/* * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_VM_OPTO_REGMASK_HPP #define SHARE_VM_OPTO_REGMASK_HPP #include "code/vmreg.hpp" #include "libadt/port.hpp" #include "opto/optoreg.hpp" #ifdef TARGET_ARCH_MODEL_x86_32 # include "adfiles/adGlobals_x86_32.hpp" #endif #ifdef TARGET_ARCH_MODEL_x86_64 # include "adfiles/adGlobals_x86_64.hpp" #endif #ifdef TARGET_ARCH_MODEL_sparc # include "adfiles/adGlobals_sparc.hpp" #endif #ifdef TARGET_ARCH_MODEL_zero # include "adfiles/adGlobals_zero.hpp" #endif #ifdef TARGET_ARCH_MODEL_arm # include "adfiles/adGlobals_arm.hpp" #endif #ifdef TARGET_ARCH_MODEL_ppc_32 # include "adfiles/adGlobals_ppc_32.hpp" #endif #ifdef TARGET_ARCH_MODEL_ppc_64 # include "adfiles/adGlobals_ppc_64.hpp" #endif // Some fun naming (textual) substitutions: // // RegMask::get_low_elem() ==> RegMask::find_first_elem() // RegMask::Special ==> RegMask::Empty // RegMask::_flags ==> RegMask::is_AllStack() // RegMask::operator<<=() ==> RegMask::Insert() // RegMask::operator>>=() ==> RegMask::Remove() // RegMask::Union() ==> RegMask::OR // RegMask::Inter() ==> RegMask::AND // // OptoRegister::RegName ==> OptoReg::Name // // OptoReg::stack0() ==> _last_Mach_Reg or ZERO in core version // // numregs in chaitin ==> proper degree in chaitin //-------------Non-zero bit search methods used by RegMask--------------------- // Find lowest 1, or return 32 if empty int find_lowest_bit( uint32 mask ); // Find highest 1, or return 32 if empty int find_hihghest_bit( uint32 mask ); //------------------------------RegMask---------------------------------------- // The ADL file describes how to print the machine-specific registers, as well // as any notion of register classes. We provide a register mask, which is // just a collection of Register numbers. // The ADLC defines 2 macros, RM_SIZE and FORALL_BODY. // RM_SIZE is the size of a register mask in words. // FORALL_BODY replicates a BODY macro once per word in the register mask. // The usage is somewhat clumsy and limited to the regmask.[h,c]pp files. // However, it means the ADLC can redefine the unroll macro and all loops // over register masks will be unrolled by the correct amount. class RegMask VALUE_OBJ_CLASS_SPEC { union { double _dummy_force_double_alignment[RM_SIZE>>1]; // Array of Register Mask bits. This array is large enough to cover // all the machine registers and all parameters that need to be passed // on the stack (stack registers) up to some interesting limit. Methods // that need more parameters will NOT be compiled. On Intel, the limit // is something like 90+ parameters. int _A[RM_SIZE]; }; enum { _WordBits = BitsPerInt, _LogWordBits = LogBitsPerInt, _RM_SIZE = RM_SIZE // local constant, imported, then hidden by #undef }; public: enum { CHUNK_SIZE = RM_SIZE*_WordBits }; // SlotsPerLong is 2, since slots are 32 bits and longs are 64 bits. // Also, consider the maximum alignment size for a normally allocated // value. Since we allocate register pairs but not register quads (at // present), this alignment is SlotsPerLong (== 2). A normally // aligned allocated register is either a single register, or a pair // of adjacent registers, the lower-numbered being even. // See also is_aligned_Pairs() below, and the padding added before // Matcher::_new_SP to keep allocated pairs aligned properly. // If we ever go to quad-word allocations, SlotsPerQuad will become // the controlling alignment constraint. Note that this alignment // requirement is internal to the allocator, and independent of any // particular platform. enum { SlotsPerLong = 2, SlotsPerVecS = 1, SlotsPerVecD = 2, SlotsPerVecX = 4, SlotsPerVecY = 8 }; // A constructor only used by the ADLC output. All mask fields are filled // in directly. Calls to this look something like RM(1,2,3,4); RegMask( # define BODY(I) int a##I, FORALL_BODY # undef BODY int dummy = 0 ) { # define BODY(I) _A[I] = a##I; FORALL_BODY # undef BODY } // Handy copying constructor RegMask( RegMask *rm ) { # define BODY(I) _A[I] = rm->_A[I]; FORALL_BODY # undef BODY } // Construct an empty mask RegMask( ) { Clear(); } // Construct a mask with a single bit RegMask( OptoReg::Name reg ) { Clear(); Insert(reg); } // Check for register being in mask int Member( OptoReg::Name reg ) const { assert( reg < CHUNK_SIZE, "" ); return _A[reg>>_LogWordBits] & (1<<(reg&(_WordBits-1))); } // The last bit in the register mask indicates that the mask should repeat // indefinitely with ONE bits. Returns TRUE if mask is infinite or // unbounded in size. Returns FALSE if mask is finite size. int is_AllStack() const { return _A[RM_SIZE-1] >> (_WordBits-1); } // Work around an -xO3 optimization problme in WS6U1. The old way: // void set_AllStack() { _A[RM_SIZE-1] |= (1<<(_WordBits-1)); } // will cause _A[RM_SIZE-1] to be clobbered, not updated when set_AllStack() // follows an Insert() loop, like the one found in init_spill_mask(). Using // Insert() instead works because the index into _A in computed instead of // constant. See