/* * Copyright (c) 2008, 2011, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_VM_PRIMS_METHODHANDLES_HPP #define SHARE_VM_PRIMS_METHODHANDLES_HPP #include "classfile/javaClasses.hpp" #include "classfile/vmSymbols.hpp" #include "runtime/frame.inline.hpp" #include "runtime/globals.hpp" #include "runtime/interfaceSupport.hpp" class MacroAssembler; class Label; class MethodHandleEntry; class MethodHandles: AllStatic { // JVM support for MethodHandle, MethodType, and related types // in java.lang.invoke and sun.invoke. // See also javaClasses for layouts java_lang_invoke_Method{Handle,Type,Type::Form}. public: enum EntryKind { _raise_exception, // stub for error generation from other stubs _invokestatic_mh, // how a MH emulates invokestatic _invokespecial_mh, // ditto for the other invokes... _invokevirtual_mh, _invokeinterface_mh, _bound_ref_mh, // reference argument is bound _bound_int_mh, // int argument is bound (via an Integer or Float) _bound_long_mh, // long argument is bound (via a Long or Double) _bound_ref_direct_mh, // same as above, with direct linkage to methodOop _bound_int_direct_mh, _bound_long_direct_mh, _adapter_mh_first, // adapter sequence goes here... _adapter_retype_only = _adapter_mh_first + java_lang_invoke_AdapterMethodHandle::OP_RETYPE_ONLY, _adapter_retype_raw = _adapter_mh_first + java_lang_invoke_AdapterMethodHandle::OP_RETYPE_RAW, _adapter_check_cast = _adapter_mh_first + java_lang_invoke_AdapterMethodHandle::OP_CHECK_CAST, _adapter_prim_to_prim = _adapter_mh_first + java_lang_invoke_AdapterMethodHandle::OP_PRIM_TO_PRIM, _adapter_ref_to_prim = _adapter_mh_first + java_lang_invoke_AdapterMethodHandle::OP_REF_TO_PRIM, _adapter_prim_to_ref = _adapter_mh_first + java_lang_invoke_AdapterMethodHandle::OP_PRIM_TO_REF, _adapter_swap_args = _adapter_mh_first + java_lang_invoke_AdapterMethodHandle::OP_SWAP_ARGS, _adapter_rot_args = _adapter_mh_first + java_lang_invoke_AdapterMethodHandle::OP_ROT_ARGS, _adapter_dup_args = _adapter_mh_first + java_lang_invoke_AdapterMethodHandle::OP_DUP_ARGS, _adapter_drop_args = _adapter_mh_first + java_lang_invoke_AdapterMethodHandle::OP_DROP_ARGS, _adapter_collect_args = _adapter_mh_first + java_lang_invoke_AdapterMethodHandle::OP_COLLECT_ARGS, _adapter_spread_args = _adapter_mh_first + java_lang_invoke_AdapterMethodHandle::OP_SPREAD_ARGS, _adapter_fold_args = _adapter_mh_first + java_lang_invoke_AdapterMethodHandle::OP_FOLD_ARGS, _adapter_unused_13 = _adapter_mh_first + 13, //hole in the CONV_OP enumeration _adapter_mh_last = _adapter_mh_first + java_lang_invoke_AdapterMethodHandle::CONV_OP_LIMIT - 1, // Optimized adapter types // argument list reordering _adapter_opt_swap_1, _adapter_opt_swap_2, _adapter_opt_rot_1_up, _adapter_opt_rot_1_down, _adapter_opt_rot_2_up, _adapter_opt_rot_2_down, // primitive single to single: _adapter_opt_i2i, // i2c, i2z, i2b, i2s // primitive double to single: _adapter_opt_l2i, _adapter_opt_d2f, // primitive single to double: _adapter_opt_i2l, _adapter_opt_f2d, // conversion between floating point and integer type is handled by Java // reference to primitive: _adapter_opt_unboxi, _adapter_opt_unboxl, // %% Maybe tame the following with a VM_SYMBOLS_DO type macro? // how a blocking adapter returns (platform-dependent) _adapter_opt_return_ref, _adapter_opt_return_int, _adapter_opt_return_long, _adapter_opt_return_float, _adapter_opt_return_double, _adapter_opt_return_void, _adapter_opt_return_S0_ref, // return ref to S=0 (last slot) _adapter_opt_return_S1_ref, // return ref to S=1 (2nd-to-last slot) _adapter_opt_return_S2_ref, _adapter_opt_return_S3_ref, _adapter_opt_return_S4_ref, _adapter_opt_return_S5_ref, _adapter_opt_return_any, // dynamically select r/i/l/f/d _adapter_opt_return_FIRST = _adapter_opt_return_ref, _adapter_opt_return_LAST = _adapter_opt_return_any, // spreading (array length cases 0, 1, ...) _adapter_opt_spread_0, // spread empty array to N=0 arguments _adapter_opt_spread_1_ref, // spread Object[] to N=1 argument _adapter_opt_spread_2_ref, // spread Object[] to N=2 arguments _adapter_opt_spread_3_ref, // spread Object[] to N=3 arguments _adapter_opt_spread_4_ref, // spread Object[] to N=4 arguments _adapter_opt_spread_5_ref, // spread