/* * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "asm/assembler.hpp" #include "asm/assembler.inline.hpp" #include "gc_interface/collectedHeap.inline.hpp" #include "interpreter/interpreter.hpp" #include "memory/cardTableModRefBS.hpp" #include "memory/resourceArea.hpp" #include "prims/methodHandles.hpp" #include "runtime/biasedLocking.hpp" #include "runtime/interfaceSupport.hpp" #include "runtime/objectMonitor.hpp" #include "runtime/os.hpp" #include "runtime/sharedRuntime.hpp" #include "runtime/stubRoutines.hpp" #include "utilities/macros.hpp" #if INCLUDE_ALL_GCS #include "gc_implementation/g1/g1CollectedHeap.inline.hpp" #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp" #include "gc_implementation/g1/heapRegion.hpp" #endif // INCLUDE_ALL_GCS #ifdef PRODUCT #define BLOCK_COMMENT(str) /* nothing */ #define STOP(error) stop(error) #else #define BLOCK_COMMENT(str) block_comment(str) #define STOP(error) block_comment(error); stop(error) #endif #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") // Implementation of AddressLiteral AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) { _is_lval = false; _target = target; switch (rtype) { case relocInfo::oop_type: case relocInfo::metadata_type: // Oops are a special case. Normally they would be their own section // but in cases like icBuffer they are literals in the code stream that // we don't have a section for. We use none so that we get a literal address // which is always patchable. break; case relocInfo::external_word_type: _rspec = external_word_Relocation::spec(target); break; case relocInfo::internal_word_type: _rspec = internal_word_Relocation::spec(target); break; case relocInfo::opt_virtual_call_type: _rspec = opt_virtual_call_Relocation::spec(); break; case relocInfo::static_call_type: _rspec = static_call_Relocation::spec(); break; case relocInfo::runtime_call_type: _rspec = runtime_call_Relocation::spec(); break; case relocInfo::poll_type: case relocInfo::poll_return_type: _rspec = Relocation::spec_simple(rtype); break; case relocInfo::none: break; default: ShouldNotReachHere(); break; } } // Implementation of Address #ifdef _LP64 Address Address::make_array(ArrayAddress adr) { // Not implementable on 64bit machines // Should have been handled higher up the call chain. ShouldNotReachHere(); return Address(); } // exceedingly dangerous constructor Address::Address(int disp, address loc, relocInfo::relocType rtype) { _base = noreg; _index = noreg; _scale = no_scale; _disp = disp; switch (rtype) { case relocInfo::external_word_type: _rspec = external_word_Relocation::spec(loc); break; case relocInfo::internal_word_type: _rspec = internal_word_Relocation::spec(loc); break; case relocInfo::runtime_call_type: // HMM _rspec = runtime_call_Relocation::spec(); break; case relocInfo::poll_type: case relocInfo::poll_return_type: _rspec = Relocation::spec_simple(rtype); break; case relocInfo::none: break; default: ShouldNotReachHere(); } } #else // LP64 Address Address::make_array(ArrayAddress adr) { AddressLiteral base = adr.base(); Address index = adr.index(); assert(index._disp == 0, "must not have disp"); // maybe it can? Address array(index._base, index._index, index._scale, (intptr_t) base.target()); array._rspec = base._rspec; return array; } // exceedingly dangerous constructor Address::Address(address loc, RelocationHolder spec) { _base = noreg; _index = noreg; _scale = no_scale; _disp = (intptr_t) loc; _rspec = spec; } #endif // _LP64 // Convert the raw encoding form into the form expected by the constructor for // Address. An index of 4 (rsp) corresponds to having no index, so convert // that to noreg for the Address constructor. Address Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) { RelocationHolder rspec; if (disp_reloc != relocInfo::none) { rspec = Relocation::spec_simple(disp_reloc); } bool valid_index = index != rsp->encoding(); if (valid_index) { Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp)); madr._rspec = rspec; return madr; } else { Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp)); madr._rspec = rspec; return madr; } } // Implementation of Assembler int AbstractAssembler::code_fill_byte() { return (u_char)'\xF4'; // hlt } // make this go away someday void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) { if (rtype == relocInfo::none) emit_int32(data); else emit_data(data, Relocation::spec_simple(rtype), format); } void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) { assert(imm_operand == 0, "default format must be immediate in this file"); assert(inst_mark() != NULL, "must be inside InstructionMark"); if (rspec.type() != relocInfo::none) { #ifdef ASSERT check_relocation(rspec, format); #endif // Do not use AbstractAssembler::relocate, which is not intended for // embedded words. Instead, relocate to the enclosing instruction. // hack. call32 is too wide for mask so use disp32 if (format == call32_operand) code_section()->relocate(inst_mark(), rspec, disp32_operand); else code_section()->relocate(inst_mark(), rspec, format); } emit_int32(data); } static int encode(Register r) { int enc = r->encoding(); if (enc >= 8) { enc -= 8; } return enc; } void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) { assert(dst->has_byte_register(), "must have byte register"); assert(isByte(op1) && isByte(op2), "wrong opcode"); assert(isByte(imm8), "not a byte"); assert((op1 & 0x01) == 0, "should be 8bit operation"); emit_int8(op1); emit_int8(op2 | encode(dst)); emit_int8(imm8); } void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) { assert(isByte(op1) && isByte(op2), "wrong opcode"); assert((op1 & 0x01) == 1, "should be 32bit operation"); assert((op1 & 0x02) == 0, "sign-extension bit should not be set"); if (is8bit(imm32)) { emit_int8(op1 | 0x02); // set sign bit emit_int8(op2 | encode(dst)); emit_int8(imm32 & 0xFF); } else { emit_int8(op1); emit_int8(op2 | encode(dst)); emit_int32(imm32); } } // Force generation of a 4 byte immediate value even if it fits into 8bit void Assembler::emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32) { assert(isByte(op1) && isByte(op2), "wrong opcode"); assert((op1 & 0x01) == 1, "should be 32bit operation"); assert((op1 & 0x02) == 0, "sign-extension bit should not be set"); emit_int8(op1); emit_int8(op2 | encode(dst)); emit_int32(imm32); } // immediate-to-memory forms void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) { assert((op1 & 0x01) == 1, "should be 32bit operation"); assert((op1 & 0x02) == 0, "sign-extension bit should not be set"); if (is8bit(imm32)) { emit_int8(op1 | 0x02); // set sign bit emit_operand(rm, adr, 1); emit_int8(imm32 & 0xFF); } else { emit_int8(op1); emit_operand(rm, adr, 4); emit_int32(imm32); } } void Assembler::emit_arith(int op1, int op2, Register dst, Register src) { assert(isByte(op1) && isByte(op2), "wrong opcode"); emit_int8(op1); emit_int8(op2 | encode(dst) << 3 | encode(src)); } void Assembler::emit_operand(Register reg, Register base, Register index, Address::ScaleFactor scale, int disp, RelocationHolder const& rspec, int rip_relative_correction) { relocInfo::relocType rtype = (relocInfo::relocType) rspec.type(); // Encode the registers as needed in the fields they are used in int regenc = encode(reg) << 3; int indexenc = index->is_valid() ? encode(index) << 3 : 0; int baseenc = base->is_valid() ? encode(base) : 0; if (base->is_valid()) { if (index->is_valid()) { assert(scale != Address::no_scale, "inconsistent address"); // [base + index*scale + disp] if (disp == 0 && rtype == relocInfo::none && base != rbp LP64_ONLY(&& base != r13)) { // [base + index*scale] // [00 reg 100][ss index base] assert(index != rsp, "illegal addressing mode"); emit_int8(0x04 | regenc); emit_int8(scale << 6 | indexenc | baseenc); } else if (is8bit(disp) && rtype == relocInfo::none) { // [base + index*scale + imm8] // [01 reg 100][ss index base] imm8 assert(index != rsp, "illegal addressing mode"); emit_int8(0x44 | regenc); emit_int8(scale << 6 | indexenc | baseenc); emit_int8(disp & 0xFF); } else { // [base + index*scale + disp32] // [10 reg 100][ss index base] disp32 assert(index != rsp, "illegal addressing mode"); emit_int8(0x84 | regenc); emit_int8(scale << 6 | indexenc | baseenc); emit_data(disp, rspec, disp32_operand); } } else if (base == rsp LP64_ONLY(|| base == r12)) { // [rsp + disp] if (disp == 0 && rtype == relocInfo::none) { // [rsp] // [00 reg 100][00 100 100] emit_int8(0x04 | regenc); emit_int8(0x24); } else if (is8bit(disp) && rtype == relocInfo::none) { // [rsp + imm8] // [01 reg 100][00 100 100] disp8 emit_int8(0x44 | regenc); emit_int8(0x24); emit_int8(disp & 0xFF); } else { // [rsp + imm32] // [10 reg 100][00 100 100] disp32 emit_int8(0x84 | regenc); emit_int8(0x24); emit_data(disp, rspec, disp32_operand); } } else { // [base + disp] assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode"); if (disp == 0 && rtype == relocInfo::none && base != rbp LP64_ONLY(&& base != r13)) { // [base] // [00 reg base] emit_int8(0x00 | regenc | baseenc); } else if (is8bit(disp) && rtype == relocInfo::none) { // [base + disp8] // [01 reg base] disp8 emit_int8(0x40 | regenc | baseenc); emit_int8(disp & 0xFF); } else { // [base + disp32] // [10 reg base] disp32 emit_int8(0x80 | regenc | baseenc); emit_data(disp, rspec, disp32_operand); } } } else { if (index->is_valid()) { assert(scale != Address::no_scale, "inconsistent address"); // [index*scale + disp] // [00 reg 100][ss index 101] disp32 assert(index != rsp, "illegal addressing mode"); emit_int8(0x04 | regenc); emit_int8(scale << 6 | indexenc | 0x05); emit_data(disp, rspec, disp32_operand); } else if (rtype != relocInfo::none ) { // [disp] (64bit) RIP-RELATIVE (32bit) abs // [00 000 101] disp32 emit_int8(0x05 | regenc); // Note that the RIP-rel. correction applies to the generated // disp field, but _not_ to the target address in the rspec. // disp was created by converting the target address minus the pc // at the start of the instruction. That needs more correction here. // intptr_t disp = target - next_ip; assert(inst_mark() != NULL, "must be inside InstructionMark"); address next_ip = pc() + sizeof(int32_t) + rip_relative_correction; int64_t adjusted = disp; // Do rip-rel adjustment for 64bit LP64_ONLY(adjusted -= (next_ip - inst_mark())); assert(is_simm32(adjusted), "must be 32bit offset (RIP relative address)"); emit_data((int32_t) adjusted, rspec, disp32_operand); } else { // 32bit never did this, did everything as the rip-rel/disp code above // [disp] ABSOLUTE // [00 reg 100][00 100 101] disp32 emit_int8(0x04 | regenc); emit_int8(0x25); emit_data(disp, rspec, disp32_operand); } } } void Assembler::emit_operand(XMMRegister reg, Register base, Register index, Address::ScaleFactor scale, int disp, RelocationHolder const& rspec) { emit_operand((Register)reg, base, index, scale, disp, rspec); } // Secret local extension to Assembler::WhichOperand: #define end_pc_operand (_WhichOperand_limit) address Assembler::locate_operand(address inst, WhichOperand which) { // Decode the given instruction, and return the address of // an embedded 32-bit operand word. // If "which" is disp32_operand, selects the displacement portion // of an effective address specifier. // If "which" is imm64_operand, selects the trailing immediate constant. // If "which" is call32_operand, selects the displacement of a call or jump. // Caller is responsible for ensuring that there is such an operand, // and that it is 32/64 bits wide. // If "which" is end_pc_operand, find the end of the instruction. address ip = inst; bool is_64bit = false; debug_only(bool has_disp32 = false); int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn again_after_prefix: switch (0xFF & *ip++) { // These convenience macros generate groups of "case" labels for the switch. #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \ case (x)+4: case (x)+5: case (x)+6: case (x)+7 #define REP16(x) REP8((x)+0): \ case REP8((x)+8) case CS_segment: case SS_segment: case DS_segment: case ES_segment: case FS_segment: case GS_segment: // Seems dubious LP64_ONLY(assert(false, "shouldn't have that prefix")); assert(ip == inst+1, "only one prefix allowed"); goto again_after_prefix; case 0x67: case REX: case REX_B: case REX_X: case REX_XB: case REX_R: case REX_RB: case REX_RX: case REX_RXB: NOT_LP64(assert(false, "64bit prefixes")); goto again_after_prefix; case REX_W: case REX_WB: case REX_WX: case REX_WXB: case REX_WR: case REX_WRB: case REX_WRX: case REX_WRXB: NOT_LP64(assert(false, "64bit prefixes")); is_64bit = true; goto again_after_prefix; case 0xFF: // pushq a; decl a; incl a; call a; jmp a case 0x88: // movb a, r case 0x89: // movl a, r case 0x8A: // movb r, a case 0x8B: // movl r, a case 0x8F: // popl a debug_only(has_disp32 = true); break; case 0x68: // pushq #32 if (which == end_pc_operand) { return ip + 4; } assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate"); return ip; // not produced by emit_operand case 0x66: // movw ... (size prefix) again_after_size_prefix2: switch (0xFF & *ip++) { case REX: case REX_B: case REX_X: case REX_XB: case REX_R: case REX_RB: case REX_RX: case REX_RXB: case REX_W: case REX_WB: case REX_WX: case REX_WXB: case REX_WR: case REX_WRB: case REX_WRX: case REX_WRXB: NOT_LP64(assert(false, "64bit prefix found")); goto again_after_size_prefix2; case 0x8B: // movw r, a case 0x89: // movw a, r debug_only(has_disp32 = true); break; case 0xC7: // movw a, #16 debug_only(has_disp32 = true); tail_size = 2; // the imm16 break; case 0x0F: // several SSE/SSE2 variants ip--; // reparse the 0x0F goto again_after_prefix; default: ShouldNotReachHere(); } break; case REP8(0xB8): // movl/q r, #32/#64(oop?) if (which == end_pc_operand) return ip + (is_64bit ? 8 : 4); // these asserts are somewhat nonsensical #ifndef _LP64 assert(which == imm_operand || which == disp32_operand, err_msg("which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, p2i(ip))); #else assert((which == call32_operand || which == imm_operand) && is_64bit || which == narrow_oop_operand && !is_64bit, err_msg("which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, p2i(ip))); #endif // _LP64 return ip; case 0x69: // imul r, a, #32 case 0xC7: // movl a, #32(oop?) tail_size = 4; debug_only(has_disp32 = true); // has both kinds of operands! break; case 0x0F: // movx..., etc. switch (0xFF & *ip++) { case 0x3A: // pcmpestri tail_size = 1; case 0x38: // ptest, pmovzxbw ip++; // skip opcode debug_only(has_disp32 = true); // has both kinds of operands! break; case 0x70: // pshufd r, r/a, #8 debug_only(has_disp32 = true); // has both kinds of operands! case 0x73: // psrldq r, #8 tail_size = 1; break; case 0x12: // movlps case 0x28: // movaps case 0x2E: // ucomiss case 0x2F: // comiss case 0x54: // andps case 0x55: // andnps case 0x56: // orps case 0x57: // xorps case 0x6E: // movd case 0x7E: // movd case 0xAE: // ldmxcsr, stmxcsr, fxrstor, fxsave, clflush debug_only(has_disp32 = true); break; case 0xAD: // shrd r, a, %cl case 0xAF: // imul r, a case 0xBE: // movsbl r, a (movsxb) case 0xBF: // movswl r, a (movsxw) case 0xB6: // movzbl r, a (movzxb) case 0xB7: // movzwl r, a (movzxw) case REP16(0x40): // cmovl cc, r, a case 0xB0: // cmpxchgb case 0xB1: // cmpxchg case 0xC1: // xaddl case 0xC7: // cmpxchg8 case REP16(0x90): // setcc a debug_only(has_disp32 = true); // fall out of the switch to decode the address break; case 0xC4: // pinsrw r, a, #8 debug_only(has_disp32 = true); case 0xC5: // pextrw r, r, #8 tail_size = 1; // the imm8 break; case 0xAC: // shrd r, a, #8 debug_only(has_disp32 = true); tail_size = 1; // the imm8 break; case REP16(0x80): // jcc rdisp32 if (which == end_pc_operand) return ip + 4; assert(which == call32_operand, "jcc has no disp32 or imm"); return ip; default: ShouldNotReachHere(); } break; case 0x81: // addl a, #32; addl r, #32 // also: orl, adcl, sbbl, andl, subl, xorl, cmpl // on 32bit in the case of cmpl, the imm might be an oop tail_size = 4; debug_only(has_disp32 = true); // has both kinds of operands! break; case 0x83: // addl a, #8; addl r, #8 // also: orl, adcl, sbbl, andl, subl, xorl, cmpl debug_only(has_disp32 = true); // has both kinds of operands! tail_size = 1; break; case 0x9B: switch (0xFF & *ip++) { case 0xD9: // fnstcw a debug_only(has_disp32 = true); break; default: ShouldNotReachHere(); } break; case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a case REP4(0x10): // adc... case REP4(0x20): // and... case REP4(0x30): // xor... case REP4(0x08): // or... case REP4(0x18): // sbb... case REP4(0x28): // sub... case 0xF7: // mull a case 0x8D: // lea r, a case 0x87: // xchg r, a case REP4(0x38): // cmp... case 0x85: // test r, a debug_only(has_disp32 = true); // has both kinds of operands! break; case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8 case 0xC6: // movb a, #8 case 0x80: // cmpb a, #8 case 0x6B: // imul r, a, #8 debug_only(has_disp32 = true); // has both kinds of operands! tail_size = 1; // the imm8 break; case 0xC4: // VEX_3bytes case 0xC5: // VEX_2bytes assert((UseAVX > 0), "shouldn't have VEX prefix"); assert(ip == inst+1, "no prefixes allowed"); // C4 and C5 are also used as opcodes for PINSRW and PEXTRW instructions // but they have prefix 0x0F and processed when 0x0F processed above. // // In 32-bit mode the VEX first byte C4 and C5 alias onto LDS and LES // instructions (these instructions are not supported in 64-bit mode). // To distinguish them bits [7:6] are set in the VEX second byte since // ModRM byte can not be of the form 11xxxxxx in 32-bit mode. To set // those VEX bits REX and vvvv bits are inverted. // // Fortunately C2 doesn't generate these instructions so we don't need // to check for them in product version. // Check second byte NOT_LP64(assert((0xC0 & *ip) == 0xC0, "shouldn't have LDS and LES instructions")); // First byte if ((0xFF & *inst) == VEX_3bytes) { ip++; // third byte is_64bit = ((VEX_W & *ip) == VEX_W); } ip++; // opcode // To find the end of instruction (which == end_pc_operand). switch (0xFF & *ip) { case 0x61: // pcmpestri r, r/a, #8 case 0x70: // pshufd r, r/a, #8 case 0x73: // psrldq r, #8 tail_size = 1; // the imm8 break; default: break; } ip++; // skip opcode debug_only(has_disp32 = true); // has both kinds of