); inline bool mark_obj(oop obj, int size); inline bool mark_obj(oop obj); // Return whether the specified begin or end bit is set. inline bool is_obj_beg(idx_t bit) const; inline bool is_obj_end(idx_t bit) const; // Traditional interface for testing whether an object is marked or not (these // test only the begin bits). inline bool is_marked(idx_t bit) const; inline bool is_marked(HeapWord* addr) const; inline bool is_marked(oop obj) const; inline bool is_unmarked(idx_t bit) const; inline bool is_unmarked(HeapWord* addr) const; inline bool is_unmarked(oop obj) const; // Convert sizes from bits to HeapWords and back. An object that is n bits // long will be bits_to_words(n) words long. An object that is m words long // will take up words_to_bits(m) bits in the bitmap. inline static size_t bits_to_words(idx_t bits); inline static idx_t words_to_bits(size_t words); // Return the size in words of an object given a begin bit and an end bit, or // the equivalent beg_addr and end_addr. inline size_t obj_size(idx_t beg_bit, idx_t end_bit) const; inline size_t obj_size(HeapWord* beg_addr, HeapWord* end_addr) const; // Return the size in words of the object (a search is done for the end bit). inline size_t obj_size(idx_t beg_bit) const; inline size_t obj_size(HeapWord* addr) const; inline size_t obj_size(oop obj) const; // Synonyms for the above. size_t obj_size_in_words(oop obj) const { return obj_size((HeapWord*)obj); } size_t obj_size_in_words(HeapWord* addr) const { return obj_size(addr); } // Apply live_closure to each live object that lies completely within the // range [live_range_beg, live_range_end). This is used to iterate over the // compacted region of the heap. Return values: // // incomplete The iteration is not complete. The last object that // begins in the range does not end in the range; // closure->source() is set to the start of that object. // // complete The iteration is complete. All objects in the range // were processed and the closure is not full; // closure->source() is set one past the end of the range. // // full The closure is full; closure->source() is set to one // past the end of the last object processed. // // would_overflow The next object in the range would overflow the closure; // closure->source() is set to the start of that object. IterationStatus iterate(ParMarkBitMapClosure* live_closure, idx_t range_beg, idx_t range_end) const; inline IterationStatus iterate(ParMarkBitMapClosure* live_closure, HeapWord* range_beg, HeapWord* range_end) const; // Apply live closure as above and additionally apply dead_closure to all dead // space in the range [range_beg, dead_range_end). Note that dead_range_end // must be >= range_end. This is used to iterate over the dense prefix. // // This method assumes that if the first bit in the range (range_beg) is not // marked, then dead space begins at that point and the dead_closure is // applied. Thus callers must ensure that range_beg is not in the middle of a // live object. IterationStatus iterate(ParMarkBitMapClosure* live_closure, ParMarkBitMapClosure* dead_closure, idx_t range_beg, idx_t range_end, idx_t dead_range_end) const; inline IterationStatus iterate(ParMarkBitMapClosure* live_closure, ParMarkBitMapClosure* dead_closure, HeapWord* range_beg, HeapWord* range_end, HeapWord* dead_range_end) const; // Return the number of live words in the range [beg_addr, end_addr) due to // objects that start in the range. If a live object extends onto the range, // the caller must detect and account for any live words due to that object. // If a live object extends beyond the end of the range, only the words within // the range are included in the result. size_t live_words_in_range(HeapWord* beg_addr, HeapWord* end_addr) const; // Same as