Object[] to N=5 arguments _adapter_opt_spread_ref, // spread Object[] to N arguments _adapter_opt_spread_byte, // spread byte[] or boolean[] to N arguments _adapter_opt_spread_char, // spread char[], etc., to N arguments _adapter_opt_spread_short, // spread short[], etc., to N arguments _adapter_opt_spread_int, // spread int[], short[], etc., to N arguments _adapter_opt_spread_long, // spread long[] to N arguments _adapter_opt_spread_float, // spread float[] to N arguments _adapter_opt_spread_double, // spread double[] to N arguments _adapter_opt_spread_FIRST = _adapter_opt_spread_0, _adapter_opt_spread_LAST = _adapter_opt_spread_double, // blocking filter/collect conversions // These collect N arguments and replace them (at slot S) by a return value // which is passed to the final target, along with the unaffected arguments. // collect_{N}_{T} collects N arguments at any position into a T value // collect_{N}_S{S}_{T} collects N arguments at slot S into a T value // collect_{T} collects any number of arguments at any position // filter_S{S}_{T} is the same as collect_1_S{S}_{T} (a unary collection) // (collect_2 is also usable as a filter, with long or double arguments) _adapter_opt_collect_ref, // combine N arguments, replace with a reference _adapter_opt_collect_int, // combine N arguments, replace with an int, short, etc. _adapter_opt_collect_long, // combine N arguments, replace with a long _adapter_opt_collect_float, // combine N arguments, replace with a float _adapter_opt_collect_double, // combine N arguments, replace with a double _adapter_opt_collect_void, // combine N arguments, replace with nothing // if there is a small fixed number to push, do so without a loop: _adapter_opt_collect_0_ref, // collect N=0 arguments, insert a reference _adapter_opt_collect_1_ref, // collect N=1 argument, replace with a reference _adapter_opt_collect_2_ref, // combine N=2 arguments, replace with a reference _adapter_opt_collect_3_ref, // combine N=3 arguments, replace with a reference _adapter_opt_collect_4_ref, // combine N=4 arguments, replace with a reference _adapter_opt_collect_5_ref, // combine N=5 arguments, replace with a reference // filters are an important special case because they never move arguments: _adapter_opt_filter_S0_ref, // filter N=1 argument at S=0, replace with a reference _adapter_opt_filter_S1_ref, // filter N=1 argument at S=1, replace with a reference _adapter_opt_filter_S2_ref, // filter N=1 argument at S=2, replace with a reference _adapter_opt_filter_S3_ref, // filter N=1 argument at S=3, replace with a reference _adapter_opt_filter_S4_ref, // filter N=1 argument at S=4, replace with a reference _adapter_opt_filter_S5_ref, // filter N=1 argument at S=5, replace with a reference // these move arguments, but they are important for boxing _adapter_opt_collect_2_S0_ref, // combine last N=2 arguments, replace with a reference _adapter_opt_collect_2_S1_ref, // combine N=2 arguments at S=1, replace with a reference _adapter_opt_collect_2_S2_ref, // combine N=2 arguments at S=2, replace with a reference _adapter_opt_collect_2_S3_ref, // combine N=2 arguments at S=3, replace with a reference _adapter_opt_collect_2_S4_ref, // combine N=2 arguments at S=4, replace with a reference _adapter_opt_collect_2_S5_ref, // combine N=2 arguments at S=5, replace with a reference _adapter_opt_collect_FIRST = _adapter_opt_collect_ref, _adapter_opt_collect_LAST = _adapter_opt_collect_2_S5_ref, // blocking folding conversions // these are like collects, but retain all the N arguments for the final target //_adapter_opt_fold_0_ref, // same as _adapter_opt_collect_0_ref // fold_{N}_{T} processes N arguments at any position into a T value, which it inserts // fold_{T} processes any number of arguments at any position _adapter_opt_fold_ref, // process N arguments, prepend a reference _adapter_opt_fold_int, // process N arguments, prepend an int, short, etc. _adapter_opt_fold_long, // process N arguments, prepend a long _adapter_opt_fold_float, // process N arguments, prepend a float _adapter_opt_fold_double, // process N arguments, prepend a double _adapter_opt_fold_void, // process N arguments, but leave the list unchanged _adapter_opt_fold_1_ref, // process