/* * Copyright (c) 2005, 2016, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "c1/c1_Compilation.hpp" #include "c1/c1_FrameMap.hpp" #include "c1/c1_Instruction.hpp" #include "c1/c1_LIRAssembler.hpp" #include "c1/c1_LIRGenerator.hpp" #include "c1/c1_Runtime1.hpp" #include "c1/c1_ValueStack.hpp" #include "ci/ciArray.hpp" #include "ci/ciObjArrayKlass.hpp" #include "ci/ciTypeArrayKlass.hpp" #include "runtime/sharedRuntime.hpp" #include "runtime/stubRoutines.hpp" #include "vmreg_sparc.inline.hpp" #ifdef ASSERT #define __ gen()->lir(__FILE__, __LINE__)-> #else #define __ gen()->lir()-> #endif void LIRItem::load_byte_item() { // byte loads use same registers as other loads load_item(); } void LIRItem::load_nonconstant() { LIR_Opr r = value()->operand(); if (_gen->can_inline_as_constant(value())) { if (!r->is_constant()) { r = LIR_OprFact::value_type(value()->type()); } _result = r; } else { load_item(); } } //-------------------------------------------------------------- // LIRGenerator //-------------------------------------------------------------- LIR_Opr LIRGenerator::exceptionOopOpr() { return FrameMap::Oexception_opr; } LIR_Opr LIRGenerator::exceptionPcOpr() { return FrameMap::Oissuing_pc_opr; } LIR_Opr LIRGenerator::syncTempOpr() { return new_register(T_OBJECT); } LIR_Opr LIRGenerator::getThreadTemp() { return rlock_callee_saved(T_INT); } LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) { LIR_Opr opr; switch (type->tag()) { case intTag: opr = callee ? FrameMap::I0_opr : FrameMap::O0_opr; break; case objectTag: opr = callee ? FrameMap::I0_oop_opr : FrameMap::O0_oop_opr; break; case longTag: opr = callee ? FrameMap::in_long_opr : FrameMap::out_long_opr; break; case floatTag: opr = FrameMap::F0_opr; break; case doubleTag: opr = FrameMap::F0_double_opr; break; case addressTag: default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr; } assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch"); return opr; } LIR_Opr LIRGenerator::rlock_callee_saved(BasicType type) { LIR_Opr reg = new_register(type); set_vreg_flag(reg, callee_saved); return reg; } LIR_Opr LIRGenerator::rlock_byte(BasicType type) { return new_register(T_INT); } //--------- loading items into registers -------------------------------- // SPARC cannot inline all constants bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const { if (v->type()->as_IntConstant() != NULL) { return v->type()->as_IntConstant()->value() == 0; } else if (v->type()->as_LongConstant() != NULL) { return v->type()->as_LongConstant()->value() == 0L; } else if (v->type()->as_ObjectConstant() != NULL) { return v->type()->as_ObjectConstant()->value()->is_null_object(); } else { return false; } } // only simm13 constants can be inlined bool LIRGenerator:: can_inline_as_constant(Value i) const { if (i->type()->as_IntConstant() != NULL) { return Assembler::is_simm13(i->type()->as_IntConstant()->value()); } else { return can_store_as_constant(i, as_BasicType(i->type())); } } bool LIRGenerator:: can_inline_as_constant(LIR_Const* c) const { if (c->type() == T_INT) { return Assembler::is_simm13(c->as_jint()); } return false; } LIR_Opr LIRGenerator::safepoint_poll_register() { return new_register(T_INT); } LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index, int shift, int disp, BasicType type) { assert(base->is_register(), "must be"); // accumulate fixed displacements if (index->is_constant()) { disp += index->as_constant_ptr()->as_jint() << shift; index = LIR_OprFact::illegalOpr; } if (index->is_register()) { // apply the shift and accumulate the displacement if (shift > 0) { LIR_Opr tmp = new_pointer_register(); __ shift_left(index, shift, tmp); index = tmp; } if (disp != 0) { LIR_Opr tmp = new_pointer_register(); if (Assembler::is_simm13(disp)) { __ add(tmp, LIR_OprFact::intptrConst(disp), tmp); index = tmp; } else { __ move(LIR_OprFact::intptrConst(disp), tmp); __ add(tmp, index, tmp); index = tmp; } disp = 0; } } else if (disp != 0 && !Assembler::is_simm13(disp)) { // index is illegal so replace it with the displacement loaded into a register index = new_pointer_register(); __ move(LIR_OprFact::intptrConst(disp), index); disp = 0; } // at this point we either have base + index or base + displacement if (disp == 0) { return new LIR_Address(base, index, type); } else { assert(Assembler::is_simm13(disp), "must be"); return new