/* * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_VM_MEMORY_THREADLOCALALLOCBUFFER_HPP #define SHARE_VM_MEMORY_THREADLOCALALLOCBUFFER_HPP #include "gc_implementation/shared/gcUtil.hpp" #include "oops/typeArrayOop.hpp" #include "runtime/perfData.hpp" class GlobalTLABStats; // ThreadLocalAllocBuffer: a descriptor for thread-local storage used by // the threads for allocation. // It is thread-private at any time, but maybe multiplexed over // time across multiple threads. The park()/unpark() pair is // used to make it available for such multiplexing. class ThreadLocalAllocBuffer: public CHeapObj { friend class VMStructs; private: HeapWord* _start; // address of TLAB HeapWord* _top; // address after last allocation HeapWord* _pf_top; // allocation prefetch watermark HeapWord* _end; // allocation end (excluding alignment_reserve) size_t _desired_size; // desired size (including alignment_reserve) size_t _refill_waste_limit; // hold onto tlab if free() is larger than this size_t _allocated_before_last_gc; // total bytes allocated up until the last gc static size_t _max_size; // maximum size of any TLAB static unsigned _target_refills; // expected number of refills between GCs unsigned _number_of_refills; unsigned _fast_refill_waste; unsigned _slow_refill_waste; unsigned _gc_waste; unsigned _slow_allocations; AdaptiveWeightedAverage _allocation_fraction; // fraction of eden allocated in tlabs void accumulate_statistics(); void initialize_statistics(); void set_start(HeapWord* start) { _start = start; } void set_end(HeapWord* end) { _end = end; } void set_top(HeapWord* top) { _top = top; } void set_pf_top(HeapWord* pf_top) { _pf_top = pf_top; } void set_desired_size(size_t desired_size) { _desired_size = desired_size; } void set_refill_waste_limit(size_t waste) { _refill_waste_limit = waste; } size_t initial_refill_waste_limit() { return desired_size() / TLABRefillWasteFraction; } static int target_refills() { return _target_refills; } size_t initial_desired_size(); size_t remaining() const { return end() == NULL ? 0 : pointer_delta(hard_end(), top()); } // Make parsable and release it. void reset(); // Resize based on amount of allocation, etc. void resize(); void invariants() const { assert(top() >= start() && top() <= end(), "invalid tlab"); } void initialize(HeapWord* start, HeapWord* top, HeapWord* end); void print_stats(const char* tag); Thread* myThread(); // statistics int number_of_refills() const { return _number_of_refills; } int fast_refill_waste() const { return _fast_refill_waste; } int slow_refill_waste() const { return _slow_refill_waste; } int gc_waste() const { return _gc_waste; } int slow_allocations() const { return _slow_allocations; } static GlobalTLABStats* _global_stats; static GlobalTLABStats* global_stats() { return _global_stats; } public: ThreadLocalAllocBuffer() : _allocation_fraction(TLABAllocationWeight), _allocated_before_last_gc(0) { // do nothing. tlabs must be inited by initialize() calls } static const size_t min_size() { return align_object_size(MinTLABSize / HeapWordSize) + alignment_reserve(); } static const size_t max_size() { assert(_max_size != 0, "max_size not set up"); return _max_size; } static void set_max_size(size_t max_size) { _max_size = max_size; } HeapWord* start() const { return _start; } HeapWord* end() const { return _end; } HeapWord* hard_end() const { return _end + alignment_reserve(); } HeapWord* top() const { return _top; } HeapWord* pf_top() const { return _pf_top; } size_t desired_size() const { return _desired_size; } size_t used() const { return pointer_delta(top(), start()); } size_t used_bytes() const { return pointer_delta(top(), start(), 1); } size_t free() const { return pointer_delta(end(), top()); } // Don't discard tlab if remaining space is larger than this. size_t refill_waste_limit() const { return _refill_waste_limit; } // Allocate size HeapWords. The memory is NOT initialized to zero. inline HeapWord* allocate(size_t size); // Reserve space at the end of TLAB static size_t end_reserve() { int reserve_size = typeArrayOopDesc::header_size(T_INT); return MAX2(reserve_size, VM_Version::reserve_for_allocation_prefetch()); } static