operands! break; case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1 case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a case 0xDD: // fld_d a; fst_d a; fstp_d a case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a case 0xDF: // fild_d a; fistp_d a case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a debug_only(has_disp32 = true); break; case 0xE8: // call rdisp32 case 0xE9: // jmp rdisp32 if (which == end_pc_operand) return ip + 4; assert(which == call32_operand, "call has no disp32 or imm"); return ip; case 0xF0: // Lock assert(os::is_MP(), "only on MP"); goto again_after_prefix; case 0xF3: // For SSE case 0xF2: // For SSE2 switch (0xFF & *ip++) { case REX: case REX_B: case REX_X: case REX_XB: case REX_R: case REX_RB: case REX_RX: case REX_RXB: case REX_W: case REX_WB: case REX_WX: case REX_WXB: case REX_WR: case REX_WRB: case REX_WRX: case REX_WRXB: NOT_LP64(assert(false, "found 64bit prefix")); ip++; default: ip++; } debug_only(has_disp32 = true); // has both kinds of operands! break; default: ShouldNotReachHere(); #undef REP8 #undef REP16 } assert(which != call32_operand, "instruction is not a call, jmp, or jcc"); #ifdef _LP64 assert(which != imm_operand, "instruction is not a movq reg, imm64"); #else // assert(which != imm_operand || has_imm32, "instruction has no imm32 field"); assert(which != imm_operand || has_disp32, "instruction has no imm32 field"); #endif // LP64 assert(which != disp32_operand || has_disp32, "instruction has no disp32 field"); // parse the output of emit_operand int op2 = 0xFF & *ip++; int base = op2 & 0x07; int op3 = -1; const int b100 = 4; const int b101 = 5; if (base == b100 && (op2 >> 6) != 3) { op3 = 0xFF & *ip++; base = op3 & 0x07; // refetch the base } // now ip points at the disp (if any) switch (op2 >> 6) { case 0: // [00 reg 100][ss index base] // [00 reg 100][00 100 esp] // [00 reg base] // [00 reg 100][ss index 101][disp32] // [00 reg 101] [disp32] if (base == b101) { if (which == disp32_operand) return ip; // caller wants the disp32 ip += 4; // skip the disp32 } break; case 1: // [01 reg 100][ss index base][disp8] // [01 reg 100][00 100 esp][disp8] // [01 reg base] [disp8] ip += 1; // skip the disp8 break; case 2: // [10 reg 100][ss index base][disp32] // [10 reg 100][00 100 esp][disp32] // [10 reg base] [disp32] if (which == disp32_operand) return ip; // caller wants the disp32 ip += 4; // skip the disp32 break; case 3: // [11 reg base] (not a memory addressing mode) break; } if (which == end_pc_operand) { return ip + tail_size; } #ifdef _LP64 assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32"); #else assert(which == imm_operand, "instruction has only an imm field"); #endif // LP64 return ip; } address Assembler::locate_next_instruction(address inst) { // Secretly share code with locate_operand: return locate_operand(inst, end_pc_operand); } #ifdef ASSERT void Assembler::check_relocation(RelocationHolder const& rspec, int format) { address inst = inst_mark(); assert(inst != NULL && inst < pc(), "must point to beginning of instruction"); address opnd; Relocation* r = rspec.reloc(); if (r->type() == relocInfo::none) { return; } else if (r->is_call() || format == call32_operand) { // assert(format == imm32_operand, "cannot specify a nonzero format"); opnd = locate_operand(inst, call32_operand); } else if (r->is_data()) { assert(format == imm_operand || format == disp32_operand LP64_ONLY(|| format == narrow_oop_operand), "format ok"); opnd = locate_operand(inst, (WhichOperand)format); } else { assert(format == imm_operand, "cannot specify a format"); return; } assert(opnd == pc(), "must put operand where relocs can find it"); } #endif // ASSERT void Assembler::emit_operand32(Register reg, Address adr) { assert(reg->encoding() < 8, "no extended registers"); assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers"); emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec); } void Assembler::emit_operand(Register reg, Address adr, int rip_relative_correction) { emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec, rip_relative_correction); } void Assembler::emit_operand(XMMRegister reg, Address adr) { emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec); } // MMX operations void Assembler::emit_operand(MMXRegister reg, Address adr) { assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers"); emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec); } // work around gcc (3.2.1-7a) bug void Assembler::emit_operand(Address adr, MMXRegister reg) { assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers"); emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec); } void Assembler::emit_farith(int b1, int b2, int i) { assert(isByte(b1) && isByte(b2), "wrong opcode"); assert(0 <= i && i < 8, "illegal stack offset"); emit_int8(b1); emit_int8(b2 + i); } // Now the Assembler instructions (identical for 32/64 bits) void Assembler::adcl(Address dst, int32_t imm32) { InstructionMark im(this); prefix(dst); emit_arith_operand(0x81, rdx, dst, imm32); } void Assembler::adcl(Address dst, Register src) { InstructionMark im(this); prefix(dst, src); emit_int8(0x11); emit_operand(src, dst); } void Assembler::adcl(Register dst, int32_t imm32) { prefix(dst); emit_arith(0x81, 0xD0, dst, imm32); } void Assembler::adcl(Register dst, Address src) { InstructionMark im(this); prefix(src, dst); emit_int8(0x13); emit_operand(dst, src); } void Assembler::adcl(Register dst, Register src) { (void) prefix_and_encode(dst->encoding(), src->encoding()); emit_arith(0x13, 0xC0, dst, src); } void Assembler::addl(Address dst, int32_t imm32) { InstructionMark im(this); prefix(dst); emit_arith_operand(0x81, rax, dst, imm32); } void Assembler::addl(Address dst, Register src) { InstructionMark im(this); prefix(dst, src); emit_int8(0x01); emit_operand(src, dst); } void Assembler::addl(Register dst, int32_t imm32) { prefix(dst); emit_arith(0x81, 0xC0, dst, imm32); } void Assembler::addl(Register dst, Address src) { InstructionMark im(this); prefix(src, dst); emit_int8(0x03); emit_operand(dst, src); } void Assembler::addl(Register dst, Register src) { (void) prefix_and_encode(dst->encoding(), src->encoding()); emit_arith(0x03, 0xC0, dst, src); } void Assembler::addr_nop_4() { assert(UseAddressNop, "no CPU support"); // 4 bytes: NOP DWORD PTR [EAX+0] emit_int8(0x0F); emit_int8(0x1F); emit_int8(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc); emit_int8(0); // 8-bits offset (1 byte) } void Assembler::addr_nop_5() { assert(UseAddressNop, "no CPU support"); // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset emit_int8(0x0F); emit_int8(0x1F); emit_int8(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4); emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc); emit_int8(0); // 8-bits offset (1 byte) } void Assembler::addr_nop_7() { assert(UseAddressNop, "no CPU support"); // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset emit_int8(0x0F); emit_int8(0x1F); emit_int8((unsigned char)0x80); // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc); emit_int32(0); // 32-bits offset (4 bytes) } void Assembler::addr_nop_8() { assert(UseAddressNop, "no CPU support"); // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset emit_int8(0x0F); emit_int8(0x1F); emit_int8((unsigned char)0x84); // emit_rm(cbuf, 0x2, EAX_enc, 0x4); emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc); emit_int32(0); // 32-bits offset (4 bytes) } void Assembler::addsd(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); emit_simd_arith(0x58, dst, src, VEX_SIMD_F2); } void Assembler::addsd(XMMRegister dst, Address src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); emit_simd_arith(0x58, dst, src, VEX_SIMD_F2); } void Assembler::addss(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse(), "")); emit_simd_arith(0x58, dst, src, VEX_SIMD_F3); } void Assembler::addss(XMMRegister dst, Address src) { NOT_LP64(assert(VM_Version::supports_sse(), "")); emit_simd_arith(0x58, dst, src, VEX_SIMD_F3); } void Assembler::aesdec(XMMRegister dst, Address src) { assert(VM_Version::supports_aes(), ""); InstructionMark im(this); simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38); emit_int8((unsigned char)0xDE); emit_operand(dst, src); } void Assembler::aesdec(XMMRegister dst, XMMRegister src) { assert(VM_Version::supports_aes(), ""); int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38); emit_int8((unsigned char)0xDE); emit_int8(0xC0 | encode); } void Assembler::aesdeclast(XMMRegister dst, Address src) { assert(VM_Version::supports_aes(), ""); InstructionMark im(this); simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38); emit_int8((unsigned char)0xDF); emit_operand(dst, src); } void Assembler::aesdeclast(XMMRegister dst, XMMRegister src) { assert(VM_Version::supports_aes(), ""); int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38); emit_int8((unsigned char)0xDF); emit_int8((unsigned char)(0xC0 | encode)); } void Assembler::aesenc(XMMRegister dst, Address src) { assert(VM_Version::supports_aes(), ""); InstructionMark im(this); simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38); emit_int8((unsigned char)0xDC); emit_operand(dst, src); } void Assembler::aesenc(XMMRegister dst, XMMRegister src) { assert(VM_Version::supports_aes(), ""); int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38); emit_int8((unsigned char)0xDC); emit_int8(0xC0 | encode); } void Assembler::aesenclast(XMMRegister dst, Address src) { assert(VM_Version::supports_aes(), ""); InstructionMark im(this); simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38); emit_int8((unsigned char)0xDD); emit_operand(dst, src); } void Assembler::aesenclast(XMMRegister dst, XMMRegister src) { assert(VM_Version::supports_aes(), ""); int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38); emit_int8((unsigned char)0xDD); emit_int8((unsigned char)(0xC0 | encode)); } void Assembler::andl(Address dst, int32_t imm32) { InstructionMark im(this); prefix(dst); emit_int8((unsigned char)0x81); emit_operand(rsp, dst, 4); emit_int32(imm32); } void Assembler::andl(Register dst, int32_t imm32) { prefix(dst); emit_arith(0x81, 0xE0, dst, imm32); } void Assembler::andl(Register dst, Address src) { InstructionMark im(this); prefix(src, dst); emit_int8(0x23); emit_operand(dst, src); } void Assembler::andl(Register dst, Register src) { (void) prefix_and_encode(dst->encoding(), src->encoding()); emit_arith(0x23, 0xC0, dst, src); } void Assembler::andnl(Register dst, Register src1, Register src2) { assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported"); int encode = vex_prefix_0F38_and_encode(dst, src1, src2); emit_int8((unsigned char)0xF2); emit_int8((unsigned char)(0xC0 | encode)); } void Assembler::andnl(Register dst, Register src1, Address src2) { InstructionMark im(this); assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported"); vex_prefix_0F38(dst, src1, src2); emit_int8((unsigned char)0xF2); emit_operand(dst, src2); } void Assembler::bsfl(Register dst, Register src) { int encode = prefix_and_encode(dst->encoding(), src->encoding()); emit_int8(0x0F); emit_int8((unsigned char)0xBC); emit_int8((unsigned char)(0xC0 | encode)); } void Assembler::bsrl(Register dst, Register src) { int encode = prefix_and_encode(dst->encoding(), src->encoding()); emit_int8(0x0F); emit_int8((unsigned char)0xBD); emit_int8((unsigned char)(0xC0 | encode)); } void Assembler::bswapl(Register reg) { // bswap int encode = prefix_and_encode(reg->encoding()); emit_int8(0x0F); emit_int8((unsigned char)(0xC8 | encode)); } void Assembler::blsil(Register dst, Register src) { assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported"); int encode = vex_prefix_0F38_and_encode(rbx, dst, src); emit_int8((unsigned char)0xF3); emit_int8((unsigned char)(0xC0 | encode)); } void Assembler::blsil(Register dst, Address src) { InstructionMark im(this); assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported"); vex_prefix_0F38(rbx, dst, src); emit_int8((unsigned char)0xF3); emit_operand(rbx, src); } void Assembler::blsmskl(Register dst, Register src) { assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported"); int encode = vex_prefix_0F38_and_encode(rdx, dst, src); emit_int8((unsigned char)0xF3); emit_int8((unsigned char)(0xC0 | encode)); } void Assembler::blsmskl(Register dst, Address src) { InstructionMark im(this); assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported"); vex_prefix_0F38(rdx, dst, src); emit_int8((unsigned char)0xF3); emit_operand(rdx, src); } void Assembler::blsrl(Register dst, Register src) { assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported"); int encode = vex_prefix_0F38_and_encode(rcx, dst, src); emit_int8((unsigned char)0xF3); emit_int8((unsigned char)(0xC0 | encode)); } void Assembler::blsrl(Register dst, Address src) { InstructionMark im(this); assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported"); vex_prefix_0F38(rcx, dst, src); emit_int8((unsigned char)0xF3); emit_operand(rcx, src); } void Assembler::call(Label& L, relocInfo::relocType rtype) { // suspect disp32 is always good int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand); if (L.is_bound()) { const int long_size = 5; int offs = (int)( target(L) - pc() ); assert(offs <= 0, "assembler error"); InstructionMark im(this); // 1110 1000 #32-bit disp emit_int8((unsigned char)0xE8); emit_data(offs - long_size, rtype, operand); } else { InstructionMark im(this); // 1110 1000 #32-bit disp L.add_patch_at(code(), locator()); emit_int8((unsigned char)0xE8); emit_data(int(0), rtype, operand); } } void Assembler::call(Register dst) { int encode = prefix_and_encode(dst->encoding()); emit_int8((unsigned char)0xFF); emit_int8((unsigned char)(0xD0 | encode)); } void Assembler::call(Address adr) { InstructionMark im(this); prefix(adr); emit_int8((unsigned char)0xFF); emit_operand(rdx, adr); } void Assembler::call_literal(address entry, RelocationHolder const& rspec) { assert(entry != NULL, "call most probably wrong"); InstructionMark im(this); emit_int8((unsigned char)0xE8); intptr_t disp = entry - (pc() + sizeof(int32_t)); assert(is_simm32(disp), "must be 32bit offset (call2)"); // Technically, should use call32_operand, but this format is // implied by the fact that we're emitting a call instruction. int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand); emit_data((int) disp, rspec, operand); } void Assembler::cdql() { emit_int8((unsigned char)0x99); } void Assembler::cld() { emit_int8((unsigned char)0xFC); } void Assembler::cmovl(Condition cc, Register dst, Register src) { NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction")); int encode = prefix_and_encode(dst->encoding(), src->encoding()); emit_int8(0x0F); emit_int8(0x40 | cc); emit_int8((unsigned char)(0xC0 | encode)); } void Assembler::cmovl(Condition cc, Register dst, Address src) { NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction")); prefix(src, dst); emit_int8(0x0F); emit_int8(0x40 | cc); emit_operand(dst, src); } void Assembler::cmpb(Address dst, int imm8) { InstructionMark im(this); prefix(dst); emit_int8((unsigned char)0x80); emit_operand(rdi, dst, 1); emit_int8(imm8); } void Assembler::cmpl(Address dst, int32_t imm32) { InstructionMark im(this); prefix(dst); emit_int8((unsigned char)0x81); emit_operand(rdi, dst, 4); emit_int32(imm32); } void Assembler::cmpl(Register dst, int32_t imm32) { prefix(dst); emit_arith(0x81, 0xF8, dst, imm32); } void Assembler::cmpl(Register dst, Register src) { (void) prefix_and_encode(dst->encoding(), src->encoding()); emit_arith(0x3B, 0xC0, dst, src); } void Assembler::cmpl(Register dst, Address src) { InstructionMark im(this); prefix(src, dst); emit_int8((unsigned char)0x3B); emit_operand(dst, src); } void Assembler::cmpw(Address dst, int imm16) { InstructionMark im(this); assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers"); emit_int8(0x66); emit_int8((unsigned char)0x81); emit_operand(rdi, dst, 2); emit_int16(imm16); } // The 32-bit cmpxchg compares the value at adr with the contents of rax, // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,. // The ZF is set if the compared values were equal, and cleared otherwise. void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg InstructionMark im(this); prefix(adr, reg); emit_int8(0x0F); emit_int8((unsigned char)0xB1); emit_operand(reg, adr); } void Assembler::comisd(XMMRegister dst, Address src) { // NOTE: dbx seems to decode this as comiss even though the // 0x66 is there. Strangly ucomisd comes out correct NOT_LP64(assert(VM_Version::supports_sse2(), "")); emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_66); } void Assembler::comisd(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_66); } void Assembler::comiss(XMMRegister dst, Address src) { NOT_LP64(assert(VM_Version::supports_sse(), "")); emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_NONE); } void Assembler::comiss(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse(), "")); emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_NONE); } void Assembler::cpuid() { emit_int8(0x0F); emit_int8((unsigned char)0xA2); } void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); emit_simd_arith_nonds(0xE6, dst, src, VEX_SIMD_F3); } void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); emit_simd_arith_nonds(0x5B, dst, src, VEX_SIMD_NONE); } void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); emit_simd_arith(0x5A, dst, src, VEX_SIMD_F2); } void Assembler::cvtsd2ss(XMMRegister dst, Address src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); emit_simd_arith(0x5A, dst, src, VEX_SIMD_F2); } void Assembler::cvtsi2sdl(XMMRegister dst, Register src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2); emit_int8(0x2A); emit_int8((unsigned char)(0xC0 | encode)); } void Assembler::cvtsi2sdl(XMMRegister dst, Address src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); emit_simd_arith(0x2A, dst, src, VEX_SIMD_F2); } void Assembler::cvtsi2ssl(XMMRegister dst, Register src) { NOT_LP64(assert(VM_Version::supports_sse(), "")); int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3); emit_int8(0x2A); emit_int8((unsigned char)(0xC0 | encode)); } void Assembler::cvtsi2ssl(XMMRegister dst, Address