LIR_Address(base, disp, type); } } LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr, BasicType type, bool needs_card_mark) { int elem_size = type2aelembytes(type); int shift = exact_log2(elem_size); LIR_Opr base_opr; int offset = arrayOopDesc::base_offset_in_bytes(type); if (index_opr->is_constant()) { int i = index_opr->as_constant_ptr()->as_jint(); int array_offset = i * elem_size; if (Assembler::is_simm13(array_offset + offset)) { base_opr = array_opr; offset = array_offset + offset; } else { base_opr = new_pointer_register(); if (Assembler::is_simm13(array_offset)) { __ add(array_opr, LIR_OprFact::intptrConst(array_offset), base_opr); } else { __ move(LIR_OprFact::intptrConst(array_offset), base_opr); __ add(base_opr, array_opr, base_opr); } } } else { #ifdef _LP64 if (index_opr->type() == T_INT) { LIR_Opr tmp = new_register(T_LONG); __ convert(Bytecodes::_i2l, index_opr, tmp); index_opr = tmp; } #endif base_opr = new_pointer_register(); assert (index_opr->is_register(), "Must be register"); if (shift > 0) { __ shift_left(index_opr, shift, base_opr); __ add(base_opr, array_opr, base_opr); } else { __ add(index_opr, array_opr, base_opr); } } if (needs_card_mark) { LIR_Opr ptr = new_pointer_register(); __ add(base_opr, LIR_OprFact::intptrConst(offset), ptr); return new LIR_Address(ptr, type); } else { return new LIR_Address(base_opr, offset, type); } } LIR_Opr LIRGenerator::load_immediate(int x, BasicType type) { LIR_Opr r; if (type == T_LONG) { r = LIR_OprFact::longConst(x); } else if (type == T_INT) { r = LIR_OprFact::intConst(x); } else { ShouldNotReachHere(); } if (!Assembler::is_simm13(x)) { LIR_Opr tmp = new_register(type); __ move(r, tmp); return tmp; } return r; } void LIRGenerator::increment_counter(address counter, BasicType type, int step) { LIR_Opr pointer = new_pointer_register(); __ move(LIR_OprFact::intptrConst(counter), pointer); LIR_Address* addr = new LIR_Address(pointer, type); increment_counter(addr, step); } void LIRGenerator::increment_counter(LIR_Address* addr, int step) { LIR_Opr temp = new_register(addr->type()); __ move(addr, temp); __ add(temp, load_immediate(step, addr->type()), temp); __ move(temp, addr); } void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) { LIR_Opr o7opr = FrameMap::O7_opr; __ load(new LIR_Address(base, disp, T_INT), o7opr, info); __ cmp(condition, o7opr, c); } void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) { LIR_Opr o7opr = FrameMap::O7_opr; __ load(new LIR_Address(base, disp, type), o7opr, info); __ cmp(condition, reg, o7opr); } void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, LIR_Opr disp, BasicType type, CodeEmitInfo* info) { LIR_Opr o7opr = FrameMap::O7_opr; __ load(new LIR_Address(base, disp, type), o7opr, info); __ cmp(condition, reg, o7opr); } bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, int c, LIR_Opr result, LIR_Opr tmp) { assert(left != result, "should be different registers"); if (is_power_of_2(c + 1)) { __ shift_left(left, log2_intptr(c + 1), result); __ sub(result, left, result); return true; } else if (is_power_of_2(c - 1)) { __ shift_left(left, log2_intptr(c - 1), result); __ add(result, left, result); return true; } return false; } void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) { BasicType t = item->type(); LIR_Opr sp_opr = FrameMap::SP_opr; if ((t == T_LONG || t == T_DOUBLE) && ((in_bytes(offset_from_sp) - STACK_BIAS) % 8 != 0)) { __ unaligned_move(item, new LIR_Address(sp_opr, in_bytes(offset_from_sp), t)); } else { __ move(item, new LIR_Address(sp_opr, in_bytes(offset_from_sp), t)); } } //---------------------------------------------------------------------- // visitor functions //---------------------------------------------------------------------- void LIRGenerator::do_StoreIndexed(StoreIndexed* x) { assert(x->is_pinned(),""); bool needs_range_check = x->compute_needs_range_check(); bool use_length = x->length() != NULL; bool obj_store = x->elt_type() == T_ARRAY || x->elt_type() == T_OBJECT; bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL || !get_jobject_constant(x->value())->is_null_object() || x->should_profile()); LIRItem array(x->array(), this); LIRItem index(x->index(), this); LIRItem value(x->value(), this); LIRItem length(this); array.load_item(); index.load_nonconstant(); if (use_length && needs_range_check) { length.set_instruction(x->length()); length.load_item(); } if (needs_store_check || x->check_boolean()) { value.load_item(); } else { value.load_for_store(x->elt_type()); } set_no_result(x); // the CodeEmitInfo must be duplicated for each different // LIR-instruction because spilling can occur anywhere between two // instructions and so the debug information must be different CodeEmitInfo* range_check_info = state_for(x); CodeEmitInfo* null_check_info = NULL; if (x->needs_null_check()) { null_check_info = new CodeEmitInfo(range_check_info); } // emit array address setup early so it schedules better LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), obj_store); if (GenerateRangeChecks && needs_range_check) { if (use_length) { __ cmp(lir_cond_belowEqual, length.result(), index.result()); __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result())); } else { array_range_check(array.result(), index.result(), null_check_info, range_check_info); // range_check also does the null check null_check_info = NULL; } } if (GenerateArrayStoreCheck && needs_store_check) { LIR_Opr tmp1 = FrameMap::G1_opr; LIR_Opr tmp2 = FrameMap::G3_opr; LIR_Opr tmp3 = FrameMap::G5_opr; CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info); __ store_check(value.result(), array.result(), tmp1, tmp2, tmp3, store_check_info, x->profiled_method(), x->profiled_bci()); } if (obj_store) { // Needs GC write barriers. pre_barrier(LIR_OprFact::address(array_addr), LIR_OprFact::illegalOpr /* pre_val */, true /* do_load */, false /* patch */, NULL); } LIR_Opr result = maybe_mask_boolean(x, array.result(), value.result(), null_check_info); __ move(result, array_addr, null_check_info); if (obj_store) { // Precise card mark post_barrier(LIR_OprFact::address(array_addr), value.result()); } } void LIRGenerator::do_MonitorEnter(MonitorEnter* x) { assert(x->is_pinned(),""); LIRItem obj(x->obj(), this); obj.load_item(); set_no_result(x); LIR_Opr lock = FrameMap::G1_opr; LIR_Opr scratch = FrameMap::G3_opr; LIR_Opr hdr = FrameMap::G4_opr; CodeEmitInfo* info_for_exception = NULL; if (x->needs_null_check()) { info_for_exception = state_for(x); } // this CodeEmitInfo must not have the xhandlers because here the // object is already locked (xhandlers expects object to be unlocked) CodeEmitInfo* info = state_for(x, x->state(), true); monitor_enter(obj.result(), lock, hdr, scratch, x->monitor_no(), info_for_exception, info); } void LIRGenerator::do_MonitorExit(MonitorExit* x) { assert(x->is_pinned(),""); LIRItem obj(x->obj(), this); obj.dont_load_item(); set_no_result(x); LIR_Opr lock = FrameMap::G1_opr; LIR_Opr hdr = FrameMap::G3_opr; LIR_Opr obj_temp = FrameMap::G4_opr; monitor_exit(obj_temp, lock, hdr, LIR_OprFact::illegalOpr, x->monitor_no()); } // _ineg, _lneg, _fneg, _dneg void LIRGenerator::do_NegateOp(NegateOp* x) { LIRItem value(x->x(), this); value.load_item(); LIR_Opr reg = rlock_result(x); __ negate(value.result(), reg); } // for _fadd, _fmul, _fsub, _fdiv, _frem // _dadd, _dmul, _dsub, _ddiv, _drem void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) { switch (x->op()) { case Bytecodes::_fadd: case Bytecodes::_fmul: case Bytecodes::_fsub: case Bytecodes::_fdiv: case Bytecodes::_dadd: case Bytecodes::_dmul: case Bytecodes::_dsub: case Bytecodes::_ddiv: { LIRItem left(x->x(), this); LIRItem right(x->y(), this); left.load_item(); right.load_item(); rlock_result(x); arithmetic_op_fpu(x->op(), x->operand(), left.result(), right.result(), x->is_strictfp()); } break; case Bytecodes::_frem: case Bytecodes::_drem: { address entry; switch (x->op()) { case Bytecodes::_frem: entry = CAST_FROM_FN_PTR(address, SharedRuntime::frem); break; case Bytecodes::_drem: entry = CAST_FROM_FN_PTR(address, SharedRuntime::drem); break; default: ShouldNotReachHere(); } LIR_Opr result = call_runtime(x->x(), x->y(), entry, x->type(), NULL); set_result(x, result); } break; default: ShouldNotReachHere(); } } // for _ladd, _lmul, _lsub, _ldiv, _lrem void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) { switch (x->op()) { case Bytecodes::_lrem: case Bytecodes::_lmul: case Bytecodes::_ldiv: { if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem) { LIRItem right(x->y(), this); right.load_item(); CodeEmitInfo* info = state_for(x); LIR_Opr item = right.result(); assert(item->is_register(), "must be"); __ cmp(lir_cond_equal, item, LIR_OprFact::longConst(0)); __ branch(lir_cond_equal, T_LONG, new DivByZeroStub(info)); } address entry; switch (x->op()) { case Bytecodes::_lrem: entry = CAST_FROM_FN_PTR(address, SharedRuntime::lrem); break; // check if dividend is 0 is done elsewhere case Bytecodes::_ldiv: entry = CAST_FROM_FN_PTR(address, SharedRuntime::ldiv); break; // check if dividend is 0 is done elsewhere case Bytecodes::_lmul: entry = CAST_FROM_FN_PTR(address, SharedRuntime::lmul); break; default: ShouldNotReachHere(); } // order of arguments to runtime call is reversed. LIR_Opr result = call_runtime(x->y(), x->x(), entry, x->type(), NULL); set_result(x, result); break; } case Bytecodes::_ladd: case Bytecodes::_lsub: { LIRItem left(x->x(), this); LIRItem right(x->y(), this); left.load_item(); right.load_item(); rlock_result(x); arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL); break; } default: ShouldNotReachHere(); } } // Returns if item is an int constant that can be represented by a simm13 static bool is_simm13(LIR_Opr item) { if (item->is_constant() && item->type() == T_INT) { return Assembler::is_simm13(item->as_constant_ptr()->as_jint()); } else { return false; } } // for: _iadd, _imul, _isub, _idiv, _irem void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) { bool is_div_rem = x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem; LIRItem left(x->x(), this); LIRItem right(x->y(), this); // missing test if instr is commutative and if we should swap right.load_nonconstant(); assert(right.is_constant() || right.is_register(), "wrong state of right"); left.load_item(); rlock_result(x); if (is_div_rem) { CodeEmitInfo* info = state_for(x); LIR_Opr tmp = FrameMap::G1_opr; if (x->op() == Bytecodes::_irem) { __ irem(left.result(), right.result(), x->operand(), tmp, info); } else if (x->op() == Bytecodes::_idiv) { __ idiv(left.result(), right.result(), x->operand(), tmp, info); } } else { arithmetic_op_int(x->op(), x->operand(), left.result(), right.result(), FrameMap::G1_opr); } } void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) { ValueTag tag = x->type()->tag(); assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters"); switch (tag) { case floatTag: case doubleTag: do_ArithmeticOp_FPU(x); return; case longTag: do_ArithmeticOp_Long(x); return; case intTag: do_ArithmeticOp_Int(x); return; } ShouldNotReachHere(); } // _ishl, _lshl, _ishr, _lshr, _iushr, _lushr void LIRGenerator::do_ShiftOp(ShiftOp* x) { LIRItem value(x->x(), this); LIRItem count(x->y(), this); // Long shift destroys count register if (value.type()->is_long()) { count.set_destroys_register(); } value.load_item(); // the old backend doesn't support this if (count.is_constant() && count.type()->as_IntConstant() != NULL && value.type()->is_int()) { jint c = count.get_jint_constant() & 0x1f; assert(c >= 0 && c < 32, "should be small"); count.dont_load_item(); } else { count.load_item(); } LIR_Opr reg = rlock_result(x); shift_op(x->op(), reg, value.result(), count.result(), LIR_OprFact::illegalOpr); } // _iand, _land, _ior, _lor, _ixor, _lxor void LIRGenerator::do_LogicOp(LogicOp* x) { LIRItem left(x->x(), this); LIRItem right(x->y(), this); left.load_item(); right.load_nonconstant(); LIR_Opr reg = rlock_result(x); logic_op(x->op(), reg, left.result(), right.result()); } // _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg void LIRGenerator::do_CompareOp(CompareOp* x) { LIRItem left(x->x(), this); LIRItem right(x->y(), this); left.load_item(); right.load_item(); LIR_Opr reg = rlock_result(x); if (x->x()->type()->is_float_kind()) { Bytecodes::Code code = x->op(); __ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl)); } else if (x->x()->type()->tag() == longTag) { __ lcmp2int(left.result(), right.result(), reg); } else { Unimplemented(); } } void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) { assert(x->number_of_arguments() == 4, "wrong type"); LIRItem obj (x->argument_at(0), this); // object LIRItem offset(x->argument_at(1), this); // offset of field LIRItem cmp (x->argument_at(2), this); // value to compare with field LIRItem val (x->argument_at(3), this); // replace field with val if matches cmp // Use temps to avoid kills LIR_Opr t1 = FrameMap::G1_opr; LIR_Opr t2 = FrameMap::G3_opr; LIR_Opr addr = new_pointer_register(); // get address of field obj.load_item(); offset.load_item(); cmp.load_item(); val.load_item(); __ add(obj.result(), offset.result(), addr); if (type == objectType) { // Write-barrier needed for Object fields. pre_barrier(addr, LIR_OprFact::illegalOpr /* pre_val */, true /* do_load */, false /* patch */, NULL); } if (type == objectType) __ cas_obj(addr, cmp.result(), val.result(), t1, t2); else if (type == intType) __ cas_int(addr, cmp.result(), val.result(), t1, t2); else if (type == longType) __ cas_long(addr, cmp.result(), val.result(), t1, t2); else { ShouldNotReachHere(); } // generate conditional move of boolean result LIR_Opr result = rlock_result(x); __ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0), result, as_BasicType(type)); if (type == objectType) { // Write-barrier needed for Object fields. // Precise card mark since could either be object or array post_barrier(addr, val.result()); } } void LIRGenerator::do_MathIntrinsic(Intrinsic* x) { switch (x->id()) { case vmIntrinsics::_dabs: case vmIntrinsics::_dsqrt: { assert(x->number_of_arguments() == 1, "wrong type"); LIRItem value(x->argument_at(0), this); value.load_item(); LIR_Opr dst = rlock_result(x); switch (x->id()) { case vmIntrinsics::_dsqrt: { __ sqrt(value.result(), dst, LIR_OprFact::illegalOpr); break; } case vmIntrinsics::_dabs: { __ abs(value.result(), dst, LIR_OprFact::illegalOpr); break; } } break; } case vmIntrinsics::_dlog10: // fall through case vmIntrinsics::_dlog: // fall through case vmIntrinsics::_dsin: // fall through case vmIntrinsics::_dtan: // fall through case vmIntrinsics::_dcos: // fall through case vmIntrinsics::_dexp: { assert(x->number_of_arguments() == 1, "wrong type"); address runtime_entry = NULL; switch (x->id()) { case vmIntrinsics::_dsin: runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dsin); break; case vmIntrinsics::_dcos: runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dcos); break; case vmIntrinsics::_dtan: runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dtan); break; case vmIntrinsics::_dlog: runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog); break; case vmIntrinsics::_dlog10: runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10); break; case vmIntrinsics::_dexp: runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dexp); break; default: ShouldNotReachHere(); } LIR_Opr result = call_runtime(x->argument_at(0), runtime_entry, x->type(), NULL); set_result(x, result); break; } case vmIntrinsics::_dpow: { assert(x->number_of_arguments() == 2, "wrong type"); address runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dpow); LIR_Opr result = call_runtime(x->argument_at(0), x->argument_at(1), runtime_entry, x->type(), NULL); set_result(x, result); break; } } } void LIRGenerator::do_ArrayCopy(Intrinsic* x) { assert(x->number_of_arguments() == 5, "wrong type"); // Make all state_for calls early since they can emit code CodeEmitInfo* info = state_for(x, x->state()); // Note: spill caller save before setting the item LIRItem src (x->argument_at(0), this); LIRItem src_pos (x->argument_at(1), this); LIRItem dst (x->argument_at(2), this); LIRItem dst_pos (x->argument_at(3), this); LIRItem length (x->argument_at(4), this); // load all values in callee_save_registers, as this makes the // parameter passing to the fast case simpler src.load_item_force (rlock_callee_saved(T_OBJECT)); src_pos.load_item_force (rlock_callee_saved(T_INT)); dst.load_item_force (rlock_callee_saved(T_OBJECT)); dst_pos.load_item_force (rlock_callee_saved(T_INT)); length.load_item_force (rlock_callee_saved(T_INT)); int flags; ciArrayKlass* expected_type; arraycopy_helper(x, &flags, &expected_type); __ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(), length.result(), rlock_callee_saved(T_INT), expected_type, flags, info); set_no_result(x); } void LIRGenerator::do_update_CRC32(Intrinsic* x) { fatal("CRC32 intrinsic is not implemented on this platform"); } // _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f // _i2b, _i2c, _i2s void LIRGenerator::do_Convert(Convert* x) { switch (x->op()) { case Bytecodes::_f2l: case Bytecodes::_d2l: case Bytecodes::_d2i: case Bytecodes::_l2f: case Bytecodes::_l2d: { address entry; switch (x->op()) { case Bytecodes::_l2f: entry = CAST_FROM_FN_PTR(address, SharedRuntime::l2f); break; case Bytecodes::_l2d: entry = CAST_FROM_FN_PTR(address, SharedRuntime::l2d); break; case Bytecodes::_f2l: entry = CAST_FROM_FN_PTR(address, SharedRuntime::f2l); break; case