N=1 argument, prepend a reference _adapter_opt_fold_2_ref, // process N=2 arguments, prepend a reference _adapter_opt_fold_3_ref, // process N=3 arguments, prepend a reference _adapter_opt_fold_4_ref, // process N=4 arguments, prepend a reference _adapter_opt_fold_5_ref, // process N=5 arguments, prepend a reference _adapter_opt_fold_FIRST = _adapter_opt_fold_ref, _adapter_opt_fold_LAST = _adapter_opt_fold_5_ref, _EK_LIMIT, _EK_FIRST = 0 }; public: static bool enabled() { return _enabled; } static void set_enabled(bool z); private: enum { // import java_lang_invoke_AdapterMethodHandle::CONV_OP_* CONV_OP_LIMIT = java_lang_invoke_AdapterMethodHandle::CONV_OP_LIMIT, CONV_OP_MASK = java_lang_invoke_AdapterMethodHandle::CONV_OP_MASK, CONV_TYPE_MASK = java_lang_invoke_AdapterMethodHandle::CONV_TYPE_MASK, CONV_VMINFO_MASK = java_lang_invoke_AdapterMethodHandle::CONV_VMINFO_MASK, CONV_VMINFO_SHIFT = java_lang_invoke_AdapterMethodHandle::CONV_VMINFO_SHIFT, CONV_OP_SHIFT = java_lang_invoke_AdapterMethodHandle::CONV_OP_SHIFT, CONV_DEST_TYPE_SHIFT = java_lang_invoke_AdapterMethodHandle::CONV_DEST_TYPE_SHIFT, CONV_SRC_TYPE_SHIFT = java_lang_invoke_AdapterMethodHandle::CONV_SRC_TYPE_SHIFT, CONV_STACK_MOVE_SHIFT = java_lang_invoke_AdapterMethodHandle::CONV_STACK_MOVE_SHIFT, CONV_STACK_MOVE_MASK = java_lang_invoke_AdapterMethodHandle::CONV_STACK_MOVE_MASK }; static bool _enabled; static MethodHandleEntry* _entries[_EK_LIMIT]; static const char* _entry_names[_EK_LIMIT+1]; static jobject _raise_exception_method; static address _adapter_return_handlers[CONV_TYPE_MASK+1]; // Adapters. static MethodHandlesAdapterBlob* _adapter_code; static int _adapter_code_size; static bool ek_valid(EntryKind ek) { return (uint)ek < (uint)_EK_LIMIT; } static bool conv_op_valid(int op) { return (uint)op < (uint)CONV_OP_LIMIT; } public: static bool have_entry(EntryKind ek) { return ek_valid(ek) && _entries[ek] != NULL; } static MethodHandleEntry* entry(EntryKind ek) { assert(ek_valid(ek), "initialized"); return _entries[ek]; } static const char* entry_name(EntryKind ek) { assert(ek_valid(ek), "oob"); return _entry_names[ek]; } static EntryKind adapter_entry_kind(int op) { assert(conv_op_valid(op), "oob"); return EntryKind(_adapter_mh_first + op); } static void init_entry(EntryKind ek, MethodHandleEntry* me) { assert(ek_valid(ek), "oob"); assert(_entries[ek] == NULL, "no double initialization"); _entries[ek] = me; } // Some adapter helper functions. static EntryKind ek_original_kind(EntryKind ek) { if (ek <= _adapter_mh_last) return ek; switch (ek) { case _adapter_opt_swap_1: case _adapter_opt_swap_2: return _adapter_swap_args; case _adapter_opt_rot_1_up: case _adapter_opt_rot_1_down: case _adapter_opt_rot_2_up: case _adapter_opt_rot_2_down: return _adapter_rot_args; case _adapter_opt_i2i: case _adapter_opt_l2i: case _adapter_opt_d2f: case _adapter_opt_i2l: case _adapter_opt_f2d: return _adapter_prim_to_prim; case _adapter_opt_unboxi: case _adapter_opt_unboxl: return _adapter_ref_to_prim; } if (ek >= _adapter_opt_spread_FIRST && ek <= _adapter_opt_spread_LAST) return _adapter_spread_args; if (ek >= _adapter_opt_collect_FIRST && ek <= _adapter_opt_collect_LAST) return _adapter_collect_args; if (ek >= _adapter_opt_fold_FIRST && ek <= _adapter_opt_fold_LAST) return _adapter_fold_args; if (ek >= _adapter_opt_return_FIRST && ek <= _adapter_opt_return_LAST) return _adapter_opt_return_any; assert(false, "oob"); return _EK_LIMIT; } static bool ek_supported(MethodHandles::EntryKind ek); static BasicType ek_bound_mh_arg_type(EntryKind ek) { switch (ek) { case _bound_int_mh : // fall-thru case _bound_int_direct_mh : return T_INT; case _bound_long_mh : // fall-thru case _bound_long_direct_mh : return T_LONG; default : return T_OBJECT; } } static int ek_adapter_opt_swap_slots(EntryKind ek) { switch (ek) { case _adapter_opt_swap_1 : return 1; case _adapter_opt_swap_2 : return 2; case _adapter_opt_rot_1_up : return 1; case _adapter_opt_rot_1_down : return 1; case _adapter_opt_rot_2_up : return 2; case _adapter_opt_rot_2_down : return 2; default : ShouldNotReachHere(); return -1; } } static int ek_adapter_opt_swap_mode(EntryKind ek) { switch (ek) { case _adapter_opt_swap_1 : return 