src) { NOT_LP64(assert(VM_Version::supports_sse(), "")); emit_simd_arith(0x2A, dst, src, VEX_SIMD_F3); } void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); emit_simd_arith(0x5A, dst, src, VEX_SIMD_F3); } void Assembler::cvtss2sd(XMMRegister dst, Address src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); emit_simd_arith(0x5A, dst, src, VEX_SIMD_F3); } void Assembler::cvttsd2sil(Register dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F2); emit_int8(0x2C); emit_int8((unsigned char)(0xC0 | encode)); } void Assembler::cvttss2sil(Register dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse(), "")); int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F3); emit_int8(0x2C); emit_int8((unsigned char)(0xC0 | encode)); } void Assembler::decl(Address dst) { // Don't use it directly. Use MacroAssembler::decrement() instead. InstructionMark im(this); prefix(dst); emit_int8((unsigned char)0xFF); emit_operand(rcx, dst); } void Assembler::divsd(XMMRegister dst, Address src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); emit_simd_arith(0x5E, dst, src, VEX_SIMD_F2); } void Assembler::divsd(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); emit_simd_arith(0x5E, dst, src, VEX_SIMD_F2); } void Assembler::divss(XMMRegister dst, Address src) { NOT_LP64(assert(VM_Version::supports_sse(), "")); emit_simd_arith(0x5E, dst, src, VEX_SIMD_F3); } void Assembler::divss(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse(), "")); emit_simd_arith(0x5E, dst, src, VEX_SIMD_F3); } void Assembler::emms() { NOT_LP64(assert(VM_Version::supports_mmx(), "")); emit_int8(0x0F); emit_int8(0x77); } void Assembler::hlt() { emit_int8((unsigned char)0xF4); } void Assembler::idivl(Register src) { int encode = prefix_and_encode(src->encoding()); emit_int8((unsigned char)0xF7); emit_int8((unsigned char)(0xF8 | encode)); } void Assembler::divl(Register src) { // Unsigned int encode = prefix_and_encode(src->encoding()); emit_int8((unsigned char)0xF7); emit_int8((unsigned char)(0xF0 | encode)); } void Assembler::imull(Register dst, Register src) { int encode = prefix_and_encode(dst->encoding(), src->encoding()); emit_int8(0x0F); emit_int8((unsigned char)0xAF); emit_int8((unsigned char)(0xC0 | encode)); } void Assembler::imull(Register dst, Register src, int value) { int encode = prefix_and_encode(dst->encoding(), src->encoding()); if (is8bit(value)) { emit_int8(0x6B); emit_int8((unsigned char)(0xC0 | encode)); emit_int8(value & 0xFF); } else { emit_int8(0x69); emit_int8((unsigned char)(0xC0 | encode)); emit_int32(value); } } void Assembler::imull(Register dst, Address src) { InstructionMark im(this); prefix(src, dst); emit_int8(0x0F); emit_int8((unsigned char) 0xAF); emit_operand(dst, src); } void Assembler::incl(Address dst) { // Don't use it directly. Use MacroAssembler::increment() instead. InstructionMark im(this); prefix(dst); emit_int8((unsigned char)0xFF); emit_operand(rax, dst); } void Assembler::jcc(Condition cc, Label& L, bool maybe_short) { InstructionMark im(this); assert((0 <= cc) && (cc < 16), "illegal cc"); if (L.is_bound()) { address dst = target(L); assert(dst != NULL, "jcc most probably wrong"); const int short_size = 2; const int long_size = 6; intptr_t offs = (intptr_t)dst - (intptr_t)pc(); if (maybe_short && is8bit(offs - short_size)) { // 0111 tttn #8-bit disp emit_int8(0x70 | cc); emit_int8((offs - short_size) & 0xFF); } else { // 0000 1111 1000 tttn #32-bit disp assert(is_simm32(offs - long_size), "must be 32bit offset (call4)"); emit_int8(0x0F); emit_int8((unsigned char)(0x80 | cc)); emit_int32(offs - long_size); } } else { // Note: could eliminate cond. jumps to this jump if condition // is the same however, seems to be rather unlikely case. // Note: use jccb() if label to be bound is very close to get // an 8-bit displacement L.add_patch_at(code(), locator()); emit_int8(0x0F); emit_int8((unsigned char)(0x80 | cc)); emit_int32(0); } } void Assembler::jccb(Condition cc, Label& L) { if (L.is_bound()) { const int short_size = 2; address entry = target(L); #ifdef ASSERT intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size); intptr_t delta = short_branch_delta(); if (delta != 0) { dist += (dist < 0 ? (-delta) :delta); } assert(is8bit(dist), "Dispacement too large for a short jmp"); #endif intptr_t offs = (intptr_t)entry - (intptr_t)pc(); // 0111 tttn #8-bit disp emit_int8(0x70 | cc); emit_int8((offs - short_size) & 0xFF); } else { InstructionMark im(this); L.add_patch_at(code(), locator()); emit_int8(0x70 | cc); emit_int8(0); } } void Assembler::jmp(Address adr) { InstructionMark im(this); prefix(adr); emit_int8((unsigned char)0xFF); emit_operand(rsp, adr); } void Assembler::jmp(Label& L, bool maybe_short) { if (L.is_bound()) { address entry = target(L); assert(entry != NULL, "jmp most probably wrong"); InstructionMark im(this); const int short_size = 2; const int long_size = 5; intptr_t offs = entry - pc(); if (maybe_short && is8bit(offs - short_size)) { emit_int8((unsigned char)0xEB); emit_int8((offs - short_size) & 0xFF); } else { emit_int8((unsigned char)0xE9); emit_int32(offs - long_size); } } else { // By default, forward jumps are always 32-bit displacements, since // we can't yet know where the label will be bound. If you're sure that // the forward jump will not run beyond 256 bytes, use jmpb to // force an 8-bit displacement. InstructionMark im(this); L.add_patch_at(code(), locator()); emit_int8((unsigned char)0xE9); emit_int32(0); } } void Assembler::jmp(Register entry) { int encode = prefix_and_encode(entry->encoding()); emit_int8((unsigned char)0xFF); emit_int8((unsigned char)(0xE0 | encode)); } void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) { InstructionMark im(this); emit_int8((unsigned char)0xE9); assert(dest != NULL, "must have a target"); intptr_t disp = dest - (pc() + sizeof(int32_t)); assert(is_simm32(disp), "must be 32bit offset (jmp)"); emit_data(disp, rspec.reloc(), call32_operand); } void Assembler::jmpb(Label& L) { if (L.is_bound()) { const int short_size = 2; address entry = target(L); assert(entry != NULL, "jmp most probably wrong"); #ifdef ASSERT intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size); intptr_t delta = short_branch_delta(); if (delta != 0) { dist += (dist < 0 ? (-delta) :delta); } assert(is8bit(dist), "Dispacement too large for a short jmp"); #endif intptr_t offs = entry - pc(); emit_int8((unsigned char)0xEB); emit_int8((offs - short_size) & 0xFF); } else { InstructionMark im(this); L.add_patch_at(code(), locator()); emit_int8((unsigned char)0xEB); emit_int8(0); } } void Assembler::ldmxcsr( Address src) { NOT_LP64(assert(VM_Version::supports_sse(), "")); InstructionMark im(this); prefix(src); emit_int8(0x0F); emit_int8((unsigned char)0xAE); emit_operand(as_Register(2), src); } void Assembler::leal(Register dst, Address src) { InstructionMark im(this); #ifdef _LP64 emit_int8(0x67); // addr32 prefix(src, dst); #endif // LP64 emit_int8((unsigned char)0x8D); emit_operand(dst, src); } void Assembler::lfence() { emit_int8(0x0F); emit_int8((unsigned char)0xAE); emit_int8((unsigned char)0xE8); } void Assembler::lock() { emit_int8((unsigned char)0xF0); } void Assembler::lzcntl(Register dst, Register src) { assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR"); emit_int8((unsigned char)0xF3); int encode = prefix_and_encode(dst->encoding(), src->encoding()); emit_int8(0x0F); emit_int8((unsigned char)0xBD); emit_int8((unsigned char)(0xC0 | encode)); } // Emit mfence instruction void Assembler::mfence() { NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");) emit_int8(0x0F); emit_int8((unsigned char)0xAE); emit_int8((unsigned char)0xF0); } void Assembler::mov(Register dst, Register src) { LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src)); } void Assembler::movapd(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); emit_simd_arith_nonds(0x28, dst, src, VEX_SIMD_66); } void Assembler::movaps(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse(), "")); emit_simd_arith_nonds(0x28, dst, src, VEX_SIMD_NONE); } void Assembler::movlhps(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse(), "")); int encode = simd_prefix_and_encode(dst, src, src, VEX_SIMD_NONE); emit_int8(0x16); emit_int8((unsigned char)(0xC0 | encode)); } void Assembler::movb(Register dst, Address src) { NOT_LP64(assert(dst->has_byte_register(), "must have byte register")); InstructionMark im(this); prefix(src, dst, true); emit_int8((unsigned char)0x8A); emit_operand(dst, src); } void Assembler::movb(Address dst, int imm8) { InstructionMark im(this); prefix(dst); emit_int8((unsigned char)0xC6); emit_operand(rax, dst, 1); emit_int8(imm8); } void Assembler::movb(Address dst, Register src) { assert(src->has_byte_register(), "must have byte register"); InstructionMark im(this); prefix(dst, src, true); emit_int8((unsigned char)0x88); emit_operand(src, dst); } void Assembler::movdl(XMMRegister dst, Register src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66); emit_int8(0x6E); emit_int8((unsigned char)(0xC0 | encode)); } void Assembler::movdl(Register dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); // swap src/dst to get correct prefix int encode = simd_prefix_and_encode(src, dst, VEX_SIMD_66); emit_int8(0x7E); emit_int8((unsigned char)(0xC0 | encode)); } void Assembler::movdl(XMMRegister dst, Address src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); InstructionMark im(this); simd_prefix(dst, src, VEX_SIMD_66); emit_int8(0x6E); emit_operand(dst, src); } void Assembler::movdl(Address dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); InstructionMark im(this); simd_prefix(dst, src, VEX_SIMD_66); emit_int8(0x7E); emit_operand(src, dst); } void Assembler::movdqa(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_66); } void Assembler::movdqa(XMMRegister dst, Address src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_66); } void Assembler::movdqu(XMMRegister dst, Address src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_F3); } void Assembler::movdqu(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_F3); } void Assembler::movdqu(Address dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); InstructionMark im(this); simd_prefix(dst, src, VEX_SIMD_F3); emit_int8(0x7F); emit_operand(src, dst); } // Move Unaligned 256bit Vector void Assembler::vmovdqu(XMMRegister dst, XMMRegister src) { assert(UseAVX > 0, ""); bool vector256 = true; int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, vector256); emit_int8(0x6F); emit_int8((unsigned char)(0xC0 | encode)); } void Assembler::vmovdqu(XMMRegister dst, Address src) { assert(UseAVX > 0, ""); InstructionMark im(this); bool vector256 = true; vex_prefix(dst, xnoreg, src, VEX_SIMD_F3, vector256); emit_int8(0x6F); emit_operand(dst, src); } void Assembler::vmovdqu(Address dst, XMMRegister src) { assert(UseAVX > 0, ""); InstructionMark im(this); bool vector256 = true; // swap src<->dst for encoding assert(src != xnoreg, "sanity"); vex_prefix(src, xnoreg, dst, VEX_SIMD_F3, vector256); emit_int8(0x7F); emit_operand(src, dst); } // Uses zero extension on 64bit void Assembler::movl(Register dst, int32_t imm32) { int encode = prefix_and_encode(dst->encoding()); emit_int8((unsigned char)(0xB8 | encode)); emit_int32(imm32); } void Assembler::movl(Register dst, Register src) { int encode = prefix_and_encode(dst->encoding(), src->encoding()); emit_int8((unsigned char)0x8B); emit_int8((unsigned char)(0xC0 | encode)); } void Assembler::movl(Register dst, Address src) { InstructionMark im(this); prefix(src, dst); emit_int8((unsigned char)0x8B); emit_operand(dst, src); } void Assembler::movl(Address dst, int32_t imm32) { InstructionMark im(this); prefix(dst); emit_int8((unsigned char)0xC7); emit_operand(rax, dst, 4); emit_int32(imm32); } void Assembler::movl(Address dst, Register src) { InstructionMark im(this); prefix(dst, src); emit_int8((unsigned char)0x89); emit_operand(src, dst); } // New cpus require to use movsd and movss to avoid partial register stall // when loading from memory. But for old Opteron use movlpd instead of movsd. // The selection is done in MacroAssembler::movdbl() and movflt(). void Assembler::movlpd(XMMRegister dst, Address src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); emit_simd_arith(0x12, dst, src, VEX_SIMD_66); } void Assembler::movq( MMXRegister dst, Address src ) { assert( VM_Version::supports_mmx(), "" ); emit_int8(0x0F); emit_int8(0x6F); emit_operand(dst, src); } void Assembler::movq( Address dst, MMXRegister src ) { assert( VM_Version::supports_mmx(), "" ); emit_int8(0x0F); emit_int8(0x7F); // workaround gcc (3.2.1-7a) bug // In that version of gcc with only an emit_operand(MMX, Address) // gcc will tail jump and try and reverse the parameters completely // obliterating dst in the process. By having a version available // that doesn't need to swap the args at the tail jump the bug is // avoided. emit_operand(dst, src); } void Assembler::movq(XMMRegister dst, Address src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); InstructionMark im(this); simd_prefix(dst, src, VEX_SIMD_F3); emit_int8(0x7E); emit_operand(dst, src); } void Assembler::movq(Address dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); InstructionMark im(this); simd_prefix(dst, src, VEX_SIMD_66); emit_int8((unsigned char)0xD6); emit_operand(src, dst); } void Assembler::movsbl(Register dst, Address src) { // movsxb InstructionMark im(this); prefix(src, dst); emit_int8(0x0F); emit_int8((unsigned char)0xBE); emit_operand(dst, src); } void Assembler::movsbl(Register dst, Register src) { // movsxb NOT_LP64(assert(src->has_byte_register(), "must have byte register")); int encode = prefix_and_encode(dst->encoding(), src->encoding(), true); emit_int8(0x0F); emit_int8((unsigned char)0xBE); emit_int8((unsigned char)(0xC0 | encode)); } void Assembler::movsd(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); emit_simd_arith(0x10, dst, src, VEX_SIMD_F2); } void Assembler::movsd(XMMRegister dst, Address src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); emit_simd_arith_nonds(0x10, dst, src, VEX_SIMD_F2); } void Assembler::movsd(Address dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); InstructionMark im(this); simd_prefix(dst, src, VEX_SIMD_F2); emit_int8(0x11); emit_operand(src, dst); } void Assembler::movss(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse(), "")); emit_simd_arith(0x10, dst, src, VEX_SIMD_F3); } void Assembler::movss(XMMRegister dst, Address src) { NOT_LP64(assert(VM_Version::supports_sse(), "")); emit_simd_arith_nonds(0x10, dst, src, VEX_SIMD_F3); } void Assembler::movss(Address dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse(), "")); InstructionMark im(this); simd_prefix(dst, src, VEX_SIMD_F3); emit_int8(0x11); emit_operand(src, dst); } void Assembler::movswl(Register dst, Address src) { // movsxw InstructionMark im(this); prefix(src, dst); emit_int8(0x0F); emit_int8((unsigned char)0xBF); emit_operand(dst, src); } void Assembler::movswl(Register dst, Register src) { // movsxw int encode = prefix_and_encode(dst->encoding(), src->encoding()); emit_int8(0x0F); emit_int8((unsigned char)0xBF); emit_int8((unsigned char)(0xC0 | encode)); } void Assembler::movw(Address dst, int imm16) { InstructionMark im(this); emit_int8(0x66); // switch to 16-bit mode prefix(dst); emit_int8((unsigned char)0xC7); emit_operand(rax, dst, 2); emit_int16(imm16); } void Assembler::movw(Register dst, Address src) { InstructionMark im(this); emit_int8(0x66); prefix(src, dst); emit_int8((unsigned char)0x8B); emit_operand(dst, src); } void Assembler::movw(Address dst, Register src) { InstructionMark im(this); emit_int8(0x66); prefix(dst, src); emit_int8((unsigned char)0x89); emit_operand(src, dst); } void Assembler::movzbl(Register dst, Address src) { // movzxb InstructionMark im(this); prefix(src, dst); emit_int8(0x0F); emit_int8((unsigned char)0xB6); emit_operand(dst, src); } void Assembler::movzbl(Register dst, Register src) { // movzxb NOT_LP64(assert(src->has_byte_register(), "must have byte register")); int encode = prefix_and_encode(dst->encoding(), src->encoding(), true); emit_int8(0x0F); emit_int8((unsigned char)0xB6); emit_int8(0xC0 | encode); } void Assembler::movzwl(Register dst, Address src) { // movzxw InstructionMark im(this); prefix(src, dst); emit_int8(0x0F); emit_int8((unsigned char)0xB7); emit_operand(dst, src); } void Assembler::movzwl(Register dst, Register src) { // movzxw int encode = prefix_and_encode(dst->encoding(), src->encoding()); emit_int8(0x0F); emit_int8((unsigned char)0xB7); emit_int8(0xC0 | encode); } void Assembler::mull(Address src) { InstructionMark im(this); prefix(src); emit_int8((unsigned char)0xF7); emit_operand(rsp, src); } void Assembler::mull(Register src) { int encode = prefix_and_encode(src->encoding()); emit_int8((unsigned char)0xF7); emit_int8((unsigned char)(0xE0 | encode)); } void Assembler::mulsd(XMMRegister dst, Address src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); emit_simd_arith(0x59, dst, src, VEX_SIMD_F2); } void Assembler::mulsd(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); emit_simd_arith(0x59, dst, src, VEX_SIMD_F2); } void Assembler::mulss(XMMRegister dst, Address src) { NOT_LP64(assert(VM_Version::supports_sse(), "")); emit_simd_arith(0x59, dst, src, VEX_SIMD_F3); } void Assembler::mulss(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse(), "")); emit_simd_arith(0x59, dst, src, VEX_SIMD_F3); } void Assembler::negl(Register dst) { int encode = prefix_and_encode(dst->encoding()); emit_int8((unsigned char)0xF7); emit_int8((unsigned char)(0xD8 | encode)); } void Assembler::nop(int i) { #ifdef ASSERT assert(i > 0, " "); // The fancy nops aren't currently recognized by debuggers making it a // pain to disassemble code while debugging. If asserts are on clearly // speed is not an issue so simply use the single byte traditional nop // to do alignment. for (; i > 0 ; i--) emit_int8((unsigned char)0x90); return; #endif // ASSERT if (UseAddressNop && VM_Version::is_intel()) { // // Using multi-bytes nops "0x0F 0x1F [address]" for Intel // 1: 0x90 // 2: 0x66 0x90 // 3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding) // 4: 0x0F 0x1F 0x40 0x00 // 5: 0x0F 0x1F 0x44 0x00 