size_t alignment_reserve() { return align_object_size(end_reserve()); } static size_t alignment_reserve_in_bytes() { return alignment_reserve() * HeapWordSize; } // Return tlab size or remaining space in eden such that the // space is large enough to hold obj_size and necessary fill space. // Otherwise return 0; inline size_t compute_size(size_t obj_size); // Record slow allocation inline void record_slow_allocation(size_t obj_size); // Initialization at startup static void startup_initialization(); // Make an in-use tlab parsable, optionally also retiring it. void make_parsable(bool retire); // Retire in-use tlab before allocation of a new tlab void clear_before_allocation(); // Accumulate statistics across all tlabs before gc static void accumulate_statistics_before_gc(); // Resize tlabs for all threads static void resize_all_tlabs(); void fill(HeapWord* start, HeapWord* top, size_t new_size); void initialize(); static size_t refill_waste_limit_increment() { return TLABWasteIncrement; } // Code generation support static ByteSize start_offset() { return byte_offset_of(ThreadLocalAllocBuffer, _start); } static ByteSize end_offset() { return byte_offset_of(ThreadLocalAllocBuffer, _end ); } static ByteSize top_offset() { return byte_offset_of(ThreadLocalAllocBuffer, _top ); } static ByteSize pf_top_offset() { return byte_offset_of(ThreadLocalAllocBuffer, _pf_top ); } static ByteSize size_offset() { return byte_offset_of(ThreadLocalAllocBuffer, _desired_size ); } static ByteSize refill_waste_limit_offset() { return byte_offset_of(ThreadLocalAllocBuffer, _refill_waste_limit ); } static ByteSize number_of_refills_offset() { return byte_offset_of(ThreadLocalAllocBuffer, _number_of_refills ); } static ByteSize fast_refill_waste_offset() { return byte_offset_of(ThreadLocalAllocBuffer, _fast_refill_waste ); } static ByteSize slow_allocations_offset() { return byte_offset_of(ThreadLocalAllocBuffer, _slow_allocations ); } void verify(); }; class GlobalTLABStats: public CHeapObj { private: // Accumulate perfdata in private variables because // PerfData should be write-only for security reasons // (see perfData.hpp) unsigned _allocating_threads; unsigned _total_refills; unsigned _max_refills; size_t _total_allocation; size_t _total_gc_waste; size_t _max_gc_waste; size_t _total_slow_refill_waste; size_t _max_slow_refill_waste; size_t _total_fast_refill_waste; size_t _max_fast_refill_waste; unsigned _total_slow_allocations; unsigned _max_slow_allocations; PerfVariable* _perf_allocating_threads; PerfVariable* _perf_total_refills; PerfVariable* _perf_max_refills; PerfVariable* _perf_allocation; PerfVariable* _perf_gc_waste; PerfVariable* _perf_max_gc_waste; PerfVariable* _perf_slow_refill_waste; PerfVariable* _perf_max_slow_refill_waste; PerfVariable* _perf_fast_refill_waste; PerfVariable* _perf_max_fast_refill_waste; PerfVariable* _perf_slow_allocations; PerfVariable* _perf_max_slow_allocations; AdaptiveWeightedAverage _allocating_threads_avg; public: GlobalTLABStats(); // Initialize all counters void initialize(); // Write all perf counters to the perf_counters void publish(); void print(); // Accessors unsigned allocating_threads_avg() { return MAX2((unsigned)(_allocating_threads_avg.average() + 0.5), 1U); } size_t allocation() { return _total_allocation; } // Update methods void update_allocating_threads() { _allocating_threads++; } void update_number_of_refills(unsigned value) { _total_refills += value; _max_refills = MAX2(_max_refills, value); } void update_allocation(size_t value) { _total_allocation += value; } void update_gc_waste(size_t value) { _total_gc_waste += value; _max_gc_waste = MAX2(_max_gc_waste, value); } void update_fast_refill_waste(size_t value) { _total_fast_refill_waste += value; _max_fast_refill_waste = MAX2(_max_fast_refill_waste, value); } void update_slow_refill_waste(size_t value) { _total_slow_refill_waste += value; _max_slow_refill_waste = MAX2(_max_slow_refill_waste, value); } void update_slow_allocations(unsigned value) { _total_slow_allocations += value; _max_slow_allocations = MAX2(_max_slow_allocations, value); } }; #endif // SHARE_VM_MEMORY_THREADLOCALALLOCBUFFER_HPP