/* * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "gc_implementation/g1/heapRegion.hpp" #include "gc_implementation/g1/heapRegionSeq.inline.hpp" #include "gc_implementation/g1/heapRegionSet.hpp" #include "gc_implementation/g1/g1CollectedHeap.inline.hpp" #include "memory/allocation.hpp" // Private uint HeapRegionSeq::find_contiguous_from(uint from, uint num) { uint len = length(); assert(num > 1, "use this only for sequences of length 2 or greater"); assert(from <= len, err_msg("from: %u should be valid and <= than %u", from, len)); uint curr = from; uint first = G1_NULL_HRS_INDEX; uint num_so_far = 0; while (curr < len && num_so_far < num) { if (at(curr)->is_empty()) { if (first == G1_NULL_HRS_INDEX) { first = curr; num_so_far = 1; } else { num_so_far += 1; } } else { first = G1_NULL_HRS_INDEX; num_so_far = 0; } curr += 1; } assert(num_so_far <= num, "post-condition"); if (num_so_far == num) { // we found enough space for the humongous object assert(from <= first && first < len, "post-condition"); assert(first < curr && (curr - first) == num, "post-condition"); for (uint i = first; i < first + num; ++i) { assert(at(i)->is_empty(), "post-condition"); } return first; } else { // we failed to find enough space for the humongous object return G1_NULL_HRS_INDEX; } } // Public void HeapRegionSeq::initialize(HeapWord* bottom, HeapWord* end) { assert((uintptr_t) bottom % HeapRegion::GrainBytes == 0, "bottom should be heap region aligned"); assert((uintptr_t) end % HeapRegion::GrainBytes == 0, "end should be heap region aligned"); _next_search_index = 0; _allocated_length = 0; _regions.initialize(bottom, end, HeapRegion::GrainBytes); } MemRegion HeapRegionSeq::expand_by(HeapWord* old_end, HeapWord* new_end, FreeRegionList* list) { assert(old_end < new_end, "don't call it otherwise"); G1CollectedHeap* g1h = G1CollectedHeap::heap(); HeapWord* next_bottom = old_end; assert(heap_bottom() <= next_bottom, "invariant"); while (next_bottom < new_end) { assert(next_bottom < heap_end(), "invariant"); uint index = length(); assert(index < max_length(), "otherwise we cannot expand further"); if (index == 0) { // We have not allocated any regions so far assert(next_bottom == heap_bottom(), "invariant"); } else { // next_bottom should match the end of the last/previous region assert(next_bottom == at(index - 1)->end(), "invariant"); } if (index == _allocated_length) { // We have to allocate a new HeapRegion. HeapRegion* new_hr = g1h->new_heap_region(index, next_bottom); if (new_hr == NULL) { // allocation failed, we bail out and return what we have done so far return MemRegion(old_end, next_bottom); } assert(_regions.get_by_index(index) == NULL, "invariant"); _regions.set_by_index(index, new_hr); increment_allocated_length(); } // Have to increment the length first, otherwise we will get an // assert failure at(index) below. increment_length(); HeapRegion* hr = at(index); list->add_as_tail(hr); next_bottom = hr->end(); } assert(next_bottom == new_end, "post-condition"); return MemRegion(old_end, next_bottom); } uint HeapRegionSeq::free_suffix() { uint res = 0; uint index = length(); while (index > 0) { index -= 1; if (!at(index)->is_empty()) { break; } res += 1; } return res; } uint HeapRegionSeq::find_contiguous(uint num) { assert(num > 1, "use this only for sequences of length 2 or greater"); assert(_next_search_index <= length(), err_msg("_next_search_index: %u should be valid and <= than %u", _next_search_index, length())); uint start = _next_search_index; uint res = find_contiguous_from(start, num); if (res == G1_NULL_HRS_INDEX && start > 0) { // Try starting from the beginning. If _next_search_index was 0, // no point in doing this again. res = find_contiguous_from(0, num); } if (res != G1_NULL_HRS_INDEX) { assert(res < length(), err_msg("res: %u should be valid", res)); _next_search_index = res + num; assert(_next_search_index <= length(), err_msg("_next_search_index: %u should be valid and <= than %u", _next_search_index, length())); } return res; } void HeapRegionSeq::iterate(HeapRegionClosure* blk) const { iterate_from((HeapRegion*) NULL, blk); } void HeapRegionSeq::iterate_from(HeapRegion* hr, HeapRegionClosure* blk) const { uint hr_index = 0; if (hr != NULL) { hr_index = hr->hrs_index(); } uint len = length(); for (uint i = hr_index; i < len; i += 1) { bool res = blk->doHeapRegion(at(i)); if (res) { blk->incomplete(); return; } } for (uint i = 0; i < hr_index; i += 1) { bool res = blk->doHeapRegion(at(i)); if (res) { blk->incomplete(); return; } } } uint HeapRegionSeq::shrink_by(uint num_regions_to_remove) { // Reset this in case it's currently pointing into the regions that // we just removed. _next_search_index = 0; assert(length() > 0, "the region sequence should not be empty"); assert(length() <= _allocated_length, "invariant"); assert(_allocated_length > 0, "we should have at least one region committed"); assert(num_regions_to_remove < length(), "We should never remove all regions"); uint i = 0; for (; i < num_regions_to_remove; i++) { HeapRegion* cur = at(length() - 1); if (!cur->is_empty()) { // We have to give up if the region can not be moved break; } assert(!cur->isHumongous(), "Humongous regions should not be empty"); decrement_length(); } return i; } #ifndef PRODUCT void HeapRegionSeq::verify_optional() { guarantee(length() <= _allocated_length, err_msg("invariant: _length: %u _allocated_length: %u", length(), _allocated_length)); guarantee(_allocated_length <= max_length(), err_msg("invariant: _allocated_length: %u _max_length: %u", _allocated_length, max_length())); guarantee(_next_search_index <= length(), err_msg("invariant: _next_search_index: %u _length: %u", _next_search_index, length())); HeapWord* prev_end = heap_bottom(); for (uint i = 0; i < _allocated_length; i += 1) { HeapRegion* hr = _regions.get_by_index(i); guarantee(hr != NULL, err_msg("invariant: i: %u", i)); guarantee(hr->bottom() == prev_end, err_msg("invariant i: %u "HR_FORMAT" prev_end: "PTR_FORMAT, i, HR_FORMAT_PARAMS(hr), p2i(prev_end))); guarantee(hr->hrs_index() == i, err_msg("invariant: i: %u hrs_index(): %u", i, hr->hrs_index())); if (i < length()) { // Asserts will fire if i is >= _length HeapWord* addr = hr->bottom(); guarantee(addr_to_region(addr) == hr, "sanity"); } else { guarantee(hr->is_empty(), "sanity"); guarantee(!hr->isHumongous(), "sanity"); // using assert instead of guarantee here since containing_set() // is only available in non-product builds. assert(hr->containing_set() == NULL, "sanity"); } if (hr->startsHumongous()) { prev_end = hr->orig_end(); } else { prev_end = hr->end(); } } for (uint i = _allocated_length; i < max_length(); i += 1) { guarantee(_regions.get_by_index(i) == NULL, err_msg("invariant i: %u", i)); } } #endif // PRODUCT