/* * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "ci/ciField.hpp" #include "ci/ciInstance.hpp" #include "ci/ciInstanceKlass.hpp" #include "ci/ciUtilities.hpp" #include "classfile/systemDictionary.hpp" #include "memory/allocation.hpp" #include "memory/allocation.inline.hpp" #include "oops/oop.inline.hpp" #include "oops/fieldStreams.hpp" #include "runtime/fieldDescriptor.hpp" // ciInstanceKlass // // This class represents a Klass* in the HotSpot virtual machine // whose Klass part in an InstanceKlass. // ------------------------------------------------------------------ // ciInstanceKlass::ciInstanceKlass // // Loaded instance klass. ciInstanceKlass::ciInstanceKlass(KlassHandle h_k) : ciKlass(h_k), _non_static_fields(NULL) { assert(get_Klass()->oop_is_instance(), "wrong type"); assert(get_instanceKlass()->is_loaded(), "must be at least loaded"); InstanceKlass* ik = get_instanceKlass(); AccessFlags access_flags = ik->access_flags(); _flags = ciFlags(access_flags); _has_finalizer = access_flags.has_finalizer(); _has_subklass = ik->subklass() != NULL; _init_state = ik->init_state(); _nonstatic_field_size = ik->nonstatic_field_size(); _has_nonstatic_fields = ik->has_nonstatic_fields(); _nonstatic_fields = NULL; // initialized lazily by compute_nonstatic_fields: _implementor = NULL; // we will fill these lazily Thread *thread = Thread::current(); if (ciObjectFactory::is_initialized()) { _loader = JNIHandles::make_local(thread, ik->class_loader()); _protection_domain = JNIHandles::make_local(thread, ik->protection_domain()); _is_shared = false; } else { Handle h_loader(thread, ik->class_loader()); Handle h_protection_domain(thread, ik->protection_domain()); _loader = JNIHandles::make_global(h_loader); _protection_domain = JNIHandles::make_global(h_protection_domain); _is_shared = true; } // Lazy fields get filled in only upon request. _super = NULL; _java_mirror = NULL; if (is_shared()) { if (h_k() != SystemDictionary::Object_klass()) { super(); } //compute_nonstatic_fields(); // done outside of constructor } _field_cache = NULL; } // Version for unloaded classes: ciInstanceKlass::ciInstanceKlass(ciSymbol* name, jobject loader, jobject protection_domain) : ciKlass(name, T_OBJECT) { assert(name->byte_at(0) != '[', "not an instance klass"); _init_state = (InstanceKlass::ClassState)0; _nonstatic_field_size = -1; _has_nonstatic_fields = false; _nonstatic_fields = NULL; _loader = loader; _protection_domain = protection_domain; _is_shared = false; _super = NULL; _java_mirror = NULL; _field_cache = NULL; } // ------------------------------------------------------------------ // ciInstanceKlass::compute_shared_is_initialized void ciInstanceKlass::compute_shared_init_state() { GUARDED_VM_ENTRY( InstanceKlass* ik = get_instanceKlass(); _init_state = ik->init_state(); ) } // ------------------------------------------------------------------ // ciInstanceKlass::compute_shared_has_subklass bool ciInstanceKlass::compute_shared_has_subklass() { GUARDED_VM_ENTRY( InstanceKlass* ik = get_instanceKlass(); _has_subklass = ik->subklass() != NULL; return _has_subklass; ) } // ------------------------------------------------------------------ // ciInstanceKlass::loader oop ciInstanceKlass::loader() { ASSERT_IN_VM; return JNIHandles::resolve(_loader); } // ------------------------------------------------------------------ // ciInstanceKlass::loader_handle jobject ciInstanceKlass::loader_handle() { return _loader; } // ------------------------------------------------------------------ // ciInstanceKlass::protection_domain oop ciInstanceKlass::protection_domain() { ASSERT_IN_VM; return JNIHandles::resolve(_protection_domain); } // ------------------------------------------------------------------ // ciInstanceKlass::protection_domain_handle jobject ciInstanceKlass::protection_domain_handle() { return _protection_domain; } // ------------------------------------------------------------------ // ciInstanceKlass::field_cache // // Get the field cache associated with this klass. ciConstantPoolCache* ciInstanceKlass::field_cache() { if (is_shared()) { return NULL; } if (_field_cache == NULL) { assert(!is_java_lang_Object(), "Object has no fields"); Arena* arena = CURRENT_ENV->arena(); _field_cache = new (arena) ciConstantPoolCache(arena, 5); } return _field_cache; } // ------------------------------------------------------------------ // ciInstanceKlass::get_canonical_holder // ciInstanceKlass* ciInstanceKlass::get_canonical_holder(int offset) { #ifdef ASSERT if (!(offset >= 0 && offset < layout_helper())) { tty->print("*** get_canonical_holder(%d) on ", offset); this->print(); tty->print_cr(" ***"); }; assert(offset >= 0 && offset < layout_helper(), "offset must be tame"); #endif if (offset < instanceOopDesc::base_offset_in_bytes()) { // All header offsets belong properly to java/lang/Object. return CURRENT_ENV->Object_klass(); } ciInstanceKlass* self = this; for (;;) { assert(self->is_loaded(), "must be loaded to have size"); ciInstanceKlass* super = self->super(); if (super == NULL || super->nof_nonstatic_fields() == 0 || !super->contains_field_offset(offset)) { return self; } else { self = super; // return super->get_canonical_holder(offset) } } } // ------------------------------------------------------------------ // ciInstanceKlass::is_java_lang_Object // // Is this klass java.lang.Object? bool ciInstanceKlass::is_java_lang_Object() const { return equals(CURRENT_ENV->Object_klass()); } // ------------------------------------------------------------------ // ciInstanceKlass::uses_default_loader bool ciInstanceKlass::uses_default_loader() { // Note: We do not need to resolve the handle or enter the VM // in order to test null-ness. return _loader == NULL; } // ------------------------------------------------------------------ // ciInstanceKlass::is_in_package // // Is this klass in the given package? bool ciInstanceKlass::is_in_package(const char* packagename, int len) { // To avoid class loader mischief, this test always rejects application classes. if (!uses_default_loader()) return false; GUARDED_VM_ENTRY( return is_in_package_impl(packagename, len); ) } bool ciInstanceKlass::is_in_package_impl(const char* packagename, int len) { ASSERT_IN_VM; // If packagename contains trailing '/' exclude it from the // prefix-test since we test for it explicitly. if (packagename[len - 1] == '/') len--; if (!name()->starts_with(packagename, len)) return false; // Test if the class name is something like "java/lang". if ((len + 1) > name()->utf8_length()) return false; // Test for trailing '/' if ((char) name()->byte_at(len) != '/') return false; // Make sure it's not actually in a subpackage: if (name()->index_of_at(len+1, "/", 1) >= 0) return false; return true; } // ------------------------------------------------------------------ // ciInstanceKlass::print_impl // // Implementation of the print method. void ciInstanceKlass::print_impl(outputStream* st) { ciKlass::print_impl(st); GUARDED_VM_ENTRY(st->print(" loader=0x%x", (address)loader());) if (is_loaded()) { st->print(" loaded=true initialized=%s finalized=%s subklass=%s size=%d flags=", bool_to_str(is_initialized()), bool_to_str(has_finalizer()), bool_to_str(has_subklass()), layout_helper()); _flags.print_klass_flags(); if (_super) { st->print(" super="); _super->print_name(); } if (_java_mirror) { st->print(" mirror=PRESENT"); } } else { st->print(" loaded=false"); } } // ------------------------------------------------------------------ // ciInstanceKlass::super // // Get the superklass of this klass. ciInstanceKlass* ciInstanceKlass::super() { assert(is_loaded(), "must be loaded"); if (_super == NULL && !is_java_lang_Object()) { GUARDED_VM_ENTRY( Klass* super_klass = get_instanceKlass()->super(); _super = CURRENT_ENV->get_instance_klass(super_klass); ) } return _super; } // ------------------------------------------------------------------ // ciInstanceKlass::java_mirror // // Get the instance of java.lang.Class corresponding to this klass. // Cache it on this->_java_mirror. ciInstance* ciInstanceKlass::java_mirror() { if (is_shared()) { return ciKlass::java_mirror(); } if (_java_mirror == NULL) { _java_mirror = ciKlass::java_mirror(); } return _java_mirror; } // ------------------------------------------------------------------ // ciInstanceKlass::unique_concrete_subklass ciInstanceKlass* ciInstanceKlass::unique_concrete_subklass() { if (!is_loaded()) return NULL; // No change if class is not loaded if (!is_abstract()) return NULL; // Only applies to abstract classes. if (!has_subklass()) return NULL; // Must have at least one subklass. VM_ENTRY_MARK; InstanceKlass* ik = get_instanceKlass(); Klass* up = ik->up_cast_abstract(); assert(up->oop_is_instance(), "must be InstanceKlass"); if (ik == up) { return NULL; } return CURRENT_THREAD_ENV->get_instance_klass(up); } // ------------------------------------------------------------------ // ciInstanceKlass::has_finalizable_subclass bool ciInstanceKlass::has_finalizable_subclass() { if (!is_loaded()) return true; VM_ENTRY_MARK; return Dependencies::find_finalizable_subclass(get_instanceKlass()) != NULL; } // ------------------------------------------------------------------ // ciInstanceKlass::get_field_by_offset ciField* ciInstanceKlass::get_field_by_offset(int field_offset, bool is_static) { if (!is_static) { for (int i = 0, len = nof_nonstatic_fields(); i < len; i++) { ciField* field = _nonstatic_fields->at(i); int field_off = field->offset_in_bytes(); if (field_off == field_offset) return field; if (field_off > field_offset) break; // could do binary search or check bins, but probably not worth it } return NULL; } VM_ENTRY_MARK; InstanceKlass* k = get_instanceKlass(); fieldDescriptor fd; if (!k->find_field_from_offset(field_offset, is_static, &fd)) { return NULL; } ciField* field = new (CURRENT_THREAD_ENV->arena()) ciField(&fd); return field; } // ------------------------------------------------------------------ // ciInstanceKlass::get_field_by_name ciField* ciInstanceKlass::get_field_by_name(ciSymbol* name, ciSymbol* signature, bool is_static) { VM_ENTRY_MARK; InstanceKlass* k = get_instanceKlass(); fieldDescriptor fd; Klass* def = k->find_field(name->get_symbol(), signature->get_symbol(), is_static, &fd); if (def == NULL) { return NULL; } ciField* field = new (CURRENT_THREAD_ENV->arena()) ciField(&fd); return field; } // ------------------------------------------------------------------ // ciInstanceKlass::non_static_fields. class NonStaticFieldFiller: public FieldClosure { GrowableArray* _arr; ciEnv* _curEnv; public: NonStaticFieldFiller(ciEnv* curEnv, GrowableArray* arr) : _curEnv(curEnv), _arr(arr) {} void do_field(fieldDescriptor* fd) { ciField* field = new (_curEnv->arena()) ciField(fd); _arr->append(field); } }; GrowableArray* ciInstanceKlass::non_static_fields() { if (_non_static_fields == NULL) { VM_ENTRY_MARK; ciEnv* curEnv = ciEnv::current(); InstanceKlass* ik = get_instanceKlass(); int max_n_fields = ik->java_fields_count(); Arena* arena = curEnv->arena(); _non_static_fields = new (arena) GrowableArray(arena, max_n_fields, 0, NULL); NonStaticFieldFiller filler(curEnv, _non_static_fields); ik->do_nonstatic_fields(&filler); } return _non_static_fields; } static int sort_field_by_offset(ciField** a, ciField** b) { return (*a)->offset_in_bytes() - (*b)->offset_in_bytes(); // (no worries about 32-bit overflow...) } // ------------------------------------------------------------------ // ciInstanceKlass::compute_nonstatic_fields int ciInstanceKlass::compute_nonstatic_fields() { assert(is_loaded(), "must be loaded"); if (_nonstatic_fields != NULL) return _nonstatic_fields->length(); if (!has_nonstatic_fields()) { Arena* arena = CURRENT_ENV->arena(); _nonstatic_fields = new (arena) GrowableArray(arena, 0, 0, NULL); return 0; } assert(!is_java_lang_Object(), "bootstrap OK"); // Size in bytes of my fields, including inherited fields. int fsize = nonstatic_field_size() * heapOopSize; ciInstanceKlass* super = this->super(); GrowableArray* super_fields = NULL; if (super != NULL && super->has_nonstatic_fields()) { int super_fsize = super->nonstatic_field_size() * heapOopSize; int super_flen = super->nof_nonstatic_fields(); super_fields = super->_nonstatic_fields; assert(super_flen == 0 || super_fields != NULL, "first get nof_fields"); // See if I am no larger than my super; if so, I can use his fields. if (fsize == super_fsize) { _nonstatic_fields = super_fields; return super_fields->length(); } } GrowableArray* fields = NULL; GUARDED_VM_ENTRY({ fields = compute_nonstatic_fields_impl(super_fields); }); if (fields == NULL) { // This can happen if this class (java.lang.Class) has invisible fields. _nonstatic_fields = super_fields; return super_fields->length(); } int flen = fields->length(); // Now sort them by offset, ascending. // (In principle, they could mix with superclass fields.) fields->sort(sort_field_by_offset); _nonstatic_fields = fields; return flen; } GrowableArray* ciInstanceKlass::compute_nonstatic_fields_impl(GrowableArray* super_fields) { ASSERT_IN_VM; Arena* arena = CURRENT_ENV->arena(); int flen = 0; GrowableArray* fields = NULL; InstanceKlass* k = get_instanceKlass(); for (JavaFieldStream fs(k); !fs.done(); fs.next()) { if (fs.access_flags().is_static()) continue; flen += 1; } // allocate the array: if (flen == 0) { return NULL; // return nothing if none are locally declared } if (super_fields != NULL) { flen += super_fields->length(); } fields = new (arena) GrowableArray(arena, flen, 0, NULL); if (super_fields != NULL) { fields->appendAll(super_fields); } for (JavaFieldStream fs(k); !fs.done(); fs.next()) { if (fs.access_flags().is_static()) continue; fieldDescriptor fd; fd.initialize(k, fs.index()); ciField* field = new (arena) ciField(&fd); fields->append(field); } assert(fields->length() == flen, "sanity"); return fields; } // ------------------------------------------------------------------ // ciInstanceKlass::find_method // // Find a method in this klass. ciMethod* ciInstanceKlass::find_method(ciSymbol* name, ciSymbol* signature) { VM_ENTRY_MARK; InstanceKlass* k = get_instanceKlass(); Symbol* name_sym = name->get_symbol(); Symbol* sig_sym= signature->get_symbol(); Method* m = k->find_method(name_sym, sig_sym); if (m == NULL) return NULL; return CURRENT_THREAD_ENV->get_method(m); } // ------------------------------------------------------------------ // ciInstanceKlass::is_leaf_type bool ciInstanceKlass::is_leaf_type() { assert(is_loaded(), "must be loaded"); if (is_shared()) { return is_final(); // approximately correct } else { return !_has_subklass && (nof_implementors() == 0); } } // ------------------------------------------------------------------ // ciInstanceKlass::implementor // // Report an implementor of this interface. // Note that there are various races here, since my copy // of _nof_implementors might be out of date with respect // to results returned by InstanceKlass::implementor. // This is OK, since any dependencies we decide to assert // will be checked later under the Compile_lock. ciInstanceKlass* ciInstanceKlass::implementor() { ciInstanceKlass* impl = _implementor; if (impl == NULL) { // Go into the VM to fetch the implementor. { VM_ENTRY_MARK; Klass* k = get_instanceKlass()->implementor(); if (k != NULL) { if (k == get_instanceKlass()) { // More than one implementors. Use 'this' in this case. impl = this; } else { impl = CURRENT_THREAD_ENV->get_instance_klass(k); } } } // Memoize this result. if (!is_shared()) { _implementor = impl; } } return impl; } // Utility class for printing of the contents of the static fields for // use by compilation replay. It only prints out the information that // could be consumed by the compiler, so for primitive types it prints // out the actual value. For Strings it's the actual string value. // For array types it it's first level array size since that's the // only value which statically unchangeable. For all other reference // types it simply prints out the dynamic type. class StaticFinalFieldPrinter : public FieldClosure { outputStream* _out; const char* _holder; public: StaticFinalFieldPrinter(outputStream* out, const char* holder) : _out(out), _holder(holder) { } void do_field(fieldDescriptor* fd) { if (fd->is_final() && !fd->has_initial_value()) { ResourceMark rm; oop mirror = fd->field_holder()->java_mirror(); _out->print("staticfield %s %s %s ", _holder, fd->name()->as_quoted_ascii(), fd->signature()->as_quoted_ascii()); switch (fd->field_type()) { case T_BYTE: _out->print_cr("%d", mirror->byte_field(fd->offset())); break; case T_BOOLEAN: _out->print_cr("%d", mirror->bool_field(fd->offset())); break; case T_SHORT: _out->print_cr("%d", mirror->short_field(fd->offset())); break; case T_CHAR: _out->print_cr("%d", mirror->char_field(fd->offset())); break; case T_INT: _out->print_cr("%d", mirror->int_field(fd->offset())); break; case T_LONG: _out->print_cr(INT64_FORMAT, mirror->long_field(fd->offset())); break; case T_FLOAT: { float f = mirror->float_field(fd->offset()); _out->print_cr("%d", *(int*)&f); break; } case T_DOUBLE: { double d = mirror->double_field(fd->offset()); _out->print_cr(INT64_FORMAT, *(jlong*)&d); break; } case T_ARRAY: { oop value = mirror->obj_field_acquire(fd->offset()); if (value == NULL) { _out->print_cr("null"); } else { typeArrayOop ta = (typeArrayOop)value; _out->print("%d", ta->length()); if (value->is_objArray()) { objArrayOop oa = (objArrayOop)value; const char* klass_name = value->klass()->name()->as_quoted_ascii(); _out->print(" %s", klass_name); } _out->cr(); } break; } case T_OBJECT: { oop value = mirror->obj_field_acquire(fd->offset()); if (value == NULL) { _out->print_cr("null"); } else if (value->is_instance()) { if (value->is_a(SystemDictionary::String_klass())) { _out->print("\""); _out->print_raw(java_lang_String::as_quoted_ascii(value)); _out->print_cr("\""); } else { const char* klass_name = value->klass()->name()->as_quoted_ascii(); _out->print_cr(klass_name); } } else { ShouldNotReachHere(); } break; } default: ShouldNotReachHere(); } } } }; void ciInstanceKlass::dump_replay_data(outputStream* out) { ASSERT_IN_VM; ResourceMark rm; InstanceKlass* ik = get_instanceKlass(); ConstantPool* cp = ik->constants(); // Try to record related loaded classes Klass* sub = ik->subklass(); while (sub != NULL) { if (sub->oop_is_instance()) { out->print_cr("instanceKlass %s", sub->name()->as_quoted_ascii()); } sub = sub->next_sibling(); } // Dump out the state of the constant pool tags. During replay the // tags will be validated for things which shouldn't change and // classes will be resolved if the tags indicate that they were // resolved at compile time. out->print("ciInstanceKlass %s %d %d %d", ik->name()->as_quoted_ascii(), is_linked(), is_initialized(), cp->length()); for (int index = 1; index < cp->length(); index++) { out->print(" %d", cp->tags()->at(index)); } out->cr(); if (is_initialized()) { // Dump out the static final fields in case the compilation relies // on their value for correct replay. StaticFinalFieldPrinter sffp(out, ik->name()->as_quoted_ascii()); ik->do_local_static_fields(&sffp); } }