0x00 // 6: 0x66 0x0F 0x1F 0x44 0x00 0x00 // 7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 // 8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 // 9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 // The rest coding is Intel specific - don't use consecutive address nops // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90 // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90 // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90 // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90 while(i >= 15) { // For Intel don't generate consecutive addess nops (mix with regular nops) i -= 15; emit_int8(0x66); // size prefix emit_int8(0x66); // size prefix emit_int8(0x66); // size prefix addr_nop_8(); emit_int8(0x66); // size prefix emit_int8(0x66); // size prefix emit_int8(0x66); // size prefix emit_int8((unsigned char)0x90); // nop } switch (i) { case 14: emit_int8(0x66); // size prefix case 13: emit_int8(0x66); // size prefix case 12: addr_nop_8(); emit_int8(0x66); // size prefix emit_int8(0x66); // size prefix emit_int8(0x66); // size prefix emit_int8((unsigned char)0x90); // nop break; case 11: emit_int8(0x66); // size prefix case 10: emit_int8(0x66); // size prefix case 9: emit_int8(0x66); // size prefix case 8: addr_nop_8(); break; case 7: addr_nop_7(); break; case 6: emit_int8(0x66); // size prefix case 5: addr_nop_5(); break; case 4: addr_nop_4(); break; case 3: // Don't use "0x0F 0x1F 0x00" - need patching safe padding emit_int8(0x66); // size prefix case 2: emit_int8(0x66); // size prefix case 1: emit_int8((unsigned char)0x90); // nop break; default: assert(i == 0, " "); } return; } if (UseAddressNop && VM_Version::is_amd()) { // // Using multi-bytes nops "0x0F 0x1F [address]" for AMD. // 1: 0x90 // 2: 0x66 0x90 // 3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding) // 4: 0x0F 0x1F 0x40 0x00 // 5: 0x0F 0x1F 0x44 0x00 0x00 // 6: 0x66 0x0F 0x1F 0x44 0x00 0x00 // 7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 // 8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 // 9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 // The rest coding is AMD specific - use consecutive address nops // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00 // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00 // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 // Size prefixes (0x66) are added for larger sizes while(i >= 22) { i -= 11; emit_int8(0x66); // size prefix emit_int8(0x66); // size prefix emit_int8(0x66); // size prefix addr_nop_8(); } // Generate first nop for size between 21-12 switch (i) { case 21: i -= 1; emit_int8(0x66); // size prefix case 20: case 19: i -= 1; emit_int8(0x66); // size prefix case 18: case 17: i -= 1; emit_int8(0x66); // size prefix case 16: case 15: i -= 8; addr_nop_8(); break; case 14: case 13: i -= 7; addr_nop_7(); break; case 12: i -= 6; emit_int8(0x66); // size prefix addr_nop_5(); break; default: assert(i < 12, " "); } // Generate second nop for size between 11-1 switch (i) { case 11: emit_int8(0x66); // size prefix case 10: emit_int8(0x66); // size prefix case 9: emit_int8(0x66); // size prefix case 8: addr_nop_8(); break; case 7: addr_nop_7(); break; case 6: emit_int8(0x66); // size prefix case 5: addr_nop_5(); break; case 4: addr_nop_4(); break; case 3: // Don't use "0x0F 0x1F 0x00" - need patching safe padding emit_int8(0x66); // size prefix case 2: emit_int8(0x66); // size prefix case 1: emit_int8((unsigned char)0x90); // nop break; default: assert(i == 0, " "); } return; } // Using nops with size prefixes "0x66 0x90". // From AMD Optimization Guide: // 1: 0x90 // 2: 0x66 0x90 // 3: 0x66 0x66 0x90 // 4: 0x66 0x66 0x66 0x90 // 5: 0x66 0x66 0x90 0x66 0x90 // 6: 0x66 0x66 0x90 0x66 0x66 0x90 // 7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 // 8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90 // 9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90 // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90 // while(i > 12) { i -= 4; emit_int8(0x66); // size prefix emit_int8(0x66); emit_int8(0x66); emit_int8((unsigned char)0x90); // nop } // 1 - 12 nops if(i > 8) { if(i > 9) { i -= 1; emit_int8(0x66); } i -= 3; emit_int8(0x66); emit_int8(0x66); emit_int8((unsigned char)0x90); } // 1 - 8 nops if(i > 4) { if(i > 6) { i -= 1; emit_int8(0x66); } i -= 3; emit_int8(0x66); emit_int8(0x66); emit_int8((unsigned char)0x90); } switch (i) { case 4: emit_int8(0x66); case 3: emit_int8(0x66); case 2: emit_int8(0x66); case 1: emit_int8((unsigned char)0x90); break; default: assert(i == 0, " "); } } void Assembler::notl(Register dst) { int encode = prefix_and_encode(dst->encoding()); emit_int8((unsigned char)0xF7); emit_int8((unsigned char)(0xD0 | encode)); } void Assembler::orl(Address dst, int32_t imm32) { InstructionMark im(this); prefix(dst); emit_arith_operand(0x81, rcx, dst, imm32); } void Assembler::orl(Register dst, int32_t imm32) { prefix(dst); emit_arith(0x81, 0xC8, dst, imm32); } void Assembler::orl(Register dst, Address src) { InstructionMark im(this); prefix(src, dst); emit_int8(0x0B); emit_operand(dst, src); } void Assembler::orl(Register dst, Register src) { (void) prefix_and_encode(dst->encoding(), src->encoding()); emit_arith(0x0B, 0xC0, dst, src); } void Assembler::packuswb(XMMRegister dst, Address src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes"); emit_simd_arith(0x67, dst, src, VEX_SIMD_66); } void Assembler::packuswb(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); emit_simd_arith(0x67, dst, src, VEX_SIMD_66); } void Assembler::vpackuswb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2"); emit_vex_arith(0x67, dst, nds, src, VEX_SIMD_66, vector256); } void Assembler::vpermq(XMMRegister dst, XMMRegister src, int imm8, bool vector256) { assert(VM_Version::supports_avx2(), ""); int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, true, vector256); emit_int8(0x00); emit_int8(0xC0 | encode); emit_int8(imm8); } void Assembler::pause() { emit_int8((unsigned char)0xF3); emit_int8((unsigned char)0x90); } void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) { assert(VM_Version::supports_sse4_2(), ""); InstructionMark im(this); simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A); emit_int8(0x61); emit_operand(dst, src); emit_int8(imm8); } void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) { assert(VM_Version::supports_sse4_2(), ""); int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A); emit_int8(0x61); emit_int8((unsigned char)(0xC0 | encode)); emit_int8(imm8); } void Assembler::pextrd(Register dst, XMMRegister src, int imm8) { assert(VM_Version::supports_sse4_1(), ""); int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, false); emit_int8(0x16); emit_int8((unsigned char)(0xC0 | encode)); emit_int8(imm8); } void Assembler::pextrq(Register dst, XMMRegister src, int imm8) { assert(VM_Version::supports_sse4_1(), ""); int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, true); emit_int8(0x16); emit_int8((unsigned char)(0xC0 | encode)); emit_int8(imm8); } void Assembler::pinsrd(XMMRegister dst, Register src, int imm8) { assert(VM_Version::supports_sse4_1(), ""); int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, false); emit_int8(0x22); emit_int8((unsigned char)(0xC0 | encode)); emit_int8(imm8); } void Assembler::pinsrq(XMMRegister dst, Register src, int imm8) { assert(VM_Version::supports_sse4_1(), ""); int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, true); emit_int8(0x22); emit_int8((unsigned char)(0xC0 | encode)); emit_int8(imm8); } void Assembler::pmovzxbw(XMMRegister dst, Address src) { assert(VM_Version::supports_sse4_1(), ""); InstructionMark im(this); simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38); emit_int8(0x30); emit_operand(dst, src); } void Assembler::pmovzxbw(XMMRegister dst, XMMRegister src) { assert(VM_Version::supports_sse4_1(), ""); int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38); emit_int8(0x30); emit_int8((unsigned char)(0xC0 | encode)); } // generic void Assembler::pop(Register dst) { int encode = prefix_and_encode(dst->encoding()); emit_int8(0x58 | encode); } void Assembler::popcntl(Register dst, Address src) { assert(VM_Version::supports_popcnt(), "must support"); InstructionMark im(this); emit_int8((unsigned char)0xF3); prefix(src, dst); emit_int8(0x0F); emit_int8((unsigned char)0xB8); emit_operand(dst, src); } void Assembler::popcntl(Register dst, Register src) { assert(VM_Version::supports_popcnt(), "must support"); emit_int8((unsigned char)0xF3); int encode = prefix_and_encode(dst->encoding(), src->encoding()); emit_int8(0x0F); emit_int8((unsigned char)0xB8); emit_int8((unsigned char)(0xC0 | encode)); } void Assembler::popf() { emit_int8((unsigned char)0x9D); } #ifndef _LP64 // no 32bit push/pop on amd64 void Assembler::popl(Address dst) { // NOTE: this will adjust stack by 8byte on 64bits InstructionMark im(this); prefix(dst); emit_int8((unsigned char)0x8F); emit_operand(rax, dst); } #endif void Assembler::prefetch_prefix(Address src) { prefix(src); emit_int8(0x0F); } void Assembler::prefetchnta(Address src) { NOT_LP64(assert(VM_Version::supports_sse(), "must support")); InstructionMark im(this); prefetch_prefix(src); emit_int8(0x18); emit_operand(rax, src); // 0, src } void Assembler::prefetchr(Address src) { assert(VM_Version::supports_3dnow_prefetch(), "must support"); InstructionMark im(this); prefetch_prefix(src); emit_int8(0x0D); emit_operand(rax, src); // 0, src } void Assembler::prefetcht0(Address src) { NOT_LP64(assert(VM_Version::supports_sse(), "must support")); InstructionMark im(this); prefetch_prefix(src); emit_int8(0x18); emit_operand(rcx, src); // 1, src } void Assembler::prefetcht1(Address src) { NOT_LP64(assert(VM_Version::supports_sse(), "must support")); InstructionMark im(this); prefetch_prefix(src); emit_int8(0x18); emit_operand(rdx, src); // 2, src } void Assembler::prefetcht2(Address src) { NOT_LP64(assert(VM_Version::supports_sse(), "must support")); InstructionMark im(this); prefetch_prefix(src); emit_int8(0x18); emit_operand(rbx, src); // 3, src } void Assembler::prefetchw(Address src) { assert(VM_Version::supports_3dnow_prefetch(), "must support"); InstructionMark im(this); prefetch_prefix(src); emit_int8(0x0D); emit_operand(rcx, src); // 1, src } void Assembler::prefix(Prefix p) { emit_int8(p); } void Assembler::pshufb(XMMRegister dst, XMMRegister src) { assert(VM_Version::supports_ssse3(), ""); int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38); emit_int8(0x00); emit_int8((unsigned char)(0xC0 | encode)); } void Assembler::pshufb(XMMRegister dst, Address src) { assert(VM_Version::supports_ssse3(), ""); InstructionMark im(this); simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38); emit_int8(0x00); emit_operand(dst, src); } void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) { assert(isByte(mode), "invalid value"); NOT_LP64(assert(VM_Version::supports_sse2(), "")); emit_simd_arith_nonds(0x70, dst, src, VEX_SIMD_66); emit_int8(mode & 0xFF); } void Assembler::pshufd(XMMRegister dst, Address src, int mode) { assert(isByte(mode), "invalid value"); NOT_LP64(assert(VM_Version::supports_sse2(), "")); assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes"); InstructionMark im(this); simd_prefix(dst, src, VEX_SIMD_66); emit_int8(0x70); emit_operand(dst, src); emit_int8(mode & 0xFF); } void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) { assert(isByte(mode), "invalid value"); NOT_LP64(assert(VM_Version::supports_sse2(), "")); emit_simd_arith_nonds(0x70, dst, src, VEX_SIMD_F2); emit_int8(mode & 0xFF); } void Assembler::pshuflw(XMMRegister dst, Address src, int mode) { assert(isByte(mode), "invalid value"); NOT_LP64(assert(VM_Version::supports_sse2(), "")); assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes"); InstructionMark im(this); simd_prefix(dst, src, VEX_SIMD_F2); emit_int8(0x70); emit_operand(dst, src); emit_int8(mode & 0xFF); } void Assembler::psrldq(XMMRegister dst, int shift) { // Shift 128 bit value in xmm register by number of bytes. NOT_LP64(assert(VM_Version::supports_sse2(), "")); int encode = simd_prefix_and_encode(xmm3, dst, dst, VEX_SIMD_66); emit_int8(0x73); emit_int8((unsigned char)(0xC0 | encode)); emit_int8(shift); } void Assembler::ptest(XMMRegister dst, Address src) { assert(VM_Version::supports_sse4_1(), ""); assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes"); InstructionMark im(this); simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38); emit_int8(0x17); emit_operand(dst, src); } void Assembler::ptest(XMMRegister dst, XMMRegister src) { assert(VM_Version::supports_sse4_1(), ""); int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38); emit_int8(0x17); emit_int8((unsigned char)(0xC0 | encode)); } void Assembler::vptest(XMMRegister dst, Address src) { assert(VM_Version::supports_avx(), ""); InstructionMark im(this); bool vector256 = true; assert(dst != xnoreg, "sanity"); int dst_enc = dst->encoding(); // swap src<->dst for encoding vex_prefix(src, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, false, vector256); emit_int8(0x17); emit_operand(dst, src); } void Assembler::vptest(XMMRegister dst, XMMRegister src) { assert(VM_Version::supports_avx(), ""); bool vector256 = true; int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_38); emit_int8(0x17); emit_int8((unsigned char)(0xC0 | encode)); } void Assembler::punpcklbw(XMMRegister dst, Address src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes"); emit_simd_arith(0x60, dst, src, VEX_SIMD_66); } void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); emit_simd_arith(0x60, dst, src, VEX_SIMD_66); } void Assembler::punpckldq(XMMRegister dst, Address src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes"); emit_simd_arith(0x62, dst, src, VEX_SIMD_66); } void Assembler::punpckldq(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); emit_simd_arith(0x62, dst, src, VEX_SIMD_66); } void Assembler::punpcklqdq(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); emit_simd_arith(0x6C, dst, src, VEX_SIMD_66); } void Assembler::push(int32_t imm32) { // in 64bits we push 64bits onto the stack but only // take a 32bit immediate emit_int8(0x68); emit_int32(imm32); } void Assembler::push(Register src) { int encode = prefix_and_encode(src->encoding()); emit_int8(0x50 | encode); } void Assembler::pushf() { emit_int8((unsigned char)0x9C); } #ifndef _LP64 // no 32bit push/pop on amd64 void Assembler::pushl(Address src) { // Note this will push 64bit on 64bit InstructionMark im(this); prefix(src); emit_int8((unsigned char)0xFF); emit_operand(rsi, src); } #endif void Assembler::rcll(Register dst, int imm8) { assert(isShiftCount(imm8), "illegal shift count"); int encode = prefix_and_encode(dst->encoding()); if (imm8 == 1) { emit_int8((unsigned char)0xD1); emit_int8((unsigned char)(0xD0 | encode)); } else { emit_int8((unsigned char)0xC1); emit_int8((unsigned char)0xD0 | encode); emit_int8(imm8); } } void Assembler::rdtsc() { emit_int8((unsigned char)0x0F); emit_int8((unsigned char)0x31); } // copies data from [esi] to [edi] using rcx pointer sized words // generic void Assembler::rep_mov() { emit_int8((unsigned char)0xF3); // MOVSQ LP64_ONLY(prefix(REX_W)); emit_int8((unsigned char)0xA5); } // sets rcx bytes with rax, value at [edi] void Assembler::rep_stosb() { emit_int8((unsigned char)0xF3); // REP LP64_ONLY(prefix(REX_W)); emit_int8((unsigned char)0xAA); // STOSB } // sets rcx pointer sized words with rax, value at [edi] // generic void Assembler::rep_stos() { emit_int8((unsigned char)0xF3); // REP LP64_ONLY(prefix(REX_W)); // LP64:STOSQ, LP32:STOSD emit_int8((unsigned char)0xAB); } // scans rcx pointer sized words at [edi] for occurance of rax, // generic void Assembler::repne_scan() { // repne_scan emit_int8((unsigned char)0xF2); // SCASQ LP64_ONLY(prefix(REX_W)); emit_int8((unsigned char)0xAF); } #ifdef _LP64 // scans rcx 4 byte words at [edi] for occurance of rax, // generic void Assembler::repne_scanl() { // repne_scan emit_int8((unsigned char)0xF2); // SCASL emit_int8((unsigned char)0xAF); } #endif void Assembler::ret(int imm16) { if (imm16 == 0) { emit_int8((unsigned char)0xC3); } else { emit_int8((unsigned char)0xC2); emit_int16(imm16); } } void Assembler::sahf() { #ifdef _LP64 // Not supported in 64bit mode ShouldNotReachHere(); #endif emit_int8((unsigned char)0x9E); } void Assembler::sarl(Register dst, int imm8) { int encode = prefix_and_encode(dst->encoding()); assert(isShiftCount(imm8), "illegal shift count"); if (imm8 == 1) { emit_int8((unsigned char)0xD1); emit_int8((unsigned char)(0xF8 | encode)); } else { emit_int8((unsigned char)0xC1); emit_int8((unsigned char)(0xF8 | encode)); emit_int8(imm8); } } void Assembler::sarl(Register dst) { int encode = prefix_and_encode(dst->encoding()); emit_int8((unsigned char)0xD3); emit_int8((unsigned char)(0xF8 | encode)); } void Assembler::sbbl(Address dst, int32_t imm32) { InstructionMark im(this); prefix(dst); emit_arith_operand(0x81, rbx, dst, imm32); } void Assembler::sbbl(Register dst, int32_t imm32) { prefix(dst); emit_arith(0x81, 0xD8, dst, imm32); } void Assembler::sbbl(Register dst, Address src) { InstructionMark im(this); prefix(src, dst); emit_int8(0x1B); emit_operand(dst, src); } void Assembler::sbbl(Register dst, Register src) { (void) prefix_and_encode(dst->encoding(), src->encoding()); emit_arith(0x1B, 0xC0, dst, src); } void Assembler::setb(Condition cc, Register dst) { assert(0 <= cc && cc < 16, "illegal cc"); int encode = prefix_and_encode(dst->encoding(), true); emit_int8(0x0F); emit_int8((unsigned char)0x90 | cc); emit_int8((unsigned char)(0xC0 | encode)); } void Assembler::shll(Register dst, int imm8) { assert(isShiftCount(imm8), "illegal shift count"); int encode = prefix_and_encode(dst->encoding()); if (imm8 == 1 ) { emit_int8((unsigned char)0xD1); emit_int8((unsigned char)(0xE0 | encode)); } else { emit_int8((unsigned char)0xC1); emit_int8((unsigned char)(0xE0 | encode)); emit_int8(imm8); } } void Assembler::shll(Register dst) { int encode = prefix_and_encode(dst->encoding()); emit_int8((unsigned char)0xD3); emit_int8((unsigned char)(0xE0 | encode)); } void Assembler::shrl(Register dst, int imm8) { assert(isShiftCount(imm8), "illegal