0; case _adapter_opt_swap_2 : return 0; case _adapter_opt_rot_1_up : return 1; case _adapter_opt_rot_1_down : return -1; case _adapter_opt_rot_2_up : return 1; case _adapter_opt_rot_2_down : return -1; default : ShouldNotReachHere(); return 0; } } static int ek_adapter_opt_collect_count(EntryKind ek) { assert(ek >= _adapter_opt_collect_FIRST && ek <= _adapter_opt_collect_LAST || ek >= _adapter_opt_fold_FIRST && ek <= _adapter_opt_fold_LAST, ""); switch (ek) { case _adapter_opt_collect_0_ref : return 0; case _adapter_opt_filter_S0_ref : case _adapter_opt_filter_S1_ref : case _adapter_opt_filter_S2_ref : case _adapter_opt_filter_S3_ref : case _adapter_opt_filter_S4_ref : case _adapter_opt_filter_S5_ref : case _adapter_opt_fold_1_ref : case _adapter_opt_collect_1_ref : return 1; case _adapter_opt_collect_2_S0_ref : case _adapter_opt_collect_2_S1_ref : case _adapter_opt_collect_2_S2_ref : case _adapter_opt_collect_2_S3_ref : case _adapter_opt_collect_2_S4_ref : case _adapter_opt_collect_2_S5_ref : case _adapter_opt_fold_2_ref : case _adapter_opt_collect_2_ref : return 2; case _adapter_opt_fold_3_ref : case _adapter_opt_collect_3_ref : return 3; case _adapter_opt_fold_4_ref : case _adapter_opt_collect_4_ref : return 4; case _adapter_opt_fold_5_ref : case _adapter_opt_collect_5_ref : return 5; default : return -1; // sentinel value for "variable" } } static int ek_adapter_opt_collect_slot(EntryKind ek) { assert(ek >= _adapter_opt_collect_FIRST && ek <= _adapter_opt_collect_LAST || ek >= _adapter_opt_fold_FIRST && ek <= _adapter_opt_fold_LAST, ""); switch (ek) { case _adapter_opt_collect_2_S0_ref : case _adapter_opt_filter_S0_ref : return 0; case _adapter_opt_collect_2_S1_ref : case _adapter_opt_filter_S1_ref : return 1; case _adapter_opt_collect_2_S2_ref : case _adapter_opt_filter_S2_ref : return 2; case _adapter_opt_collect_2_S3_ref : case _adapter_opt_filter_S3_ref : return 3; case _adapter_opt_collect_2_S4_ref : case _adapter_opt_filter_S4_ref : return 4; case _adapter_opt_collect_2_S5_ref : case _adapter_opt_filter_S5_ref : return 5; default : return -1; // sentinel value for "variable" } } static BasicType ek_adapter_opt_collect_type(EntryKind ek) { assert(ek >= _adapter_opt_collect_FIRST && ek <= _adapter_opt_collect_LAST || ek >= _adapter_opt_fold_FIRST && ek <= _adapter_opt_fold_LAST, ""); switch (ek) { case _adapter_opt_fold_int : case _adapter_opt_collect_int : return T_INT; case _adapter_opt_fold_long : case _adapter_opt_collect_long : return T_LONG; case _adapter_opt_fold_float : case _adapter_opt_collect_float : return T_FLOAT; case _adapter_opt_fold_double : case _adapter_opt_collect_double : return T_DOUBLE; case _adapter_opt_fold_void : case _adapter_opt_collect_void : return T_VOID; default : return T_OBJECT; } } static int ek_adapter_opt_return_slot(EntryKind ek) { assert(ek >= _adapter_opt_return_FIRST && ek <= _adapter_opt_return_LAST, ""); switch (ek) { case _adapter_opt_return_S0_ref : return 0; case _adapter_opt_return_S1_ref : return 1; case _adapter_opt_return_S2_ref : return 2; case _adapter_opt_return_S3_ref : return 3; case _adapter_opt_return_S4_ref : return 4; case _adapter_opt_return_S5_ref : return 5; default : return -1; // sentinel value for "variable" } } static BasicType ek_adapter_opt_return_type(EntryKind ek) { assert(ek >= _adapter_opt_return_FIRST && ek <= _adapter_opt_return_LAST, ""); switch (ek) { case _adapter_opt_return_int : return T_INT; case _adapter_opt_return_long : return T_LONG; case _adapter_opt_return_float : return T_FLOAT; case _adapter_opt_return_double : return T_DOUBLE; case _adapter_opt_return_void : return T_VOID; case _adapter_opt_return_any : return T_CONFLICT; // sentinel value for "variable" default : return T_OBJECT; } } static int ek_adapter_opt_spread_count(EntryKind ek) { assert(ek >= _adapter_opt_spread_FIRST && ek <= _adapter_opt_spread_LAST, ""); switch (ek) { case _adapter_opt_spread_0 : return 0; case _adapter_opt_spread_1_ref : return 1; case _adapter_opt_spread_2_ref : return 2; case _adapter_opt_spread_3_ref : return 3; case _adapter_opt_spread_4_ref : return 4; case _adapter_opt_spread_5_ref : return 5; default : return -1; // sentinel value for "variable" } } static