the above, except the end of the range must be a live object, which // is the case when updating pointers. This allows a branch to be removed // from inside the loop. size_t live_words_in_range(HeapWord* beg_addr, oop end_obj) const; inline HeapWord* region_start() const; inline HeapWord* region_end() const; inline size_t region_size() const; inline size_t size() const; // Convert a heap address to/from a bit index. inline idx_t addr_to_bit(HeapWord* addr) const; inline HeapWord* bit_to_addr(idx_t bit) const; // Return the bit index of the first marked object that begins (or ends, // respectively) in the range [beg, end). If no object is found, return end. inline idx_t find_obj_beg(idx_t beg, idx_t end) const; inline idx_t find_obj_end(idx_t beg, idx_t end) const; inline HeapWord* find_obj_beg(HeapWord* beg, HeapWord* end) const; inline HeapWord* find_obj_end(HeapWord* beg, HeapWord* end) const; // Clear a range of bits or the entire bitmap (both begin and end bits are // cleared). inline void clear_range(idx_t beg, idx_t end); inline void clear() { clear_range(0, size()); } // Return the number of bits required to represent the specified number of // HeapWords, or the specified region. static inline idx_t bits_required(size_t words); static inline idx_t bits_required(MemRegion covered_region); static inline idx_t words_required(MemRegion covered_region); #ifndef PRODUCT // CAS statistics. size_t cas_tries() { return _cas_tries; } size_t cas_retries() { return _cas_retries; } size_t cas_by_another() { return _cas_by_another; } void reset_counters(); #endif // #ifndef PRODUCT #ifdef ASSERT void verify_clear() const; inline void verify_bit(idx_t bit) const; inline void verify_addr(HeapWord* addr) const; #endif // #ifdef ASSERT private: // Each bit in the bitmap represents one unit of 'object granularity.' Objects // are double-word aligned in 32-bit VMs, but not in 64-bit VMs, so the 32-bit // granularity is 2, 64-bit is 1. static inline size_t obj_granularity() { return size_t(MinObjAlignment); } HeapWord* _region_start; size_t _region_size; BitMap _beg_bits; BitMap _end_bits; PSVirtualSpace* _virtual_space; #ifndef PRODUCT size_t _cas_tries; size_t _cas_retries; size_t _cas_by_another; #endif // #ifndef PRODUCT }; inline ParMarkBitMap::ParMarkBitMap(): _beg_bits(NULL, 0), _end_bits(NULL, 0) { _region_start = 0; _virtual_space = 0; } inline ParMarkBitMap::ParMarkBitMap(MemRegion covered_region): _beg_bits(NULL, 0), _end_bits(NULL, 0) { initialize(covered_region); } inline void ParMarkBitMap::clear_range(idx_t beg, idx_t end) { _beg_bits.clear_range(beg, end); _end_bits.clear_range(beg, end); } inline ParMarkBitMap::idx_t ParMarkBitMap::bits_required(size_t words) { // Need two bits (one begin bit, one end bit) for each unit of 'object // granularity' in the heap. return words_to_bits(words * 2); } inline ParMarkBitMap::idx_t ParMarkBitMap::bits_required(MemRegion covered_region) { return bits_required(covered_region.word_size()); } inline ParMarkBitMap::idx_t ParMarkBitMap::words_required(MemRegion covered_region) { return bits_required(covered_region) / BitsPerWord; } inline HeapWord* ParMarkBitMap::region_start() const { return _region_start; } inline HeapWord* ParMarkBitMap::region_end() const { return region_start() + region_size(); } inline size_t ParMarkBitMap::region_size() const { return _region_size; } inline size_t ParMarkBitMap::size() const { return _beg_bits.size(); } inline bool ParMarkBitMap::is_obj_beg(idx_t bit) const { return _beg_bits.at(bit); } inline bool ParMarkBitMap::is_obj_end(idx_t bit) const { return _end_bits.at(bit); } inline bool ParMarkBitMap::is_marked(idx_t bit) const { return is_obj_beg(bit); } inline bool ParMarkBitMap::is_marked(HeapWord* addr) const { return