shift count"); int encode = prefix_and_encode(dst->encoding()); emit_int8((unsigned char)0xC1); emit_int8((unsigned char)(0xE8 | encode)); emit_int8(imm8); } void Assembler::shrl(Register dst) { int encode = prefix_and_encode(dst->encoding()); emit_int8((unsigned char)0xD3); emit_int8((unsigned char)(0xE8 | encode)); } // copies a single word from [esi] to [edi] void Assembler::smovl() { emit_int8((unsigned char)0xA5); } void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); emit_simd_arith(0x51, dst, src, VEX_SIMD_F2); } void Assembler::sqrtsd(XMMRegister dst, Address src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); emit_simd_arith(0x51, dst, src, VEX_SIMD_F2); } void Assembler::sqrtss(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse(), "")); emit_simd_arith(0x51, dst, src, VEX_SIMD_F3); } void Assembler::std() { emit_int8((unsigned char)0xFD); } void Assembler::sqrtss(XMMRegister dst, Address src) { NOT_LP64(assert(VM_Version::supports_sse(), "")); emit_simd_arith(0x51, dst, src, VEX_SIMD_F3); } void Assembler::stmxcsr( Address dst) { NOT_LP64(assert(VM_Version::supports_sse(), "")); InstructionMark im(this); prefix(dst); emit_int8(0x0F); emit_int8((unsigned char)0xAE); emit_operand(as_Register(3), dst); } void Assembler::subl(Address dst, int32_t imm32) { InstructionMark im(this); prefix(dst); emit_arith_operand(0x81, rbp, dst, imm32); } void Assembler::subl(Address dst, Register src) { InstructionMark im(this); prefix(dst, src); emit_int8(0x29); emit_operand(src, dst); } void Assembler::subl(Register dst, int32_t imm32) { prefix(dst); emit_arith(0x81, 0xE8, dst, imm32); } // Force generation of a 4 byte immediate value even if it fits into 8bit void Assembler::subl_imm32(Register dst, int32_t imm32) { prefix(dst); emit_arith_imm32(0x81, 0xE8, dst, imm32); } void Assembler::subl(Register dst, Address src) { InstructionMark im(this); prefix(src, dst); emit_int8(0x2B); emit_operand(dst, src); } void Assembler::subl(Register dst, Register src) { (void) prefix_and_encode(dst->encoding(), src->encoding()); emit_arith(0x2B, 0xC0, dst, src); } void Assembler::subsd(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); emit_simd_arith(0x5C, dst, src, VEX_SIMD_F2); } void Assembler::subsd(XMMRegister dst, Address src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); emit_simd_arith(0x5C, dst, src, VEX_SIMD_F2); } void Assembler::subss(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse(), "")); emit_simd_arith(0x5C, dst, src, VEX_SIMD_F3); } void Assembler::subss(XMMRegister dst, Address src) { NOT_LP64(assert(VM_Version::supports_sse(), "")); emit_simd_arith(0x5C, dst, src, VEX_SIMD_F3); } void Assembler::testb(Register dst, int imm8) { NOT_LP64(assert(dst->has_byte_register(), "must have byte register")); (void) prefix_and_encode(dst->encoding(), true); emit_arith_b(0xF6, 0xC0, dst, imm8); } void Assembler::testl(Register dst, int32_t imm32) { // not using emit_arith because test // doesn't support sign-extension of // 8bit operands int encode = dst->encoding(); if (encode == 0) { emit_int8((unsigned char)0xA9); } else { encode = prefix_and_encode(encode); emit_int8((unsigned char)0xF7); emit_int8((unsigned char)(0xC0 | encode)); } emit_int32(imm32); } void Assembler::testl(Register dst, Register src) { (void) prefix_and_encode(dst->encoding(), src->encoding()); emit_arith(0x85, 0xC0, dst, src); } void Assembler::testl(Register dst, Address src) { InstructionMark im(this); prefix(src, dst); emit_int8((unsigned char)0x85); emit_operand(dst, src); } void Assembler::tzcntl(Register dst, Register src) { assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported"); emit_int8((unsigned char)0xF3); int encode = prefix_and_encode(dst->encoding(), src->encoding()); emit_int8(0x0F); emit_int8((unsigned char)0xBC); emit_int8((unsigned char)0xC0 | encode); } void Assembler::tzcntq(Register dst, Register src) { assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported"); emit_int8((unsigned char)0xF3); int encode = prefixq_and_encode(dst->encoding(), src->encoding()); emit_int8(0x0F); emit_int8((unsigned char)0xBC); emit_int8((unsigned char)(0xC0 | encode)); } void Assembler::ucomisd(XMMRegister dst, Address src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_66); } void Assembler::ucomisd(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_66); } void Assembler::ucomiss(XMMRegister dst, Address src) { NOT_LP64(assert(VM_Version::supports_sse(), "")); emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_NONE); } void Assembler::ucomiss(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse(), "")); emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_NONE); } void Assembler::xabort(int8_t imm8) { emit_int8((unsigned char)0xC6); emit_int8((unsigned char)0xF8); emit_int8((unsigned char)(imm8 & 0xFF)); } void Assembler::xaddl(Address dst, Register src) { InstructionMark im(this); prefix(dst, src); emit_int8(0x0F); emit_int8((unsigned char)0xC1); emit_operand(src, dst); } void Assembler::xbegin(Label& abort, relocInfo::relocType rtype) { InstructionMark im(this); relocate(rtype); if (abort.is_bound()) { address entry = target(abort); assert(entry != NULL, "abort entry NULL"); intptr_t offset = entry - pc(); emit_int8((unsigned char)0xC7); emit_int8((unsigned char)0xF8); emit_int32(offset - 6); // 2 opcode + 4 address } else { abort.add_patch_at(code(), locator()); emit_int8((unsigned char)0xC7); emit_int8((unsigned char)0xF8); emit_int32(0); } } void Assembler::xchgl(Register dst, Address src) { // xchg InstructionMark im(this); prefix(src, dst); emit_int8((unsigned char)0x87); emit_operand(dst, src); } void Assembler::xchgl(Register dst, Register src) { int encode = prefix_and_encode(dst->encoding(), src->encoding()); emit_int8((unsigned char)0x87); emit_int8((unsigned char)(0xC0 | encode)); } void Assembler::xend() { emit_int8((unsigned char)0x0F); emit_int8((unsigned char)0x01); emit_int8((unsigned char)0xD5); } void Assembler::xgetbv() { emit_int8(0x0F); emit_int8(0x01); emit_int8((unsigned char)0xD0); } void Assembler::xorl(Register dst, int32_t imm32) { prefix(dst); emit_arith(0x81, 0xF0, dst, imm32); } void Assembler::xorl(Register dst, Address src) { InstructionMark im(this); prefix(src, dst); emit_int8(0x33); emit_operand(dst, src); } void Assembler::xorl(Register dst, Register src) { (void) prefix_and_encode(dst->encoding(), src->encoding()); emit_arith(0x33, 0xC0, dst, src); } // AVX 3-operands scalar float-point arithmetic instructions void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, Address src) { assert(VM_Version::supports_avx(), ""); emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false); } void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { assert(VM_Version::supports_avx(), ""); emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false); } void Assembler::vaddss(XMMRegister dst, XMMRegister nds, Address src) { assert(VM_Version::supports_avx(), ""); emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false); } void Assembler::vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { assert(VM_Version::supports_avx(), ""); emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false); } void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, Address src) { assert(VM_Version::supports_avx(), ""); emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false); } void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { assert(VM_Version::supports_avx(), ""); emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false); } void Assembler::vdivss(XMMRegister dst, XMMRegister nds, Address src) { assert(VM_Version::supports_avx(), ""); emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false); } void Assembler::vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { assert(VM_Version::supports_avx(), ""); emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false); } void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, Address src) { assert(VM_Version::supports_avx(), ""); emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false); } void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { assert(VM_Version::supports_avx(), ""); emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false); } void Assembler::vmulss(XMMRegister dst, XMMRegister nds, Address src) { assert(VM_Version::supports_avx(), ""); emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false); } void Assembler::vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { assert(VM_Version::supports_avx(), ""); emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false); } void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, Address src) { assert(VM_Version::supports_avx(), ""); emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false); } void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { assert(VM_Version::supports_avx(), ""); emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false); } void Assembler::vsubss(XMMRegister dst, XMMRegister nds, Address src) { assert(VM_Version::supports_avx(), ""); emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false); } void Assembler::vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { assert(VM_Version::supports_avx(), ""); emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false); } //====================VECTOR ARITHMETIC===================================== // Float-point vector arithmetic void Assembler::addpd(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); emit_simd_arith(0x58, dst, src, VEX_SIMD_66); } void Assembler::addps(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); emit_simd_arith(0x58, dst, src, VEX_SIMD_NONE); } void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { assert(VM_Version::supports_avx(), ""); emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_66, vector256); } void Assembler::vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { assert(VM_Version::supports_avx(), ""); emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_NONE, vector256); } void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) { assert(VM_Version::supports_avx(), ""); emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_66, vector256); } void Assembler::vaddps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) { assert(VM_Version::supports_avx(), ""); emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_NONE, vector256); } void Assembler::subpd(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); emit_simd_arith(0x5C, dst, src, VEX_SIMD_66); } void Assembler::subps(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); emit_simd_arith(0x5C, dst, src, VEX_SIMD_NONE); } void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { assert(VM_Version::supports_avx(), ""); emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_66, vector256); } void Assembler::vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { assert(VM_Version::supports_avx(), ""); emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_NONE, vector256); } void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) { assert(VM_Version::supports_avx(), ""); emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_66, vector256); } void Assembler::vsubps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) { assert(VM_Version::supports_avx(), ""); emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_NONE, vector256); } void Assembler::mulpd(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); emit_simd_arith(0x59, dst, src, VEX_SIMD_66); } void Assembler::mulps(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); emit_simd_arith(0x59, dst, src, VEX_SIMD_NONE); } void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { assert(VM_Version::supports_avx(), ""); emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_66, vector256); } void Assembler::vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { assert(VM_Version::supports_avx(), ""); emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_NONE, vector256); } void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) { assert(VM_Version::supports_avx(), ""); emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_66, vector256); } void Assembler::vmulps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) { assert(VM_Version::supports_avx(), ""); emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_NONE, vector256); } void Assembler::divpd(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); emit_simd_arith(0x5E, dst, src, VEX_SIMD_66); } void Assembler::divps(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); emit_simd_arith(0x5E, dst, src, VEX_SIMD_NONE); } void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { assert(VM_Version::supports_avx(), ""); emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_66, vector256); } void Assembler::vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { assert(VM_Version::supports_avx(), ""); emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_NONE, vector256); } void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) { assert(VM_Version::supports_avx(), ""); emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_66, vector256); } void Assembler::vdivps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) { assert(VM_Version::supports_avx(), ""); emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_NONE, vector256); } void Assembler::andpd(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); emit_simd_arith(0x54, dst, src, VEX_SIMD_66); } void Assembler::andps(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse(), "")); emit_simd_arith(0x54, dst, src, VEX_SIMD_NONE); } void Assembler::andps(XMMRegister dst, Address src) { NOT_LP64(assert(VM_Version::supports_sse(), "")); emit_simd_arith(0x54, dst, src, VEX_SIMD_NONE); } void Assembler::andpd(XMMRegister dst, Address src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); emit_simd_arith(0x54, dst, src, VEX_SIMD_66); } void Assembler::vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { assert(VM_Version::supports_avx(), ""); emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_66, vector256); } void Assembler::vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { assert(VM_Version::supports_avx(), ""); emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_NONE, vector256); } void Assembler::vandpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) { assert(VM_Version::supports_avx(), ""); emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_66, vector256); } void Assembler::vandps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) { assert(VM_Version::supports_avx(), ""); emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_NONE, vector256); } void Assembler::xorpd(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); emit_simd_arith(0x57, dst, src, VEX_SIMD_66); } void Assembler::xorps(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse(), "")); emit_simd_arith(0x57, dst, src, VEX_SIMD_NONE); } void Assembler::xorpd(XMMRegister dst, Address src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); emit_simd_arith(0x57, dst, src, VEX_SIMD_66); } void Assembler::xorps(XMMRegister dst, Address src) { NOT_LP64(assert(VM_Version::supports_sse(), "")); emit_simd_arith(0x57, dst, src, VEX_SIMD_NONE); } void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { assert(VM_Version::supports_avx(), ""); emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_66, vector256); } void Assembler::vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { assert(VM_Version::supports_avx(), ""); emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_NONE, vector256); } void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) { assert(VM_Version::supports_avx(), ""); emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_66, vector256); } void Assembler::vxorps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) { assert(VM_Version::supports_avx(), ""); emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_NONE, vector256); } // Integer vector arithmetic void Assembler::paddb(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); emit_simd_arith(0xFC, dst, src, VEX_SIMD_66); } void Assembler::paddw(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); emit_simd_arith(0xFD, dst, src, VEX_SIMD_66); } void Assembler::paddd(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); emit_simd_arith(0xFE, dst, src, VEX_SIMD_66); } void Assembler::paddq(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); emit_simd_arith(0xD4, dst, src, VEX_SIMD_66); } void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2"); emit_vex_arith(0xFC, dst, nds, src, VEX_SIMD_66, vector256); } void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2"); emit_vex_arith(0xFD, dst, nds, src, VEX_SIMD_66, vector256); } void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2"); emit_vex_arith(0xFE, dst, nds, src, VEX_SIMD_66, vector256); } void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2"); emit_vex_arith(0xD4, dst, nds, src, VEX_SIMD_66, vector256); } void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, bool vector256) { assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2"); emit_vex_arith(0xFC, dst, nds, src, VEX_SIMD_66, vector256); } void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, bool vector256) { assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2"); emit_vex_arith(0xFD, dst, nds, src, VEX_SIMD_66, vector256); } void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) { assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2"); emit_vex_arith(0xFE, dst, nds, src, VEX_SIMD_66, vector256); } void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, Address src, bool vector256) { assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2"); emit_vex_arith(0xD4, dst, nds, src, VEX_SIMD_66, vector256); } void Assembler::psubb(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); emit_simd_arith(0xF8, dst, src, VEX_SIMD_66); } void Assembler::psubw(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); emit_simd_arith(0xF9, dst, src, VEX_SIMD_66); } void Assembler::psubd(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); emit_simd_arith(0xFA, dst, src, VEX_SIMD_66); } void