BasicType ek_adapter_opt_spread_type(EntryKind ek) { assert(ek >= _adapter_opt_spread_FIRST && ek <= _adapter_opt_spread_LAST, ""); switch (ek) { // (there is no _adapter_opt_spread_boolean; we use byte) case _adapter_opt_spread_byte : return T_BYTE; case _adapter_opt_spread_char : return T_CHAR; case _adapter_opt_spread_short : return T_SHORT; case _adapter_opt_spread_int : return T_INT; case _adapter_opt_spread_long : return T_LONG; case _adapter_opt_spread_float : return T_FLOAT; case _adapter_opt_spread_double : return T_DOUBLE; default : return T_OBJECT; } } static methodOop raise_exception_method() { oop rem = JNIHandles::resolve(_raise_exception_method); assert(rem == NULL || rem->is_method(), ""); return (methodOop) rem; } static void set_raise_exception_method(methodOop rem) { assert(_raise_exception_method == NULL, ""); _raise_exception_method = JNIHandles::make_global(Handle(rem)); } static jint adapter_conversion(int conv_op, BasicType src, BasicType dest, int stack_move = 0, int vminfo = 0) { assert(conv_op_valid(conv_op), "oob"); jint conv = ((conv_op << CONV_OP_SHIFT) | (src << CONV_SRC_TYPE_SHIFT) | (dest << CONV_DEST_TYPE_SHIFT) | (stack_move << CONV_STACK_MOVE_SHIFT) | (vminfo << CONV_VMINFO_SHIFT) ); assert(adapter_conversion_op(conv) == conv_op, "decode conv_op"); assert(adapter_conversion_src_type(conv) == src, "decode src"); assert(adapter_conversion_dest_type(conv) == dest, "decode dest"); assert(adapter_conversion_stack_move(conv) == stack_move, "decode stack_move"); assert(adapter_conversion_vminfo(conv) == vminfo, "decode vminfo"); return conv; } static int adapter_conversion_op(jint conv) { return ((conv >> CONV_OP_SHIFT) & 0xF); } static BasicType adapter_conversion_src_type(jint conv) { return (BasicType)((conv >> CONV_SRC_TYPE_SHIFT) & 0xF); } static BasicType adapter_conversion_dest_type(jint conv) { return (BasicType)((conv >> CONV_DEST_TYPE_SHIFT) & 0xF); } static int adapter_conversion_stack_move(jint conv) { return (conv >> CONV_STACK_MOVE_SHIFT); } static int adapter_conversion_vminfo(jint conv) { return (conv >> CONV_VMINFO_SHIFT) & CONV_VMINFO_MASK; } // Bit mask of conversion_op values. May vary by platform. static int adapter_conversion_ops_supported_mask(); static bool conv_op_supported(int conv_op) { assert(conv_op_valid(conv_op), ""); return ((adapter_conversion_ops_supported_mask() & nth_bit(conv_op)) != 0); } // Offset in words that the interpreter stack pointer moves when an argument is pushed. // The stack_move value must always be a multiple of this. static int stack_move_unit() { return frame::interpreter_frame_expression_stack_direction() * Interpreter::stackElementWords; } // Adapter frame traversal. (Implementation-specific.) static frame ricochet_frame_sender(const frame& fr, RegisterMap* reg_map); static void ricochet_frame_oops_do(const frame& fr, OopClosure* blk, const RegisterMap* reg_map); enum { CONV_VMINFO_SIGN_FLAG = 0x80 }; // Shift values for prim-to-prim conversions. static int adapter_prim_to_prim_subword_vminfo(BasicType dest) { if (dest == T_BOOLEAN) return (BitsPerInt - 1); // boolean is 1 bit if (dest == T_CHAR) return (BitsPerInt - BitsPerShort); if (dest == T_BYTE) return (BitsPerInt - BitsPerByte ) | CONV_VMINFO_SIGN_FLAG; if (dest == T_SHORT) return (BitsPerInt - BitsPerShort) | CONV_VMINFO_SIGN_FLAG; return 0; // case T_INT } // Shift values for unboxing a primitive. static int adapter_unbox_subword_vminfo(BasicType dest) { if (dest == T_BOOLEAN) return (BitsPerInt - BitsPerByte ); // implemented as 1 byte if (dest == T_CHAR) return (BitsPerInt - BitsPerShort); if (dest == T_BYTE) return (BitsPerInt - BitsPerByte ) | CONV_VMINFO_SIGN_FLAG; if (dest == T_SHORT) return (BitsPerInt - BitsPerShort) | CONV_VMINFO_SIGN_FLAG; return 0; // case T_INT } // Here is the transformation the i2i adapter must perform: static int truncate_subword_from_vminfo(jint value, int vminfo) { jint tem = value << vminfo; if ((vminfo & CONV_VMINFO_SIGN_FLAG) != 0) { return (jint)tem >> vminfo; } else { return (juint)tem >> vminfo; } } static inline address from_compiled_entry(EntryKind ek); static inline address from_interpreted_entry(EntryKind ek); // helpers for decode_method. static methodOop