Bytecodes::_d2l: entry = CAST_FROM_FN_PTR(address, SharedRuntime::d2l); break; case Bytecodes::_d2i: entry = CAST_FROM_FN_PTR(address, SharedRuntime::d2i); break; default: ShouldNotReachHere(); } LIR_Opr result = call_runtime(x->value(), entry, x->type(), NULL); set_result(x, result); break; } case Bytecodes::_i2f: case Bytecodes::_i2d: { LIRItem value(x->value(), this); LIR_Opr reg = rlock_result(x); // To convert an int to double, we need to load the 32-bit int // from memory into a single precision floating point register // (even numbered). Then the sparc fitod instruction takes care // of the conversion. This is a bit ugly, but is the best way to // get the int value in a single precision floating point register value.load_item(); LIR_Opr tmp = force_to_spill(value.result(), T_FLOAT); __ convert(x->op(), tmp, reg); break; } break; case Bytecodes::_i2l: case Bytecodes::_i2b: case Bytecodes::_i2c: case Bytecodes::_i2s: case Bytecodes::_l2i: case Bytecodes::_f2d: case Bytecodes::_d2f: { // inline code LIRItem value(x->value(), this); value.load_item(); LIR_Opr reg = rlock_result(x); __ convert(x->op(), value.result(), reg, false); } break; case Bytecodes::_f2i: { LIRItem value (x->value(), this); value.set_destroys_register(); value.load_item(); LIR_Opr reg = rlock_result(x); set_vreg_flag(reg, must_start_in_memory); __ convert(x->op(), value.result(), reg, false); } break; default: ShouldNotReachHere(); } } void LIRGenerator::do_NewInstance(NewInstance* x) { print_if_not_loaded(x); // This instruction can be deoptimized in the slow path : use // O0 as result register. const LIR_Opr reg = result_register_for(x->type()); CodeEmitInfo* info = state_for(x, x->state()); LIR_Opr tmp1 = FrameMap::G1_oop_opr; LIR_Opr tmp2 = FrameMap::G3_oop_opr; LIR_Opr tmp3 = FrameMap::G4_oop_opr; LIR_Opr tmp4 = FrameMap::O1_oop_opr; LIR_Opr klass_reg = FrameMap::G5_metadata_opr; new_instance(reg, x->klass(), x->is_unresolved(), tmp1, tmp2, tmp3, tmp4, klass_reg, info); LIR_Opr result = rlock_result(x); __ move(reg, result); } void LIRGenerator::do_NewTypeArray(NewTypeArray* x) { // Evaluate state_for early since it may emit code CodeEmitInfo* info = state_for(x, x->state()); LIRItem length(x->length(), this); length.load_item(); LIR_Opr reg = result_register_for(x->type()); LIR_Opr tmp1 = FrameMap::G1_oop_opr; LIR_Opr tmp2 = FrameMap::G3_oop_opr; LIR_Opr tmp3 = FrameMap::G4_oop_opr; LIR_Opr tmp4 = FrameMap::O1_oop_opr; LIR_Opr klass_reg = FrameMap::G5_metadata_opr; LIR_Opr len = length.result(); BasicType elem_type = x->elt_type(); __ metadata2reg(ciTypeArrayKlass::make(elem_type)->constant_encoding(), klass_reg); CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info); __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path); LIR_Opr result = rlock_result(x); __ move(reg, result); } void LIRGenerator::do_NewObjectArray(NewObjectArray* x) { // Evaluate state_for early since it may emit code. CodeEmitInfo* info = state_for(x, x->state()); // in case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction // and therefore provide the state before the parameters have been consumed CodeEmitInfo* patching_info = NULL; if (!x->klass()->is_loaded() || PatchALot) { patching_info = state_for(x, x->state_before()); } LIRItem length(x->length(), this); length.load_item(); const LIR_Opr reg = result_register_for(x->type()); LIR_Opr tmp1 = FrameMap::G1_oop_opr; LIR_Opr tmp2 = FrameMap::G3_oop_opr; LIR_Opr tmp3 = FrameMap::G4_oop_opr; LIR_Opr tmp4 = FrameMap::O1_oop_opr; LIR_Opr klass_reg = FrameMap::G5_metadata_opr; LIR_Opr len = length.result(); CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info); ciMetadata* obj = ciObjArrayKlass::make(x->klass()); if (obj == ciEnv::unloaded_ciobjarrayklass()) { BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error"); } klass2reg_with_patching(klass_reg, obj, patching_info); __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path); LIR_Opr result = rlock_result(x); __ move(reg, result); } void LIRGenerator::do_NewMultiArray(NewMultiArray* x) { Values* dims = x->dims(); int i = dims->length(); LIRItemList* items = new LIRItemList(dims->length(), NULL); while (i-- > 0) { LIRItem* size = new LIRItem(dims->at(i), this); items->at_put(i, size); } // Evaluate state_for early since it may emit code. CodeEmitInfo* patching_info = NULL; if (!x->klass()->is_loaded() || PatchALot) { patching_info = state_for(x, x->state_before()); // Cannot re-use same xhandlers for multiple CodeEmitInfos, so // clone all handlers (NOTE: Usually this is handled transparently // by the CodeEmitInfo cloning logic in CodeStub constructors but // is done explicitly here because a stub isn't being used). x->set_exception_handlers(new XHandlers(x->exception_handlers())); } CodeEmitInfo* info = state_for(x, x->state()); i = dims->length(); while (i-- > 0) { LIRItem* size = items->at(i); size->load_item(); store_stack_parameter (size->result(), in_ByteSize(STACK_BIAS + frame::memory_parameter_word_sp_offset * wordSize + i * sizeof(jint))); } // This instruction can be deoptimized in the slow path : use // O0 as result register. const LIR_Opr klass_reg = FrameMap::O0_metadata_opr; klass2reg_with_patching(klass_reg, x->klass(), patching_info); LIR_Opr rank = FrameMap::O1_opr; __ move(LIR_OprFact::intConst(x->rank()), rank); LIR_Opr varargs = FrameMap::as_pointer_opr(O2); int offset_from_sp = (frame::memory_parameter_word_sp_offset * wordSize) + STACK_BIAS; __ add(FrameMap::SP_opr, LIR_OprFact::intptrConst(offset_from_sp), varargs); LIR_OprList* args = new LIR_OprList(3); args->append(klass_reg); args->append(rank); args->append(varargs); const LIR_Opr reg = result_register_for(x->type()); __ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id), LIR_OprFact::illegalOpr, reg, args, info); LIR_Opr result = rlock_result(x); __ move(reg, result); } void LIRGenerator::do_BlockBegin(BlockBegin* x) { } void LIRGenerator::do_CheckCast(CheckCast* x) { LIRItem obj(x->obj(), this); CodeEmitInfo* patching_info = NULL; if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check())) { // must do this before locking the destination register as an oop register, // and before the obj is loaded (so x->obj()->item() is valid for creating a debug info location) patching_info = state_for(x, x->state_before()); } obj.load_item(); LIR_Opr out_reg = rlock_result(x); CodeStub* stub; CodeEmitInfo* info_for_exception = state_for(x); if (x->is_incompatible_class_change_check()) { assert(patching_info == NULL, "can't patch this"); stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception); } else { stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception); } LIR_Opr tmp1 = FrameMap::G1_oop_opr; LIR_Opr tmp2 = FrameMap::G3_oop_opr; LIR_Opr tmp3 = FrameMap::G4_oop_opr; __ checkcast(out_reg, obj.result(), x->klass(), tmp1, tmp2, tmp3, x->direct_compare(), info_for_exception, patching_info, stub, x->profiled_method(), x->profiled_bci()); } void LIRGenerator::do_InstanceOf(InstanceOf* x) { LIRItem obj(x->obj(), this); CodeEmitInfo* patching_info = NULL; if (!x->klass()->is_loaded() || PatchALot) { patching_info = state_for(x, x->state_before()); } // ensure the result register is not the input register because the result is initialized before the patching safepoint obj.load_item(); LIR_Opr out_reg = rlock_result(x); LIR_Opr tmp1 = FrameMap::G1_oop_opr; LIR_Opr tmp2 = FrameMap::G3_oop_opr; LIR_Opr tmp3 = FrameMap::G4_oop_opr; __ instanceof(out_reg, obj.result(), x->klass(), tmp1, tmp2, tmp3, x->direct_compare(), patching_info, x->profiled_method(), x->profiled_bci()); } void LIRGenerator::do_If(If* x) { assert(x->number_of_sux() == 2, "inconsistency"); ValueTag tag = x->x()->type()->tag(); LIRItem xitem(x->x(), this); LIRItem yitem(x->y(), this); LIRItem* xin = &xitem; LIRItem* yin = &yitem; If::Condition cond = x->cond(); if (tag == longTag) { // for longs, only conditions "eql", "neq", "lss", "geq" are valid; // mirror for other conditions if (cond == If::gtr || cond == If::leq) { // swap inputs cond = Instruction::mirror(cond); xin = &yitem; yin = &xitem; } xin->set_destroys_register(); } LIR_Opr left = LIR_OprFact::illegalOpr; LIR_Opr right = LIR_OprFact::illegalOpr; xin->load_item(); left = xin->result(); if (is_simm13(yin->result())) { // inline int constants which are small enough to be immediate operands right = LIR_OprFact::value_type(yin->value()->type()); } else if (tag == longTag && yin->is_constant() && yin->get_jlong_constant() == 0 && (cond == If::eql || cond == If::neq)) { // inline long zero right = LIR_OprFact::value_type(yin->value()->type()); } else if (tag == objectTag && yin->is_constant() && (yin->get_jobject_constant()->is_null_object())) { right = LIR_OprFact::value_type(yin->value()->type()); } else { yin->load_item(); right = yin->result(); } set_no_result(x); // add safepoint before generating condition code so it can be recomputed if (x->is_safepoint()) { // increment backedge counter if needed increment_backedge_counter(state_for(x, x->state_before()), x->profiled_bci()); __ safepoint(new_register(T_INT), state_for(x, x->state_before())); } __ cmp(lir_cond(cond), left, right); // Generate branch profiling. Profiling code doesn't kill flags. profile_branch(x, cond); move_to_phi(x->state()); if (x->x()->type()->is_float_kind()) { __ branch(lir_cond(cond), right->type(), x->tsux(), x->usux()); } else { __ branch(lir_cond(cond), right->type(), x->tsux()); } assert(x->default_sux() == x->fsux(), "wrong destination above"); __ jump(x->default_sux()); } LIR_Opr LIRGenerator::getThreadPointer() { return FrameMap::as_pointer_opr(G2); } void LIRGenerator::trace_block_entry(BlockBegin* block) { __ move(LIR_OprFact::intConst(block->block_id()), FrameMap::O0_opr); LIR_OprList* args = new LIR_OprList(1); args->append(FrameMap::O0_opr); address func = CAST_FROM_FN_PTR(address, Runtime1::trace_block_entry); __ call_runtime_leaf(func, rlock_callee_saved(T_INT), LIR_OprFact::illegalOpr, args); } void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address, CodeEmitInfo* info) { #ifdef _LP64 __ store(value, address, info); #else __ volatile_store_mem_reg(value, address, info); #endif } void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result, CodeEmitInfo* info) { #ifdef _LP64 __ load(address, result, info); #else __ volatile_load_mem_reg(address, result, info); #endif } void LIRGenerator::put_Object_unsafe(LIR_Opr src, LIR_Opr offset, LIR_Opr data, BasicType type, bool is_volatile) { LIR_Opr base_op = src; LIR_Opr index_op = offset; bool is_obj = (type == T_ARRAY || type == T_OBJECT); #ifndef _LP64 if (is_volatile && type == T_LONG) { __ volatile_store_unsafe_reg(data, src, offset, type, NULL, lir_patch_none); } else #endif { if (type == T_BOOLEAN) { type = T_BYTE; } LIR_Address* addr; if (type == T_ARRAY || type == T_OBJECT) { LIR_Opr tmp = new_pointer_register(); __ add(base_op, index_op, tmp); addr = new LIR_Address(tmp, type); } else { addr = new LIR_Address(base_op, index_op, type); } if (is_obj) { pre_barrier(LIR_OprFact::address(addr), LIR_OprFact::illegalOpr /* pre_val */, true /* do_load */, false /* patch */, NULL); // _bs->c1_write_barrier_pre(this, LIR_OprFact::address(addr)); } __ move(data, addr); if (is_obj) { // This address is precise post_barrier(LIR_OprFact::address(addr), data); } } } void LIRGenerator::get_Object_unsafe(LIR_Opr dst, LIR_Opr src, LIR_Opr offset, BasicType type, bool is_volatile) { #ifndef _LP64 if (is_volatile && type == T_LONG) { __ volatile_load_unsafe_reg(src, offset, dst, type, NULL, lir_patch_none); } else #endif { LIR_Address* addr = new LIR_Address(src, offset, type); __ load(addr, dst); } } void LIRGenerator::do_UnsafeGetAndSetObject(UnsafeGetAndSetObject* x) { BasicType type = x->basic_type(); LIRItem src(x->object(), this); LIRItem off(x->offset(), this); LIRItem value(x->value(), this); src.load_item(); value.load_item(); off.load_nonconstant(); LIR_Opr dst = rlock_result(x, type); LIR_Opr data = value.result(); bool is_obj = (type == T_ARRAY || type == T_OBJECT); LIR_Opr offset = off.result(); // Because we want a 2-arg form of xchg __ move(data, dst); assert (!x->is_add() && (type == T_INT || (is_obj LP64_ONLY(&& UseCompressedOops))), "unexpected type"); LIR_Address* addr; if (offset->is_constant()) { #ifdef _LP64 jlong l = offset->as_jlong(); assert((jlong)((jint)l) == l, "offset too large for constant"); jint c = (jint)l; #else jint c = offset->as_jint(); #endif addr = new LIR_Address(src.result(), c, type); } else { addr = new LIR_Address(src.result(), offset, type); } LIR_Opr tmp = LIR_OprFact::illegalOpr; LIR_Opr ptr = LIR_OprFact::illegalOpr; if (is_obj) { // Do the pre-write barrier, if any. // barriers on sparc don't work with a base + index address tmp = FrameMap::G3_opr; ptr = new_pointer_register(); __ add(src.result(), off.result(), ptr); pre_barrier(ptr, LIR_OprFact::illegalOpr /* pre_val */, true /* do_load */, false /* patch */, NULL); } __ xchg(LIR_OprFact::address(addr), dst, dst, tmp); if (is_obj) { // Seems to be a precise address post_barrier(ptr, data); } }