Assembler::psubq(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); emit_simd_arith(0xFB, dst, src, VEX_SIMD_66); } void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2"); emit_vex_arith(0xF8, dst, nds, src, VEX_SIMD_66, vector256); } void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2"); emit_vex_arith(0xF9, dst, nds, src, VEX_SIMD_66, vector256); } void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2"); emit_vex_arith(0xFA, dst, nds, src, VEX_SIMD_66, vector256); } void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2"); emit_vex_arith(0xFB, dst, nds, src, VEX_SIMD_66, vector256); } void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, bool vector256) { assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2"); emit_vex_arith(0xF8, dst, nds, src, VEX_SIMD_66, vector256); } void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, bool vector256) { assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2"); emit_vex_arith(0xF9, dst, nds, src, VEX_SIMD_66, vector256); } void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) { assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2"); emit_vex_arith(0xFA, dst, nds, src, VEX_SIMD_66, vector256); } void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, Address src, bool vector256) { assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2"); emit_vex_arith(0xFB, dst, nds, src, VEX_SIMD_66, vector256); } void Assembler::pmullw(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); emit_simd_arith(0xD5, dst, src, VEX_SIMD_66); } void Assembler::pmulld(XMMRegister dst, XMMRegister src) { assert(VM_Version::supports_sse4_1(), ""); int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38); emit_int8(0x40); emit_int8((unsigned char)(0xC0 | encode)); } void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2"); emit_vex_arith(0xD5, dst, nds, src, VEX_SIMD_66, vector256); } void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2"); int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_38); emit_int8(0x40); emit_int8((unsigned char)(0xC0 | encode)); } void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, bool vector256) { assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2"); emit_vex_arith(0xD5, dst, nds, src, VEX_SIMD_66, vector256); } void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, Address src, bool vector256) { assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2"); InstructionMark im(this); int dst_enc = dst->encoding(); int nds_enc = nds->is_valid() ? nds->encoding() : 0; vex_prefix(src, nds_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, false, vector256); emit_int8(0x40); emit_operand(dst, src); } // Shift packed integers left by specified number of bits. void Assembler::psllw(XMMRegister dst, int shift) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); // XMM6 is for /6 encoding: 66 0F 71 /6 ib int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66); emit_int8(0x71); emit_int8((unsigned char)(0xC0 | encode)); emit_int8(shift & 0xFF); } void Assembler::pslld(XMMRegister dst, int shift) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); // XMM6 is for /6 encoding: 66 0F 72 /6 ib int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66); emit_int8(0x72); emit_int8((unsigned char)(0xC0 | encode)); emit_int8(shift & 0xFF); } void Assembler::psllq(XMMRegister dst, int shift) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); // XMM6 is for /6 encoding: 66 0F 73 /6 ib int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66); emit_int8(0x73); emit_int8((unsigned char)(0xC0 | encode)); emit_int8(shift & 0xFF); } void Assembler::psllw(XMMRegister dst, XMMRegister shift) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); emit_simd_arith(0xF1, dst, shift, VEX_SIMD_66); } void Assembler::pslld(XMMRegister dst, XMMRegister shift) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); emit_simd_arith(0xF2, dst, shift, VEX_SIMD_66); } void Assembler::psllq(XMMRegister dst, XMMRegister shift) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); emit_simd_arith(0xF3, dst, shift, VEX_SIMD_66); } void Assembler::vpsllw(XMMRegister dst, XMMRegister src, int shift, bool vector256) { assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2"); // XMM6 is for /6 encoding: 66 0F 71 /6 ib emit_vex_arith(0x71, xmm6, dst, src, VEX_SIMD_66, vector256); emit_int8(shift & 0xFF); } void Assembler::vpslld(XMMRegister dst, XMMRegister src, int shift, bool vector256) { assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2"); // XMM6 is for /6 encoding: 66 0F 72 /6 ib emit_vex_arith(0x72, xmm6, dst, src, VEX_SIMD_66, vector256); emit_int8(shift & 0xFF); } void Assembler::vpsllq(XMMRegister dst, XMMRegister src, int shift, bool vector256) { assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2"); // XMM6 is for /6 encoding: 66 0F 73 /6 ib emit_vex_arith(0x73, xmm6, dst, src, VEX_SIMD_66, vector256); emit_int8(shift & 0xFF); } void Assembler::vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) { assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2"); emit_vex_arith(0xF1, dst, src, shift, VEX_SIMD_66, vector256); } void Assembler::vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) { assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2"); emit_vex_arith(0xF2, dst, src, shift, VEX_SIMD_66, vector256); } void Assembler::vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) { assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2"); emit_vex_arith(0xF3, dst, src, shift, VEX_SIMD_66, vector256); } // Shift packed integers logically right by specified number of bits. void Assembler::psrlw(XMMRegister dst, int shift) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); // XMM2 is for /2 encoding: 66 0F 71 /2 ib int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66); emit_int8(0x71); emit_int8((unsigned char)(0xC0 | encode)); emit_int8(shift & 0xFF); } void Assembler::psrld(XMMRegister dst, int shift) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); // XMM2 is for /2 encoding: 66 0F 72 /2 ib int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66); emit_int8(0x72); emit_int8((unsigned char)(0xC0 | encode)); emit_int8(shift & 0xFF); } void Assembler::psrlq(XMMRegister dst, int shift) { // Do not confuse it with psrldq SSE2 instruction which // shifts 128 bit value in xmm register by number of bytes. NOT_LP64(assert(VM_Version::supports_sse2(), "")); // XMM2 is for /2 encoding: 66 0F 73 /2 ib int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66); emit_int8(0x73); emit_int8((unsigned char)(0xC0 | encode)); emit_int8(shift & 0xFF); } void Assembler::psrlw(XMMRegister dst, XMMRegister shift) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); emit_simd_arith(0xD1, dst, shift, VEX_SIMD_66); } void Assembler::psrld(XMMRegister dst, XMMRegister shift) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); emit_simd_arith(0xD2, dst, shift, VEX_SIMD_66); } void Assembler::psrlq(XMMRegister dst, XMMRegister shift) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); emit_simd_arith(0xD3, dst, shift, VEX_SIMD_66); } void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, int shift, bool vector256) { assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2"); // XMM2 is for /2 encoding: 66 0F 73 /2 ib emit_vex_arith(0x71, xmm2, dst, src, VEX_SIMD_66, vector256); emit_int8(shift & 0xFF); } void Assembler::vpsrld(XMMRegister dst, XMMRegister src, int shift, bool vector256) { assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2"); // XMM2 is for /2 encoding: 66 0F 73 /2 ib emit_vex_arith(0x72, xmm2, dst, src, VEX_SIMD_66, vector256); emit_int8(shift & 0xFF); } void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, int shift, bool vector256) { assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2"); // XMM2 is for /2 encoding: 66 0F 73 /2 ib emit_vex_arith(0x73, xmm2, dst, src, VEX_SIMD_66, vector256); emit_int8(shift & 0xFF); } void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) { assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2"); emit_vex_arith(0xD1, dst, src, shift, VEX_SIMD_66, vector256); } void Assembler::vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) { assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2"); emit_vex_arith(0xD2, dst, src, shift, VEX_SIMD_66, vector256); } void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) { assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2"); emit_vex_arith(0xD3, dst, src, shift, VEX_SIMD_66, vector256); } // Shift packed integers arithmetically right by specified number of bits. void Assembler::psraw(XMMRegister dst, int shift) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); // XMM4 is for /4 encoding: 66 0F 71 /4 ib int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66); emit_int8(0x71); emit_int8((unsigned char)(0xC0 | encode)); emit_int8(shift & 0xFF); } void Assembler::psrad(XMMRegister dst, int shift) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); // XMM4 is for /4 encoding: 66 0F 72 /4 ib int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66); emit_int8(0x72); emit_int8((unsigned char)(0xC0 | encode)); emit_int8(shift & 0xFF); } void Assembler::psraw(XMMRegister dst, XMMRegister shift) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); emit_simd_arith(0xE1, dst, shift, VEX_SIMD_66); } void Assembler::psrad(XMMRegister dst, XMMRegister shift) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); emit_simd_arith(0xE2, dst, shift, VEX_SIMD_66); } void Assembler::vpsraw(XMMRegister dst, XMMRegister src, int shift, bool vector256) { assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2"); // XMM4 is for /4 encoding: 66 0F 71 /4 ib emit_vex_arith(0x71, xmm4, dst, src, VEX_SIMD_66, vector256); emit_int8(shift & 0xFF); } void Assembler::vpsrad(XMMRegister dst, XMMRegister src, int shift, bool vector256) { assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2"); // XMM4 is for /4 encoding: 66 0F 71 /4 ib emit_vex_arith(0x72, xmm4, dst, src, VEX_SIMD_66, vector256); emit_int8(shift & 0xFF); } void Assembler::vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) { assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2"); emit_vex_arith(0xE1, dst, src, shift, VEX_SIMD_66, vector256); } void Assembler::vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) { assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2"); emit_vex_arith(0xE2, dst, src, shift, VEX_SIMD_66, vector256); } // AND packed integers void Assembler::pand(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); emit_simd_arith(0xDB, dst, src, VEX_SIMD_66); } void Assembler::vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2"); emit_vex_arith(0xDB, dst, nds, src, VEX_SIMD_66, vector256); } void Assembler::vpand(XMMRegister dst, XMMRegister nds, Address src, bool vector256) { assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2"); emit_vex_arith(0xDB, dst, nds, src, VEX_SIMD_66, vector256); } void Assembler::por(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); emit_simd_arith(0xEB, dst, src, VEX_SIMD_66); } void Assembler::vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2"); emit_vex_arith(0xEB, dst, nds, src, VEX_SIMD_66, vector256); } void Assembler::vpor(XMMRegister dst, XMMRegister nds, Address src, bool vector256) { assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2"); emit_vex_arith(0xEB, dst, nds, src, VEX_SIMD_66, vector256); } void Assembler::pxor(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); emit_simd_arith(0xEF, dst, src, VEX_SIMD_66); } void Assembler::vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2"); emit_vex_arith(0xEF, dst, nds, src, VEX_SIMD_66, vector256); } void Assembler::vpxor(XMMRegister dst, XMMRegister nds, Address src, bool vector256) { assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2"); emit_vex_arith(0xEF, dst, nds, src, VEX_SIMD_66, vector256); } void Assembler::vinsertf128h(XMMRegister dst, XMMRegister nds, XMMRegister src) { assert(VM_Version::supports_avx(), ""); bool vector256 = true; int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_3A); emit_int8(0x18); emit_int8((unsigned char)(0xC0 | encode)); // 0x00 - insert into lower 128 bits // 0x01 - insert into upper 128 bits emit_int8(0x01); } void Assembler::vinsertf128h(XMMRegister dst, Address src) { assert(VM_Version::supports_avx(), ""); InstructionMark im(this); bool vector256 = true; assert(dst != xnoreg, "sanity"); int dst_enc = dst->encoding(); // swap src<->dst for encoding vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256); emit_int8(0x18); emit_operand(dst, src); // 0x01 - insert into upper 128 bits emit_int8(0x01); } void Assembler::vextractf128h(Address dst, XMMRegister src) { assert(VM_Version::supports_avx(), ""); InstructionMark im(this); bool vector256 = true; assert(src != xnoreg, "sanity"); int src_enc = src->encoding(); vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256); emit_int8(0x19); emit_operand(src, dst); // 0x01 - extract from upper 128 bits emit_int8(0x01); } void Assembler::vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src) { assert(VM_Version::supports_avx2(), ""); bool vector256 = true; int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_3A); emit_int8(0x38); emit_int8((unsigned char)(0xC0 | encode)); // 0x00 - insert into lower 128 bits // 0x01 - insert into upper 128 bits emit_int8(0x01); } void Assembler::vinserti128h(XMMRegister dst, Address src) { assert(VM_Version::supports_avx2(), ""); InstructionMark im(this); bool vector256 = true; assert(dst != xnoreg, "sanity"); int dst_enc = dst->encoding(); // swap src<->dst for encoding vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256); emit_int8(0x38); emit_operand(dst, src); // 0x01 - insert into upper 128 bits emit_int8(0x01); } void Assembler::vextracti128h(Address dst, XMMRegister src) { assert(VM_Version::supports_avx2(), ""); InstructionMark im(this); bool vector256 = true; assert(src != xnoreg, "sanity"); int src_enc = src->encoding(); vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256); emit_int8(0x39); emit_operand(src, dst); // 0x01 - extract from upper 128 bits emit_int8(0x01); } // duplicate 4-bytes integer data from src into 8 locations in dest void Assembler::vpbroadcastd(XMMRegister dst, XMMRegister src) { assert(VM_Version::supports_avx2(), ""); bool vector256 = true; int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_38); emit_int8(0x58); emit_int8((unsigned char)(0xC0 | encode)); } // Carry-Less Multiplication Quadword void Assembler::pclmulqdq(XMMRegister dst, XMMRegister src, int mask) { assert(VM_Version::supports_clmul(), ""); int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A); emit_int8(0x44); emit_int8((unsigned char)(0xC0 | encode)); emit_int8((unsigned char)mask); } // Carry-Less Multiplication Quadword void Assembler::vpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask) { assert(VM_Version::supports_avx() && VM_Version::supports_clmul(), ""); bool vector256 = false; int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_3A); emit_int8(0x44); emit_int8((unsigned char)(0xC0 | encode)); emit_int8((unsigned char)mask); } void Assembler::vzeroupper() { assert(VM_Version::supports_avx(), ""); (void)vex_prefix_and_encode(xmm0, xmm0, xmm0, VEX_SIMD_NONE); emit_int8(0x77); } #ifndef _LP64 // 32bit only pieces of the assembler void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) { // NO PREFIX AS NEVER 64BIT InstructionMark im(this); emit_int8((unsigned char)0x81); emit_int8((unsigned char)(0xF8 | src1->encoding())); emit_data(imm32, rspec, 0); } void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) { // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs InstructionMark im(this); emit_int8((unsigned char)0x81); emit_operand(rdi, src1); emit_data(imm32, rspec, 0); } // The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax, // and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded // into rdx:rax. The ZF is set if the compared values were equal, and cleared otherwise. void Assembler::cmpxchg8(Address adr) { InstructionMark im(this); emit_int8(0x0F); emit_int8((unsigned char)0xC7); emit_operand(rcx, adr); } void Assembler::decl(Register dst) { // Don't use it directly. Use MacroAssembler::decrementl() instead. emit_int8(0x48 | dst->encoding()); } #endif // _LP64 // 64bit typically doesn't use the x87 but needs to for the trig funcs void Assembler::fabs() { emit_int8((unsigned char)0xD9); emit_int8((unsigned char)0xE1); } void Assembler::fadd(int i) { emit_farith(0xD8, 0xC0, i); } void Assembler::fadd_d(Address src) { InstructionMark im(this); emit_int8((unsigned char)0xDC); emit_operand32(rax, src); } void Assembler::fadd_s(Address src) { InstructionMark im(this); emit_int8((unsigned char)0xD8); emit_operand32(rax, src); } void Assembler::fadda(int i) { emit_farith(0xDC, 0xC0, i); } void Assembler::faddp(int i) { emit_farith(0xDE, 0xC0, i); } void Assembler::fchs() { emit_int8((unsigned char)0xD9); emit_int8((unsigned char)0xE0); } void Assembler::fcom(int i) { emit_farith(0xD8, 0xD0, i); } void Assembler::fcomp(int i) { emit_farith(0xD8, 0xD8, i); } void Assembler::fcomp_d(Address src) { InstructionMark im(this); emit_int8((unsigned char)0xDC); emit_operand32(rbx, src); } void Assembler::fcomp_s(Address src) { InstructionMark im(this); emit_int8((unsigned char)0xD8); emit_operand32(rbx, src); } void Assembler::fcompp() { emit_int8((unsigned char)0xDE); emit_int8((unsigned char)0xD9); } void Assembler::fcos() { emit_int8((unsigned char)0xD9); emit_int8((unsigned char)0xFF); } void Assembler::fdecstp() { emit_int8((unsigned char)0xD9); emit_int8((unsigned char)0xF6); } void Assembler::fdiv(int i) { emit_farith(0xD8, 0xF0, i); } void Assembler::fdiv_d(Address src) { InstructionMark im(this); emit_int8((unsigned char)0xDC); emit_operand32(rsi, src); } void Assembler::fdiv_s(Address src) { InstructionMark im(this); emit_int8((unsigned char)0xD8); emit_operand32(rsi, src); } void Assembler::fdiva(int i) { emit_farith(0xDC, 0xF8, i); } // Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994) // is erroneous for some of the floating-point instructions below. void Assembler::fdivp(int i) { emit_farith(0xDE, 0xF8, i); // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong) } void