decode_methodOop(methodOop m, int& decode_flags_result); static methodHandle decode_vmtarget(oop vmtarget, int vmindex, oop mtype, KlassHandle& receiver_limit_result, int& decode_flags_result); static methodHandle decode_MemberName(oop mname, KlassHandle& receiver_limit_result, int& decode_flags_result); static methodHandle decode_MethodHandle(oop mh, KlassHandle& receiver_limit_result, int& decode_flags_result); static methodHandle decode_DirectMethodHandle(oop mh, KlassHandle& receiver_limit_result, int& decode_flags_result); static methodHandle decode_BoundMethodHandle(oop mh, KlassHandle& receiver_limit_result, int& decode_flags_result); static methodHandle decode_AdapterMethodHandle(oop mh, KlassHandle& receiver_limit_result, int& decode_flags_result); // Find out how many stack slots an mh pushes or pops. // The result is *not* reported as a multiple of stack_move_unit(); // It is a signed net number of pushes (a difference in vmslots). // To compare with a stack_move value, first multiply by stack_move_unit(). static int decode_MethodHandle_stack_pushes(oop mh); public: // working with member names static void resolve_MemberName(Handle mname, TRAPS); // compute vmtarget/vmindex from name/type static void expand_MemberName(Handle mname, int suppress, TRAPS); // expand defc/name/type if missing static Handle new_MemberName(TRAPS); // must be followed by init_MemberName static void init_MemberName(oop mname_oop, oop target); // compute vmtarget/vmindex from target static void init_MemberName(oop mname_oop, methodOop m, bool do_dispatch = true); static void init_MemberName(oop mname_oop, klassOop field_holder, AccessFlags mods, int offset); static int find_MemberNames(klassOop k, Symbol* name, Symbol* sig, int mflags, klassOop caller, int skip, objArrayOop results); // bit values for suppress argument to expand_MemberName: enum { _suppress_defc = 1, _suppress_name = 2, _suppress_type = 4 }; // Generate MethodHandles adapters. static void generate_adapters(); // Called from InterpreterGenerator and MethodHandlesAdapterGenerator. static address generate_method_handle_interpreter_entry(MacroAssembler* _masm); static void generate_method_handle_stub(MacroAssembler* _masm, EntryKind ek); // argument list parsing static int argument_slot(oop method_type, int arg); static int argument_slot_count(oop method_type) { return argument_slot(method_type, -1); } static int argument_slot_to_argnum(oop method_type, int argslot); // Runtime support enum { // bit-encoded flags from decode_method or decode_vmref _dmf_has_receiver = 0x01, // target method has leading reference argument _dmf_does_dispatch = 0x02, // method handle performs virtual or interface dispatch _dmf_from_interface = 0x04, // peforms interface dispatch _DMF_DIRECT_MASK = (_dmf_from_interface*2 - _dmf_has_receiver), _dmf_binds_method = 0x08, _dmf_binds_argument = 0x10, _DMF_BOUND_MASK = (_dmf_binds_argument*2 - _dmf_binds_method), _dmf_adapter_lsb = 0x20, _DMF_ADAPTER_MASK = (_dmf_adapter_lsb << CONV_OP_LIMIT) - _dmf_adapter_lsb }; static methodHandle decode_method(oop x, KlassHandle& receiver_limit_result, int& decode_flags_result); enum { // format of query to getConstant: GC_JVM_PUSH_LIMIT = 0, GC_JVM_STACK_MOVE_UNIT = 1, GC_CONV_OP_IMPLEMENTED_MASK = 2, // format of result from getTarget / encode_target: ETF_HANDLE_OR_METHOD_NAME = 0, // all available data (immediate MH or method) ETF_DIRECT_HANDLE = 1, // ultimate method handle (will be a DMH, may be self) ETF_METHOD_NAME = 2, // ultimate method as MemberName ETF_REFLECT_METHOD = 3 // ultimate method as java.lang.reflect object (sans refClass) }; static int get_named_constant(int which, Handle name_box, TRAPS); static oop encode_target(Handle mh, int format, TRAPS); // report vmtarget (to Java code) static bool class_cast_needed(klassOop src, klassOop dst); static instanceKlassHandle resolve_instance_klass(oop java_mirror_oop, TRAPS); static instanceKlassHandle resolve_instance_klass(jclass java_mirror_jh, TRAPS) { return resolve_instance_klass(JNIHandles::resolve(java_mirror_jh), THREAD); } private: // These checkers operate on a pair of whole MethodTypes: static const char* check_method_type_change(oop src_mtype, int src_beg, int