bug 4665841. void set_AllStack() { Insert(OptoReg::Name(CHUNK_SIZE-1)); } // Test for being a not-empty mask. int is_NotEmpty( ) const { int tmp = 0; # define BODY(I) tmp |= _A[I]; FORALL_BODY # undef BODY return tmp; } // Find lowest-numbered register from mask, or BAD if mask is empty. OptoReg::Name find_first_elem() const { int base, bits; # define BODY(I) if( (bits = _A[I]) != 0 ) base = I<<_LogWordBits; else FORALL_BODY # undef BODY { base = OptoReg::Bad; bits = 1<<0; } return OptoReg::Name(base + find_lowest_bit(bits)); } // Get highest-numbered register from mask, or BAD if mask is empty. OptoReg::Name find_last_elem() const { int base, bits; # define BODY(I) if( (bits = _A[RM_SIZE-1-I]) != 0 ) base = (RM_SIZE-1-I)<<_LogWordBits; else FORALL_BODY # undef BODY { base = OptoReg::Bad; bits = 1<<0; } return OptoReg::Name(base + find_hihghest_bit(bits)); } // Find the lowest-numbered register pair in the mask. Return the // HIGHEST register number in the pair, or BAD if no pairs. // Assert that the mask contains only bit pairs. OptoReg::Name find_first_pair() const; // Clear out partial bits; leave only aligned adjacent bit pairs. void clear_to_pairs(); // Smear out partial bits; leave only aligned adjacent bit pairs. void smear_to_pairs(); // Verify that the mask contains only aligned adjacent bit pairs void verify_pairs() const { assert( is_aligned_pairs(), "mask is not aligned, adjacent pairs" ); } // Test that the mask contains only aligned adjacent bit pairs bool is_aligned_pairs() const; // mask is a pair of misaligned registers bool is_misaligned_pair() const { return Size()==2 && !is_aligned_pairs(); } // Test for single register int is_bound1() const; // Test for a single adjacent pair int is_bound_pair() const; // Test for a single adjacent set of ideal register's size. int is_bound(uint ireg) const { if (is_vector(ireg)) { if (is_bound_set(num_registers(ireg))) return true; } else if (is_bound1() || is_bound_pair()) { return true; } return false; } // Find the lowest-numbered register set in the mask. Return the // HIGHEST register number in the set, or BAD if no sets. // Assert that the mask contains only bit sets. OptoReg::Name find_first_set(const int size) const; // Clear out partial bits; leave only aligned adjacent bit sets of size. void clear_to_sets(const int size); // Smear out partial bits to aligned adjacent bit sets. void smear_to_sets(const int size); // Verify that the mask contains only aligned adjacent bit sets void verify_sets(int size) const { assert(is_aligned_sets(size), "mask is not aligned, adjacent sets"); } // Test that the mask contains only aligned adjacent bit sets bool is_aligned_sets(const int size) const; // mask is a set of misaligned registers bool is_misaligned_set(int size) const { return (int)Size()==size && !is_aligned_sets(size);} // Test for a single adjacent set int is_bound_set(const int size) const; static bool is_vector(uint ireg); static int num_registers(uint ireg); // Fast overlap test. Non-zero if any registers in common. int overlap( const RegMask &rm ) const { return # define BODY(I) (_A[I] & rm._A[I]) | FORALL_BODY # undef BODY 0 ; } // Special test for register pressure based splitting // UP means register only, Register plus stack, or stack only is DOWN bool is_UP() const; // Clear a register mask void Clear( ) { # define BODY(I) _A[I] = 0; FORALL_BODY # undef BODY } // Fill a register mask with 1's void Set_All( ) { # define BODY(I) _A[I] = -1; FORALL_BODY # undef BODY } // Insert register into mask void Insert( OptoReg::Name reg ) { assert( reg < CHUNK_SIZE, "" ); _A[reg>>_LogWordBits] |= (1<<(reg&(_WordBits-1))); } // Remove register from mask void Remove( OptoReg::Name reg ) { assert( reg < CHUNK_SIZE, "" ); _A[reg>>_LogWordBits] &= ~(1<<(reg&(_WordBits-1))); } // OR 'rm' into 'this' void OR( const RegMask &rm ) { # define BODY(I) this->_A[I] |= rm._A[I]; FORALL_BODY # undef BODY } // AND 'rm' into 'this' void AND( const RegMask &rm ) { # define BODY(I) this->_A[I] &= rm._A[I]; FORALL_BODY # undef BODY } // Subtract 'rm' from 'this' void SUBTRACT( const RegMask &rm ) { # define BODY(I) _A[I] &= ~rm._A[I]; FORALL_BODY # undef BODY } // Compute size of register mask: number of bits uint Size() const; #ifndef PRODUCT void print() const { dump(); } void dump(outputStream *st = tty) const; // Print a mask #endif static const RegMask Empty; // Common empty mask static bool can_represent(OptoReg::Name reg) { // NOTE: -1 in computation reflects the usage of the last // bit of the regmask as an infinite stack flag and // -7 is to keep mask aligned for largest value (VecY). return (int)reg < (int)(CHUNK_SIZE-1); } static bool can_represent_arg(OptoReg::Name reg) { // NOTE: -SlotsPerVecY in computation reflects the need // to keep mask aligned for largest value (VecY). return (int)reg < (int)(CHUNK_SIZE-SlotsPerVecY); } }; // Do not use this constant directly in client code! #undef RM_SIZE #endif // SHARE_VM_OPTO_REGMASK_HPP