is_marked(addr_to_bit(addr)); } inline bool ParMarkBitMap::is_marked(oop obj) const { return is_marked((HeapWord*)obj); } inline bool ParMarkBitMap::is_unmarked(idx_t bit) const { return !is_marked(bit); } inline bool ParMarkBitMap::is_unmarked(HeapWord* addr) const { return !is_marked(addr); } inline bool ParMarkBitMap::is_unmarked(oop obj) const { return !is_marked(obj); } inline size_t ParMarkBitMap::bits_to_words(idx_t bits) { return bits * obj_granularity(); } inline ParMarkBitMap::idx_t ParMarkBitMap::words_to_bits(size_t words) { return words / obj_granularity(); } inline size_t ParMarkBitMap::obj_size(idx_t beg_bit, idx_t end_bit) const { DEBUG_ONLY(verify_bit(beg_bit);) DEBUG_ONLY(verify_bit(end_bit);) return bits_to_words(end_bit - beg_bit + 1); } inline size_t ParMarkBitMap::obj_size(HeapWord* beg_addr, HeapWord* end_addr) const { DEBUG_ONLY(verify_addr(beg_addr);) DEBUG_ONLY(verify_addr(end_addr);) return pointer_delta(end_addr, beg_addr) + obj_granularity(); } inline size_t ParMarkBitMap::obj_size(idx_t beg_bit) const { const idx_t end_bit = _end_bits.find_next_one_bit(beg_bit, size()); assert(is_marked(beg_bit), "obj not marked"); assert(end_bit < size(), "end bit missing"); return obj_size(beg_bit, end_bit); } inline size_t ParMarkBitMap::obj_size(HeapWord* addr) const { return obj_size(addr_to_bit(addr)); } inline size_t ParMarkBitMap::obj_size(oop obj) const { return obj_size((HeapWord*)obj); } inline ParMarkBitMap::IterationStatus ParMarkBitMap::iterate(ParMarkBitMapClosure* live_closure, HeapWord* range_beg, HeapWord* range_end) const { return iterate(live_closure, addr_to_bit(range_beg), addr_to_bit(range_end)); } inline ParMarkBitMap::IterationStatus ParMarkBitMap::iterate(ParMarkBitMapClosure* live_closure, ParMarkBitMapClosure* dead_closure, HeapWord* range_beg, HeapWord* range_end, HeapWord* dead_range_end) const { return iterate(live_closure, dead_closure, addr_to_bit(range_beg), addr_to_bit(range_end), addr_to_bit(dead_range_end)); } inline bool ParMarkBitMap::mark_obj(oop obj, int size) { return mark_obj((HeapWord*)obj, (size_t)size); } inline BitMap::idx_t ParMarkBitMap::addr_to_bit(HeapWord* addr) const { DEBUG_ONLY(verify_addr(addr);) return words_to_bits(pointer_delta(addr, region_start())); } inline HeapWord* ParMarkBitMap::bit_to_addr(idx_t bit) const { DEBUG_ONLY(verify_bit(bit);) return region_start() + bits_to_words(bit); } inline ParMarkBitMap::idx_t ParMarkBitMap::find_obj_beg(idx_t beg, idx_t end) const { return _beg_bits.find_next_one_bit(beg, end); } inline ParMarkBitMap::idx_t ParMarkBitMap::find_obj_end(idx_t beg, idx_t end) const { return _end_bits.find_next_one_bit(beg, end); } inline HeapWord* ParMarkBitMap::find_obj_beg(HeapWord* beg, HeapWord* end) const { const idx_t beg_bit = addr_to_bit(beg); const idx_t end_bit = addr_to_bit(end); const idx_t search_end = BitMap::word_align_up(end_bit); const idx_t res_bit = MIN2(find_obj_beg(beg_bit, search_end), end_bit); return bit_to_addr(res_bit); } inline HeapWord* ParMarkBitMap::find_obj_end(HeapWord* beg, HeapWord* end) const { const idx_t beg_bit = addr_to_bit(beg); const idx_t end_bit = addr_to_bit(end); const idx_t search_end = BitMap::word_align_up(end_bit); const idx_t res_bit = MIN2(find_obj_end(beg_bit, search_end), end_bit); return bit_to_addr(res_bit); } #ifdef ASSERT inline void ParMarkBitMap::verify_bit(idx_t bit) const { // Allow one past the last valid bit; useful for loop bounds. assert(bit <= _beg_bits.size(), "bit out of range"); } inline void ParMarkBitMap::verify_addr(HeapWord* addr) const { // Allow one past the last valid address; useful for loop bounds. assert(addr >= region_start(), "addr too small"); assert(addr <= region_start() + region_size(), "addr too big"); } #endif // #ifdef ASSERT