src_end, int insert_argnum, oop insert_type, int change_argnum, oop change_type, int delete_argnum, oop dst_mtype, int dst_beg, int dst_end, bool raw = false); static const char* check_method_type_insertion(oop src_mtype, int insert_argnum, oop insert_type, oop dst_mtype) { oop no_ref = NULL; return check_method_type_change(src_mtype, 0, -1, insert_argnum, insert_type, -1, no_ref, -1, dst_mtype, 0, -1); } static const char* check_method_type_conversion(oop src_mtype, int change_argnum, oop change_type, oop dst_mtype) { oop no_ref = NULL; return check_method_type_change(src_mtype, 0, -1, -1, no_ref, change_argnum, change_type, -1, dst_mtype, 0, -1); } static const char* check_method_type_passthrough(oop src_mtype, oop dst_mtype, bool raw) { oop no_ref = NULL; return check_method_type_change(src_mtype, 0, -1, -1, no_ref, -1, no_ref, -1, dst_mtype, 0, -1, raw); } // These checkers operate on pairs of argument or return types: static const char* check_argument_type_change(BasicType src_type, klassOop src_klass, BasicType dst_type, klassOop dst_klass, int argnum, bool raw = false); static const char* check_argument_type_change(oop src_type, oop dst_type, int argnum, bool raw = false) { klassOop src_klass = NULL, dst_klass = NULL; BasicType src_bt = java_lang_Class::as_BasicType(src_type, &src_klass); BasicType dst_bt = java_lang_Class::as_BasicType(dst_type, &dst_klass); return check_argument_type_change(src_bt, src_klass, dst_bt, dst_klass, argnum, raw); } static const char* check_return_type_change(oop src_type, oop dst_type, bool raw = false) { return check_argument_type_change(src_type, dst_type, -1, raw); } static const char* check_return_type_change(BasicType src_type, klassOop src_klass, BasicType dst_type, klassOop dst_klass) { return check_argument_type_change(src_type, src_klass, dst_type, dst_klass, -1); } static const char* check_method_receiver(methodOop m, klassOop passed_recv_type); // These verifiers can block, and will throw an error if the checking fails: static void verify_vmslots(Handle mh, TRAPS); static void verify_vmargslot(Handle mh, int argnum, int argslot, TRAPS); static void verify_method_type(methodHandle m, Handle mtype, bool has_bound_oop, KlassHandle bound_oop_type, TRAPS); static void verify_method_signature(methodHandle m, Handle mtype, int first_ptype_pos, KlassHandle insert_ptype, TRAPS); static void verify_DirectMethodHandle(Handle mh, methodHandle m, TRAPS); static void verify_BoundMethodHandle(Handle mh, Handle target, int argnum, bool direct_to_method, TRAPS); static void verify_BoundMethodHandle_with_receiver(Handle mh, methodHandle m, TRAPS); static void verify_AdapterMethodHandle(Handle mh, int argnum, TRAPS); public: // Fill in the fields of a DirectMethodHandle mh. (MH.type must be pre-filled.) static void init_DirectMethodHandle(Handle mh, methodHandle method, bool do_dispatch, TRAPS); // Fill in the fields of a BoundMethodHandle mh. (MH.type, BMH.argument must be pre-filled.) static void init_BoundMethodHandle(Handle mh, Handle target, int argnum, TRAPS); static void init_BoundMethodHandle_with_receiver(Handle mh, methodHandle original_m, KlassHandle receiver_limit, int decode_flags, TRAPS); // Fill in the fields of an AdapterMethodHandle mh. (MH.type must be pre-filled.) static void init_AdapterMethodHandle(Handle mh, Handle target, int argnum, TRAPS); static void ensure_vmlayout_field(Handle target, TRAPS); #ifdef ASSERT static bool spot_check_entry_names(); #endif private: static methodHandle dispatch_decoded_method(methodHandle m, KlassHandle receiver_limit, int decode_flags, KlassHandle receiver_klass, TRAPS); static bool same_basic_type_for_arguments(BasicType src, BasicType dst, bool raw = false, bool for_return = false); static bool same_basic_type_for_returns(BasicType src, BasicType dst, bool raw = false) { return same_basic_type_for_arguments(src, dst, raw, true); } static Symbol* convert_to_signature(oop type_str, bool polymorphic, TRAPS); #ifdef TARGET_ARCH_x86 # include "methodHandles_x86.hpp" #endif #ifdef TARGET_ARCH_sparc #define TARGET_ARCH_NYI_6939861 1 //FIXME //# include "methodHandles_sparc.hpp" #endif #ifdef TARGET_ARCH_zero #define TARGET_ARCH_NYI_6939861 1 //FIXME //# include "methodHandles_zero.hpp" #endif #ifdef TARGET_ARCH_arm #define TARGET_ARCH_NYI_6939861 1 //FIXME //# include "methodHandles_arm.hpp" #endif #ifdef TARGET_ARCH_ppc #define TARGET_ARCH_NYI_6939861 1 //FIXME //# include "methodHandles_ppc.hpp" #endif #ifdef TARGET_ARCH_NYI_6939861 // Here are some backward compatible declarations until the 6939861 ports are updated. #define _adapter_flyby (_EK_LIMIT + 10) #define _adapter_ricochet (_EK_LIMIT + 11) #define _adapter_opt_spread_1 _adapter_opt_spread_1_ref #define _adapter_opt_spread_more _adapter_opt_spread_ref enum { _INSERT_NO_MASK = -1, _INSERT_REF_MASK = 0, _INSERT_INT_MASK = 1, _INSERT_LONG_MASK = 3 }; static void get_ek_bound_mh_info(EntryKind ek, BasicType& arg_type, int& arg_mask, int& arg_slots) { arg_type = ek_bound_mh_arg_type(ek); arg_mask = 0; arg_slots = type2size[arg_type];; } static void get_ek_adapter_opt_swap_rot_info(EntryKind ek, int& swap_bytes, int& rotate) { int swap_slots = ek_adapter_opt_swap_slots(ek); rotate = ek_adapter_opt_swap_mode(ek); swap_bytes = swap_slots * Interpreter::stackElementSize; } static int get_ek_adapter_opt_spread_info(EntryKind ek) { return ek_adapter_opt_spread_count(ek); } static void insert_arg_slots(MacroAssembler* _masm, RegisterOrConstant arg_slots, int arg_mask, Register argslot_reg, Register temp_reg, Register temp2_reg, Register temp3_reg = noreg); static void remove_arg_slots(MacroAssembler* _masm, RegisterOrConstant arg_slots, Register argslot_reg, Register temp_reg, Register temp2_reg, Register temp3_reg = noreg); static void trace_method_handle(MacroAssembler* _masm, const char* adaptername) PRODUCT_RETURN; #endif //TARGET_ARCH_NYI_6939861 }; // Access methods for the "entry" field of a java.lang.invoke.MethodHandle. // The field is primarily a jump target for compiled calls. // However, we squirrel away some nice pointers for other uses, // just before the jump target. // Aspects of a method handle entry: // - from_compiled_entry - stub used when compiled code calls the MH // - from_interpreted_entry - stub used when the interpreter calls the MH // - type_checking_entry - stub for runtime casting between MHForm siblings (NYI) class MethodHandleEntry { public: class Data { friend class MethodHandleEntry; size_t _total_size; // size including Data and code stub MethodHandleEntry* _type_checking_entry; address _from_interpreted_entry; MethodHandleEntry* method_entry() { return (MethodHandleEntry*)(this + 1); } }; Data* data() { return (Data*)this - 1; } address start_address() { return (address) data(); } address end_address() { return start_address() + data()->_total_size; } address from_compiled_entry() { return (address) this; } address from_interpreted_entry() { return data()->_from_interpreted_entry; } void set_from_interpreted_entry(address e) { data()->_from_interpreted_entry = e; } MethodHandleEntry* type_checking_entry() { return data()->_type_checking_entry; } void set_type_checking_entry(MethodHandleEntry* e) { data()->_type_checking_entry = e; } void set_end_address(address end_addr) { size_t total_size = end_addr - start_address(); assert(total_size > 0 && total_size < 0x1000, "reasonable end address"); data()->_total_size = total_size; } // Compiler support: static int from_interpreted_entry_offset_in_bytes() { return (int)( offset_of(Data, _from_interpreted_entry) - sizeof(Data) ); } static int type_checking_entry_offset_in_bytes() { return (int)( offset_of(Data, _from_interpreted_entry) - sizeof(Data) ); } static address start_compiled_entry(MacroAssembler* _masm, address interpreted_entry = NULL); static MethodHandleEntry* finish_compiled_entry(MacroAssembler* masm, address start_addr); }; address MethodHandles::from_compiled_entry(EntryKind ek) { return entry(ek)->from_compiled_entry(); } address MethodHandles::from_interpreted_entry(EntryKind ek) { return entry(ek)->from_interpreted_entry(); } //------------------------------------------------------------------------------ // MethodHandlesAdapterGenerator // class MethodHandlesAdapterGenerator : public StubCodeGenerator { public: MethodHandlesAdapterGenerator(CodeBuffer* code) : StubCodeGenerator(code) {} void generate(); }; #endif // SHARE_VM_PRIMS_METHODHANDLES_HPP