Assembler::fdivr(int i) { emit_farith(0xD8, 0xF8, i); } void Assembler::fdivr_d(Address src) { InstructionMark im(this); emit_int8((unsigned char)0xDC); emit_operand32(rdi, src); } void Assembler::fdivr_s(Address src) { InstructionMark im(this); emit_int8((unsigned char)0xD8); emit_operand32(rdi, src); } void Assembler::fdivra(int i) { emit_farith(0xDC, 0xF0, i); } void Assembler::fdivrp(int i) { emit_farith(0xDE, 0xF0, i); // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong) } void Assembler::ffree(int i) { emit_farith(0xDD, 0xC0, i); } void Assembler::fild_d(Address adr) { InstructionMark im(this); emit_int8((unsigned char)0xDF); emit_operand32(rbp, adr); } void Assembler::fild_s(Address adr) { InstructionMark im(this); emit_int8((unsigned char)0xDB); emit_operand32(rax, adr); } void Assembler::fincstp() { emit_int8((unsigned char)0xD9); emit_int8((unsigned char)0xF7); } void Assembler::finit() { emit_int8((unsigned char)0x9B); emit_int8((unsigned char)0xDB); emit_int8((unsigned char)0xE3); } void Assembler::fist_s(Address adr) { InstructionMark im(this); emit_int8((unsigned char)0xDB); emit_operand32(rdx, adr); } void Assembler::fistp_d(Address adr) { InstructionMark im(this); emit_int8((unsigned char)0xDF); emit_operand32(rdi, adr); } void Assembler::fistp_s(Address adr) { InstructionMark im(this); emit_int8((unsigned char)0xDB); emit_operand32(rbx, adr); } void Assembler::fld1() { emit_int8((unsigned char)0xD9); emit_int8((unsigned char)0xE8); } void Assembler::fld_d(Address adr) { InstructionMark im(this); emit_int8((unsigned char)0xDD); emit_operand32(rax, adr); } void Assembler::fld_s(Address adr) { InstructionMark im(this); emit_int8((unsigned char)0xD9); emit_operand32(rax, adr); } void Assembler::fld_s(int index) { emit_farith(0xD9, 0xC0, index); } void Assembler::fld_x(Address adr) { InstructionMark im(this); emit_int8((unsigned char)0xDB); emit_operand32(rbp, adr); } void Assembler::fldcw(Address src) { InstructionMark im(this); emit_int8((unsigned char)0xD9); emit_operand32(rbp, src); } void Assembler::fldenv(Address src) { InstructionMark im(this); emit_int8((unsigned char)0xD9); emit_operand32(rsp, src); } void Assembler::fldlg2() { emit_int8((unsigned char)0xD9); emit_int8((unsigned char)0xEC); } void Assembler::fldln2() { emit_int8((unsigned char)0xD9); emit_int8((unsigned char)0xED); } void Assembler::fldz() { emit_int8((unsigned char)0xD9); emit_int8((unsigned char)0xEE); } void Assembler::flog() { fldln2(); fxch(); fyl2x(); } void Assembler::flog10() { fldlg2(); fxch(); fyl2x(); } void Assembler::fmul(int i) { emit_farith(0xD8, 0xC8, i); } void Assembler::fmul_d(Address src) { InstructionMark im(this); emit_int8((unsigned char)0xDC); emit_operand32(rcx, src); } void Assembler::fmul_s(Address src) { InstructionMark im(this); emit_int8((unsigned char)0xD8); emit_operand32(rcx, src); } void Assembler::fmula(int i) { emit_farith(0xDC, 0xC8, i); } void Assembler::fmulp(int i) { emit_farith(0xDE, 0xC8, i); } void Assembler::fnsave(Address dst) { InstructionMark im(this); emit_int8((unsigned char)0xDD); emit_operand32(rsi, dst); } void Assembler::fnstcw(Address src) { InstructionMark im(this); emit_int8((unsigned char)0x9B); emit_int8((unsigned char)0xD9); emit_operand32(rdi, src); } void Assembler::fnstsw_ax() { emit_int8((unsigned char)0xDF); emit_int8((unsigned char)0xE0); } void Assembler::fprem() { emit_int8((unsigned char)0xD9); emit_int8((unsigned char)0xF8); } void Assembler::fprem1() { emit_int8((unsigned char)0xD9); emit_int8((unsigned char)0xF5); } void Assembler::frstor(Address src) { InstructionMark im(this); emit_int8((unsigned char)0xDD); emit_operand32(rsp, src); } void Assembler::fsin() { emit_int8((unsigned char)0xD9); emit_int8((unsigned char)0xFE); } void Assembler::fsqrt() { emit_int8((unsigned char)0xD9); emit_int8((unsigned char)0xFA); } void Assembler::fst_d(Address adr) { InstructionMark im(this); emit_int8((unsigned char)0xDD); emit_operand32(rdx, adr); } void Assembler::fst_s(Address adr) { InstructionMark im(this); emit_int8((unsigned char)0xD9); emit_operand32(rdx, adr); } void Assembler::fstp_d(Address adr) { InstructionMark im(this); emit_int8((unsigned char)0xDD); emit_operand32(rbx, adr); } void Assembler::fstp_d(int index) { emit_farith(0xDD, 0xD8, index); } void Assembler::fstp_s(Address adr) { InstructionMark im(this); emit_int8((unsigned char)0xD9); emit_operand32(rbx, adr); } void Assembler::fstp_x(Address adr) { InstructionMark im(this); emit_int8((unsigned char)0xDB); emit_operand32(rdi, adr); } void Assembler::fsub(int i) { emit_farith(0xD8, 0xE0, i); } void Assembler::fsub_d(Address src) { InstructionMark im(this); emit_int8((unsigned char)0xDC); emit_operand32(rsp, src); } void Assembler::fsub_s(Address src) { InstructionMark im(this); emit_int8((unsigned char)0xD8); emit_operand32(rsp, src); } void Assembler::fsuba(int i) { emit_farith(0xDC, 0xE8, i); } void Assembler::fsubp(int i) { emit_farith(0xDE, 0xE8, i); // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong) } void Assembler::fsubr(int i) { emit_farith(0xD8, 0xE8, i); } void Assembler::fsubr_d(Address src) { InstructionMark im(this); emit_int8((unsigned char)0xDC); emit_operand32(rbp, src); } void Assembler::fsubr_s(Address src) { InstructionMark im(this); emit_int8((unsigned char)0xD8); emit_operand32(rbp, src); } void Assembler::fsubra(int i) { emit_farith(0xDC, 0xE0, i); } void Assembler::fsubrp(int i) { emit_farith(0xDE, 0xE0, i); // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong) } void Assembler::ftan() { emit_int8((unsigned char)0xD9); emit_int8((unsigned char)0xF2); emit_int8((unsigned char)0xDD); emit_int8((unsigned char)0xD8); } void Assembler::ftst() { emit_int8((unsigned char)0xD9); emit_int8((unsigned char)0xE4); } void Assembler::fucomi(int i) { // make sure the instruction is supported (introduced for P6, together with cmov) guarantee(VM_Version::supports_cmov(), "illegal instruction"); emit_farith(0xDB, 0xE8, i); } void Assembler::fucomip(int i) { // make sure the instruction is supported (introduced for P6, together with cmov) guarantee(VM_Version::supports_cmov(), "illegal instruction"); emit_farith(0xDF, 0xE8, i); } void Assembler::fwait() { emit_int8((unsigned char)0x9B); } void Assembler::fxch(int i) { emit_farith(0xD9, 0xC8, i); } void Assembler::fyl2x() { emit_int8((unsigned char)0xD9); emit_int8((unsigned char)0xF1); } void Assembler::frndint() { emit_int8((unsigned char)0xD9); emit_int8((unsigned char)0xFC); } void Assembler::f2xm1() { emit_int8((unsigned char)0xD9); emit_int8((unsigned char)0xF0); } void Assembler::fldl2e() { emit_int8((unsigned char)0xD9); emit_int8((unsigned char)0xEA); } // SSE SIMD prefix byte values corresponding to VexSimdPrefix encoding. static int simd_pre[4] = { 0, 0x66, 0xF3, 0xF2 }; // SSE opcode second byte values (first is 0x0F) corresponding to VexOpcode encoding. static int simd_opc[4] = { 0, 0, 0x38, 0x3A }; // Generate SSE legacy REX prefix and SIMD opcode based on VEX encoding. void Assembler::rex_prefix(Address adr, XMMRegister xreg, VexSimdPrefix pre, VexOpcode opc, bool rex_w) { if (pre > 0) { emit_int8(simd_pre[pre]); } if (rex_w) { prefixq(adr, xreg); } else { prefix(adr, xreg); } if (opc > 0) { emit_int8(0x0F); int opc2 = simd_opc[opc]; if (opc2 > 0) { emit_int8(opc2); } } } int Assembler::rex_prefix_and_encode(int dst_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool rex_w) { if (pre > 0) { emit_int8(simd_pre[pre]); } int encode = (rex_w) ? prefixq_and_encode(dst_enc, src_enc) : prefix_and_encode(dst_enc, src_enc); if (opc > 0) { emit_int8(0x0F); int opc2 = simd_opc[opc]; if (opc2 > 0) { emit_int8(opc2); } } return encode; } void Assembler::vex_prefix(bool vex_r, bool vex_b, bool vex_x, bool vex_w, int nds_enc, VexSimdPrefix pre, VexOpcode opc, bool vector256) { if (vex_b || vex_x || vex_w || (opc == VEX_OPCODE_0F_38) || (opc == VEX_OPCODE_0F_3A)) { prefix(VEX_3bytes); int byte1 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0); byte1 = (~byte1) & 0xE0; byte1 |= opc; emit_int8(byte1); int byte2 = ((~nds_enc) & 0xf) << 3; byte2 |= (vex_w ? VEX_W : 0) | (vector256 ? 4 : 0) | pre; emit_int8(byte2); } else { prefix(VEX_2bytes); int byte1 = vex_r ? VEX_R : 0; byte1 = (~byte1) & 0x80; byte1 |= ((~nds_enc) & 0xf) << 3; byte1 |= (vector256 ? 4 : 0) | pre; emit_int8(byte1); } } void Assembler::vex_prefix(Address adr, int nds_enc, int xreg_enc, VexSimdPrefix pre, VexOpcode opc, bool vex_w, bool vector256){ bool vex_r = (xreg_enc >= 8); bool vex_b = adr.base_needs_rex(); bool vex_x = adr.index_needs_rex(); vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector256); } int Assembler::vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool vex_w, bool vector256) { bool vex_r = (dst_enc >= 8); bool vex_b = (src_enc >= 8); bool vex_x = false; vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector256); return (((dst_enc & 7) << 3) | (src_enc & 7)); } void Assembler::simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr, VexSimdPrefix pre, VexOpcode opc, bool rex_w, bool vector256) { if (UseAVX > 0) { int xreg_enc = xreg->encoding(); int nds_enc = nds->is_valid() ? nds->encoding() : 0; vex_prefix(adr, nds_enc, xreg_enc, pre, opc, rex_w, vector256); } else { assert((nds == xreg) || (nds == xnoreg), "wrong sse encoding"); rex_prefix(adr, xreg, pre, opc, rex_w); } } int Assembler::simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src, VexSimdPrefix pre, VexOpcode opc, bool rex_w, bool vector256) { int dst_enc = dst->encoding(); int src_enc = src->encoding(); if (UseAVX > 0) { int nds_enc = nds->is_valid() ? nds->encoding() : 0; return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, rex_w, vector256); } else { assert((nds == dst) || (nds == src) || (nds == xnoreg), "wrong sse encoding"); return rex_prefix_and_encode(dst_enc, src_enc, pre, opc, rex_w); } } void Assembler::emit_simd_arith(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre) { InstructionMark im(this); simd_prefix(dst, dst, src, pre); emit_int8(opcode); emit_operand(dst, src); } void Assembler::emit_simd_arith(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre) { int encode = simd_prefix_and_encode(dst, dst, src, pre); emit_int8(opcode); emit_int8((unsigned char)(0xC0 | encode)); } // Versions with no second source register (non-destructive source). void Assembler::emit_simd_arith_nonds(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre) { InstructionMark im(this); simd_prefix(dst, xnoreg, src, pre); emit_int8(opcode); emit_operand(dst, src); } void Assembler::emit_simd_arith_nonds(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre) { int encode = simd_prefix_and_encode(dst, xnoreg, src, pre); emit_int8(opcode); emit_int8((unsigned char)(0xC0 | encode)); } // 3-operands AVX instructions void Assembler::emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds, Address src, VexSimdPrefix pre, bool vector256) { InstructionMark im(this); vex_prefix(dst, nds, src, pre, vector256); emit_int8(opcode); emit_operand(dst, src); } void Assembler::emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src, VexSimdPrefix pre, bool vector256) { int encode = vex_prefix_and_encode(dst, nds, src, pre, vector256); emit_int8(opcode); emit_int8((unsigned char)(0xC0 | encode)); } #ifndef _LP64 void Assembler::incl(Register dst) { // Don't use it directly. Use MacroAssembler::incrementl() instead. emit_int8(0x40 | dst->encoding()); } void Assembler::lea(Register dst, Address src) { leal(dst, src); } void Assembler::mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec) { InstructionMark im(this); emit_int8((unsigned char)0xC7); emit_operand(rax, dst); emit_data((int)imm32, rspec, 0); } void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) { InstructionMark im(this); int encode = prefix_and_encode(dst->encoding()); emit_int8((unsigned char)(0xB8 | encode)); emit_data((int)imm32, rspec, 0); } void Assembler::popa() { // 32bit emit_int8(0x61); } void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) { InstructionMark im(this); emit_int8(0x68); emit_data(imm32, rspec, 0); } void Assembler::pusha() { // 32bit emit_int8(0x60); } void Assembler::set_byte_if_not_zero(Register dst) { emit_int8(0x0F); emit_int8((unsigned char)0x95); emit_int8((unsigned char)(0xE0 | dst->encoding())); } void Assembler::shldl(Register dst, Register src) { emit_int8(0x0F); emit_int8((unsigned char)0xA5); emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding())); } void Assembler::shrdl(Register dst, Register src) { emit_int8(0x0F); emit_int8((unsigned char)0xAD); emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding())); } #else // LP64 void Assembler::set_byte_if_not_zero(Register dst) { int enc = prefix_and_encode(dst->encoding(), true); emit_int8(0x0F); emit_int8((unsigned char)0x95); emit_int8((unsigned char)(0xE0 | enc)); } // 64bit only pieces of the assembler // This should only be used by 64bit instructions that can use rip-relative // it cannot be used by instructions that want an immediate value. bool Assembler::reachable(AddressLiteral adr) { int64_t disp; // None will force a 64bit literal to the code stream. Likely a placeholder // for something that will be patched later and we need to certain it will // always be reachable. if (adr.reloc() == relocInfo::none) { return false; } if (adr.reloc() == relocInfo::internal_word_type) { // This should be rip relative and easily reachable. return true; } if (adr.reloc() == relocInfo::virtual_call_type || adr.reloc() == relocInfo::opt_virtual_call_type || adr.reloc() == relocInfo::static_call_type || adr.reloc() == relocInfo::static_stub_type ) { // This should be rip relative within the code cache and easily // reachable until we get huge code caches. (At which point // ic code is going to have issues). return true; } if (adr.reloc() != relocInfo::external_word_type && adr.reloc() != relocInfo::poll_return_type && // these are really external_word but need special adr.reloc() != relocInfo::poll_type && // relocs to identify them adr.reloc() != relocInfo::runtime_call_type ) { return false; } // Stress the correction code if (ForceUnreachable) { // Must be runtimecall reloc, see if it is in the codecache // Flipping stuff in the codecache to be unreachable causes issues // with things like inline caches where the additional instructions // are not handled. if (CodeCache::find_blob(adr._target) == NULL) { return false; } } // For external_word_type/runtime_call_type if it is reachable from where we // are now (possibly a temp buffer) and where we might end up // anywhere in the codeCache then we are always reachable. // This would have to change if we ever save/restore shared code // to be more pessimistic. disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int)); if (!is_simm32(disp)) return false; disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int)); if (!is_simm32(disp)) return false; disp = (int64_t)adr._target - ((int64_t)pc() + sizeof(int)); // Because rip relative is a disp + address_of_next_instruction and we // don't know the value of address_of_next_instruction we apply a fudge factor // to make sure we will be ok no matter the size of the instruction we get placed into. // We don't have to fudge the checks above here because they are already worst case. // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal // + 4 because better safe than sorry. const int fudge = 12 + 4; if (disp < 0) { disp -= fudge; } else { disp += fudge; } return is_simm32(disp); } // Check if the polling page is not reachable from the code cache using rip-relative // addressing. bool Assembler::is_polling_page_far() { intptr_t addr = (intptr_t)os::get_polling_page(); return ForceUnreachable || !is_simm32(addr - (intptr_t)CodeCache::low_bound()) || !is_simm32(addr - (intptr_t)CodeCache::high_bound()); } void Assembler::emit_data64(jlong data, relocInfo::relocType rtype, int format) { if (rtype == relocInfo::none) { emit_int64(data); } else { emit_data64(data, Relocation::spec_simple(rtype), format); } } void Assembler::emit_data64(jlong data, RelocationHolder const& rspec, int format) { assert(imm_operand == 0, "default format must be immediate in this file"); assert(imm_operand == format, "must be immediate"); assert(inst_mark() != NULL, "must be inside InstructionMark"); // Do not use AbstractAssembler::relocate, which is not intended for // embedded words. Instead, relocate to the enclosing instruction. code_section()->relocate(inst_mark(), rspec, format); #ifdef ASSERT check_relocation(rspec, format); #endif emit_int64(data); } int Assembler::prefix_and_encode(int reg_enc, bool byteinst) { if (reg_enc >= 8) { prefix(REX_B); reg_enc -= 8; } else if (byteinst && reg_enc >= 4) { prefix(REX); } return reg_enc; } int Assembler::prefixq_and_encode(int reg_enc) { if (reg_enc < 8) { prefix(REX_W); } else { prefix(REX_WB); reg_enc -= 8; } return reg_enc; } int Assembler::prefix_and_encode(int dst_enc, int src_enc, bool byteinst) { if (dst_enc < 8) { if (src_enc >= 8) { prefix(REX_B); src_enc -= 8; } else if (byteinst && src_enc >= 4) { prefix(REX); } } else { if (src_enc < 8) { prefix(REX_R); } else { prefix(REX_RB); src_enc -= 8; } dst_enc -= 8; } return dst_enc << 3 | src_enc; } int Assembler::prefixq_and_encode(int dst_enc, int src_enc) { if (dst_enc < 8) { if (src_enc < 8) { prefix(REX_W); } else { prefix(REX_WB); src_enc -= 8; } } else { if (src_enc < 8) { prefix(REX_WR); } else { prefix(REX_WRB); src_enc -= 8; } dst_enc -= 8; } return dst_enc << 3 | src_enc; } void Assembler::prefix(Register reg) { if (reg->encoding() >= 8) { prefix(REX_B); } } void Assembler::prefix(Address adr) { if (adr.base_needs_rex()) { if (adr.index_needs_rex()) { prefix(REX_XB); } else { prefix(REX_B); } } else { if (adr.index_needs_rex()) { prefix(REX_X); } } } void Assembler::prefixq(Address adr) { if (adr.base_needs_rex()) { if (adr.index_needs_rex()) { prefix(REX_WXB); } else { prefix(REX_WB); } } else { if (adr.index_needs_rex()) { prefix(REX_WX); } else { prefix(REX_W); } } } void Assembler::prefix(Address adr, Register reg, bool byteinst) { if (reg->encoding() < 8) { if (adr.base_needs_rex()) { if (adr.index_needs_rex()) { prefix(REX_XB); } else { prefix(REX_B); } } else { if (adr.index_needs_rex()) { prefix(REX_X); } else if (byteinst && reg->encoding() >= 4 ) { prefix(REX); } } } else { if (adr.base_needs_rex()) { if (adr.index_needs_rex()) { prefix(REX_RXB); } else { prefix(REX_RB); } } else { if (adr.index_needs_rex()) { prefix(REX_RX); } else { prefix(REX_R); } } } } void Assembler::prefixq(Address adr, Register src) { if (src->encoding() < 8) { if (adr.base_needs_rex()) { if (adr.index_needs_rex()) { prefix(REX_WXB); } else { prefix(REX_WB); } } else { if (adr.index_needs_rex()) { prefix(REX_WX); } else { prefix(REX_W); } } } else { if (adr.base_needs_rex()) { if (adr.index_needs_rex()) { prefix(REX_WRXB); } else { prefix(REX_WRB); } } else { if (adr.index_needs_rex()) { prefix(REX_WRX); } else { prefix(REX_WR); } } } } void Assembler::prefix(Address adr, XMMRegister reg) { if (reg->encoding() < 8) { if (adr.base_needs_rex()) { if (adr.index_needs_rex()) { prefix(REX_XB); } else { prefix(REX_B); } } else { if (adr.index_needs_rex()) { prefix(REX_X); } } } else { if (adr.base_needs_rex()) { if (adr.index_needs_rex()) { prefix(REX_RXB); } else { prefix(REX_RB); } } else { if (adr.index_needs_rex()) { prefix(REX_RX); } else { prefix(REX_R); } } } } void Assembler::prefixq(Address adr, XMMRegister src) { if (src->encoding() < 8) { if (adr.base_needs_rex()) { if (adr.index_needs_rex()) { prefix(REX_WXB); } else { prefix(REX_WB); } } else { if (adr.index_needs_rex()) { prefix(REX_WX); } else { prefix(REX_W); } } } else { if (adr.base_needs_rex()) { if (adr.index_needs_rex()) { prefix(REX_WRXB); } else { prefix(REX_WRB); } } else { if (adr.index_needs_rex()) { prefix(REX_WRX); } else { prefix(REX_WR); } } } } void Assembler::adcq(Register dst, int32_t imm32) { (void) prefixq_and_encode(dst->encoding()); emit_arith(0x81, 0xD0, dst, imm32); } void Assembler::adcq(Register dst, Address src) { InstructionMark im(this); prefixq(src, dst); emit_int8(0x13); emit_operand(dst, src); } void Assembler::adcq(Register dst, Register src) { (void) prefixq_and_encode(dst->encoding(), src->encoding()); emit_arith(0x13, 0xC0, dst, src); } void Assembler::addq(Address dst, int32_t imm32) { InstructionMark im(this); prefixq(dst); emit_arith_operand(0x81, rax, dst,imm32); } void Assembler::addq(Address dst, Register src) { InstructionMark im(this); prefixq(dst, src); emit_int8(0x01); emit_operand(src, dst); } void Assembler::addq(Register dst, int32_t imm32) { (void) prefixq_and_encode(dst->encoding()); emit_arith(0x81, 0xC0, dst, imm32); } void Assembler::addq(Register dst, Address src) { InstructionMark im(this); prefixq(src, dst); emit_int8(0x03); emit_operand(dst, src); } void Assembler::addq(Register dst, Register src) { (void) prefixq_and_encode(dst->encoding(), src->encoding()); emit_arith(0x03, 0xC0, dst, src); } void Assembler::adcxq(Register dst, Register src) { //assert(VM_Version::supports_adx(), "adx instructions not supported"); emit_int8((unsigned char)0x66); int encode = prefixq_and_encode(dst->encoding(), src->encoding()); emit_int8(0x0F); emit_int8(0x38); emit_int8((unsigned char)0xF6); emit_int8((unsigned char)(0xC0 | encode)); } void Assembler::adoxq(Register dst, Register src) { //assert(VM_Version::supports_adx(), "adx instructions not supported"); emit_int8((unsigned char)0xF3); int encode = prefixq_and_encode(dst->encoding(), src->encoding()); emit_int8(0x0F); emit_int8(0x38); emit_int8((unsigned char)0xF6); emit_int8((unsigned char)(0xC0 | encode)); } void Assembler::andq(Address dst, int32_t imm32) { InstructionMark im(this); prefixq(dst); emit_int8((unsigned char)0x81); emit_operand(rsp, dst, 4); emit_int32(imm32); } void Assembler::andq(Register dst, int32_t imm32) { (void) prefixq_and_encode(dst->encoding()); emit_arith(0x81, 0xE0, dst, imm32); } void Assembler::andq(Register dst, Address src) { InstructionMark im(this); prefixq(src, dst); emit_int8(0x23); emit_operand(dst, src); } void Assembler::andq(Register dst, Register src) { (void) prefixq_and_encode(dst->encoding(), src->encoding()); emit_arith(0x23, 0xC0, dst, src); } void Assembler::andnq(Register dst, Register src1, Register src2) { assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported"); int encode = vex_prefix_0F38_and_encode_q(dst, src1, src2); emit_int8((unsigned char)0xF2); emit_int8((unsigned char)(0xC0 | encode)); } void Assembler::andnq(Register dst, Register src1, Address src2) { InstructionMark im(this); assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported"); vex_prefix_0F38_q(dst, src1, src2); emit_int8((unsigned char)0xF2); emit_operand(dst, src2); } void Assembler::bsfq(Register dst, Register src) { int encode = prefixq_and_encode(dst->encoding(), src->encoding()); emit_int8(0x0F); emit_int8((unsigned char)0xBC); emit_int8((unsigned char)(0xC0 | encode)); } void Assembler::bsrq(Register dst, Register src) { int encode = prefixq_and_encode(dst->encoding(), src->encoding()); emit_int8(0x0F); emit_int8((unsigned char)0xBD); emit_int8((unsigned char)(0xC0 | encode)); } void Assembler::bswapq(Register reg) { int encode = prefixq_and_encode(reg->encoding()); emit_int8(0x0F); emit_int8((unsigned char)(0xC8 | encode)); } void Assembler::blsiq(Register dst, Register src) { assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported"); int encode = vex_prefix_0F38_and_encode_q(rbx, dst, src); emit_int8((unsigned char)0xF3); emit_int8((unsigned char)(0xC0 | encode)); } void Assembler::blsiq(Register dst, Address src) { InstructionMark im(this); assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported"); vex_prefix_0F38_q(rbx, dst, src); emit_int8((unsigned char)0xF3); emit_operand(rbx, src); } void Assembler::blsmskq(Register dst, Register src) { assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported"); int encode = vex_prefix_0F38_and_encode_q(rdx, dst, src); emit_int8((unsigned char)0xF3); emit_int8((unsigned char)(0xC0 | encode)); } void Assembler::blsmskq(Register dst, Address src) { InstructionMark im(this); assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported"); vex_prefix_0F38_q(rdx, dst, src); emit_int8((unsigned char)0xF3); emit_operand(rdx, src); } void Assembler::blsrq(Register dst, Register src) { assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported"); int encode = vex_prefix_0F38_and_encode_q(rcx, dst, src); emit_int8((unsigned char)0xF3); emit_int8((unsigned char)(0xC0 | encode)); } void Assembler::blsrq(Register dst, Address src) { InstructionMark im(this); assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported"); vex_prefix_0F38_q(rcx, dst, src); emit_int8((unsigned char)0xF3); emit_operand(rcx, src); } void Assembler::cdqq() { prefix(REX_W); emit_int8((unsigned char)0x99); } void Assembler::clflush(Address adr) { prefix(adr); emit_int8(0x0F); emit_int8((unsigned char)0xAE); emit_operand(rdi, adr); } void Assembler::cmovq(Condition cc, Register dst, Register src) { int encode = prefixq_and_encode(dst->encoding(), src->encoding()); emit_int8(0x0F); emit_int8(0x40 | cc); emit_int8((unsigned char)(0xC0 | encode)); } void Assembler::cmovq(Condition cc, Register dst, Address src) { InstructionMark im(this); prefixq(src, dst); emit_int8(0x0F); emit_int8(0x40 | cc); emit_operand(dst, src); } void Assembler::cmpq(Address dst, int32_t imm32) { InstructionMark im(this); prefixq(dst); emit_int8((unsigned char)0x81); emit_operand(rdi, dst, 4); emit_int32(imm32); } void Assembler::cmpq(Register dst, int32_t imm32) { (void) prefixq_and_encode(dst->encoding()); emit_arith(0x81, 0xF8, dst, imm32); } void Assembler::cmpq(Address dst, Register src) { InstructionMark im(this); prefixq(dst, src); emit_int8(0x3B); emit_operand(src, dst); } void Assembler::cmpq(Register dst, Register src) { (void) prefixq_and_encode(dst->encoding(), src->encoding()); emit_arith(0x3B, 0xC0, dst, src); } void Assembler::cmpq(Register dst, Address src) { InstructionMark im(this); prefixq(src, dst); emit_int8(0x3B); emit_operand(dst, src); } void Assembler::cmpxchgq(Register reg, Address adr) { InstructionMark im(this); prefixq(adr, reg); emit_int8(0x0F); emit_int8((unsigned char)0xB1); emit_operand(reg, adr); } void Assembler::cvtsi2sdq(XMMRegister dst, Register src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F2); emit_int8(0x2A); emit_int8((unsigned char)(0xC0 | encode)); } void Assembler::cvtsi2sdq(XMMRegister dst, Address src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); InstructionMark im(this); simd_prefix_q(dst, dst, src, VEX_SIMD_F2); emit_int8(0x2A); emit_operand(dst, src); } void Assembler::cvtsi2ssq(XMMRegister dst, Register src) { NOT_LP64(assert(VM_Version::supports_sse(), "")); int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F3); emit_int8(0x2A); emit_int8((unsigned char)(0xC0 | encode)); } void Assembler::cvtsi2ssq(XMMRegister dst, Address src) { NOT_LP64(assert(VM_Version::supports_sse(), "")); InstructionMark im(this); simd_prefix_q(dst, dst, src, VEX_SIMD_F3); emit_int8(0x2A); emit_operand(dst, src); } void Assembler::cvttsd2siq(Register dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F2); emit_int8(0x2C); emit_int8((unsigned char)(0xC0 | encode)); } void Assembler::cvttss2siq(Register dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse(), "")); int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F3); emit_int8(0x2C); emit_int8((unsigned char)(0xC0 | encode)); } void Assembler::decl(Register dst) { // Don't use it directly. Use MacroAssembler::decrementl() instead. // Use two-byte form (one-byte form is a REX prefix in 64-bit mode) int encode = prefix_and_encode(dst->encoding()); emit_int8((unsigned char)0xFF); emit_int8((unsigned char)(0xC8 | encode)); } void Assembler::decq(Register dst) { // Don't use it directly. Use MacroAssembler::decrementq() instead. // Use two-byte form (one-byte from is a REX prefix in 64-bit mode) int encode = prefixq_and_encode(dst->encoding()); emit_int8((unsigned char)0xFF); emit_int8(0xC8 | encode); } void Assembler::decq(Address dst) { // Don't use it directly. Use MacroAssembler::decrementq() instead. InstructionMark im(this); prefixq(dst); emit_int8((unsigned char)0xFF); emit_operand(rcx, dst); } void Assembler::fxrstor(Address src) { prefixq(src); emit_int8(0x0F); emit_int8((unsigned char)0xAE); emit_operand(as_Register(1), src); } void Assembler::fxsave(Address dst) { prefixq(dst); emit_int8(0x0F); emit_int8((unsigned char)0xAE); emit_operand(as_Register(0), dst); } void Assembler::idivq(Register src) { int encode = prefixq_and_encode(src->encoding()); emit_int8((unsigned char)0xF7); emit_int8((unsigned char)(0xF8 | encode)); } void Assembler::imulq(Register dst, Register src) { int encode = prefixq_and_encode(dst->encoding(), src->encoding()); emit_int8(0x0F); emit_int8((unsigned char)0xAF); emit_int8((unsigned char)(0xC0 | encode)); } void Assembler::imulq(Register dst, Register src, int value) { int encode = prefixq_and_encode(dst->encoding(), src->encoding()); if (is8bit(value)) { emit_int8(0x6B); emit_int8((unsigned char)(0xC0 | encode)); emit_int8(value & 0xFF); } else { emit_int8(0x69); emit_int8((unsigned char)(0xC0 | encode)); emit_int32(value); } } void Assembler::imulq(Register dst, Address src) { InstructionMark im(this); prefixq(src, dst); emit_int8(0x0F); emit_int8((unsigned char) 0xAF); emit_operand(dst, src); } void Assembler::incl(Register dst) { // Don't use it directly. Use MacroAssembler::incrementl() instead. // Use two-byte form (one-byte from is a REX prefix in 64-bit mode) int encode = prefix_and_encode(dst->encoding()); emit_int8((unsigned char)0xFF); emit_int8((unsigned char)(0xC0 | encode)); } void Assembler::incq(Register dst) { // Don't use it directly. Use MacroAssembler::incrementq() instead. // Use two-byte form (one-byte from is a REX prefix in 64-bit mode) int encode = prefixq_and_encode(dst->encoding()); emit_int8((unsigned char)0xFF); emit_int8((unsigned char)(0xC0 | encode)); } void Assembler::incq(Address dst) { // Don't use it directly. Use MacroAssembler::incrementq() instead. InstructionMark im(this); prefixq(dst); emit_int8((unsigned char)0xFF); emit_operand(rax, dst); } void Assembler::lea(Register dst, Address src) { leaq(dst, src); } void Assembler::leaq(Register dst, Address src) { InstructionMark im(this); prefixq(src, dst); emit_int8((unsigned char)0x8D); emit_operand(dst, src); } void Assembler::mov64(Register dst, int64_t imm64) { InstructionMark im(this); int encode = prefixq_and_encode(dst->encoding()); emit_int8((unsigned char)(0xB8 | encode)); emit_int64(imm64); } void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) { InstructionMark im(this); int encode = prefixq_and_encode(dst->encoding()); emit_int8(0xB8 | encode); emit_data64(imm64, rspec); } void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) { InstructionMark im(this); int encode = prefix_and_encode(dst->encoding()); emit_int8((unsigned char)(0xB8 | encode)); emit_data((int)imm32, rspec, narrow_oop_operand); } void Assembler::mov_narrow_oop(Address dst, int32_t imm32, RelocationHolder const& rspec) { InstructionMark im(this); prefix(dst); emit_int8((unsigned char)0xC7); emit_operand(rax, dst, 4); emit_data((int)imm32, rspec, narrow_oop_operand); } void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) { InstructionMark im(this); int encode = prefix_and_encode(src1->encoding()); emit_int8((unsigned char)0x81); emit_int8((unsigned char)(0xF8 | encode)); emit_data((int)imm32, rspec, narrow_oop_operand); } void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) { InstructionMark im(this); prefix(src1); emit_int8((unsigned char)0x81); emit_operand(rax, src1, 4); emit_data((int)imm32, rspec, narrow_oop_operand); } void Assembler::lzcntq(Register dst, Register src) { assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR"); emit_int8((unsigned char)0xF3); int encode = prefixq_and_encode(dst->encoding(), src->encoding()); emit_int8(0x0F); emit_int8((unsigned char)0xBD); emit_int8((unsigned char)(0xC0 | encode)); } void Assembler::movdq(XMMRegister dst, Register src) { // table D-1 says MMX/SSE2 NOT_LP64(assert(VM_Version::supports_sse2(), "")); int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_66); emit_int8(0x6E); emit_int8((unsigned char)(0xC0 | encode)); } void Assembler::movdq(Register dst, XMMRegister src) { // table D-1 says MMX/SSE2 NOT_LP64(assert(VM_Version::supports_sse2(), "")); // swap src/dst to get correct prefix int encode = simd_prefix_and_encode_q(src, dst, VEX_SIMD_66); emit_int8(0x7E); emit_int8((unsigned char)(0xC0 | encode)); } void Assembler::movq(Register dst, Register src) { int encode = prefixq_and_encode(dst->encoding(), src->encoding()); emit_int8((unsigned char)0x8B); emit_int8((unsigned char)(0xC0 | encode)); } void Assembler::movq(Register dst, Address src) { InstructionMark im(this); prefixq(src, dst); emit_int8((unsigned char)0x8B); emit_operand(dst, src); } void Assembler::movq(Address dst, Register src) { InstructionMark im(this); prefixq(dst, src); emit_int8((unsigned char)0x89); emit_operand(src, dst); } void Assembler::movsbq(Register dst, Address src) { InstructionMark im(this); prefixq(src, dst); emit_int8(0x0F); emit_int8((unsigned char)0xBE); emit_operand(dst, src); } void Assembler::movsbq(Register dst, Register src) { int encode = prefixq_and_encode(dst->encoding(), src->encoding()); emit_int8(0x0F); emit_int8((unsigned char)0xBE); emit_int8((unsigned char)(0xC0 | encode)); } void Assembler::movslq(Register dst, int32_t imm32) { // dbx shows movslq(rcx, 3) as movq $0x0000000049000000,(%rbx) // and movslq(r8, 3); as movl $0x0000000048000000,(%rbx) // as a result we shouldn't use until tested at runtime... ShouldNotReachHere(); InstructionMark im(this); int encode = prefixq_and_encode(dst->encoding()); emit_int8((unsigned char)(0xC7 | encode)); emit_int32(imm32); } void Assembler::movslq(Address dst, int32_t imm32) { assert(is_simm32(imm32), "lost bits"); InstructionMark im(this); prefixq(dst); emit_int8((unsigned char)0xC7); emit_operand(rax, dst, 4); emit_int32(imm32); } void Assembler::movslq(Register dst, Address src) { InstructionMark im(this); prefixq(src, dst); emit_int8(0x63); emit_operand(dst, src); } void Assembler::movslq(Register dst, Register src) { int encode = prefixq_and_encode(dst->encoding(), src->encoding()); emit_int8(0x63); emit_int8((unsigned char)(0xC0 | encode)); } void Assembler::movswq(Register dst, Address src) { InstructionMark im(this); prefixq(src, dst); emit_int8(0x0F); emit_int8((unsigned char)0xBF); emit_operand(dst, src); } void Assembler::movswq(Register dst, Register src) { int encode = prefixq_and_encode(dst->encoding(), src->encoding()); emit_int8((unsigned char)0x0F); emit_int8((unsigned char)0xBF); emit_int8((unsigned char)(0xC0 | encode)); } void Assembler::movzbq(Register dst, Address src) { InstructionMark im(this); prefixq(src, dst); emit_int8((unsigned char)0x0F); emit_int8((unsigned char)0xB6); emit_operand(dst, src); } void Assembler::movzbq(Register dst, Register src) { int encode = prefixq_and_encode(dst->encoding(), src->encoding()); emit_int8(0x0F); emit_int8((unsigned char)0xB6); emit_int8(0xC0 | encode); } void Assembler::movzwq(Register dst, Address src) { InstructionMark im(this); prefixq(src, dst); emit_int8((unsigned char)0x0F); emit_int8((unsigned char)0xB7); emit_operand(dst, src); } void Assembler::movzwq(Register dst, Register src) { int encode = prefixq_and_encode(dst->encoding(), src->encoding()); emit_int8((unsigned char)0x0F); emit_int8((unsigned char)0xB7); emit_int8((unsigned char)(0xC0 | encode)); } void Assembler::mulq(Address src) { InstructionMark im(this); prefixq(src); emit_int8((unsigned char)0xF7); emit_operand(rsp, src); } void Assembler::mulq(Register src) { int encode = prefixq_and_encode(src->encoding()); emit_int8((unsigned char)0xF7); emit_int8((unsigned char)(0xE0 | encode)); } void Assembler::mulxq(Register dst1, Register dst2, Register src) { assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported"); int encode = vex_prefix_and_encode(dst1->encoding(), dst2->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F_38, true, false); emit_int8((unsigned char)0xF6); emit_int8((unsigned char)(0xC0 | encode)); } void Assembler::negq(Register dst) { int encode = prefixq_and_encode(dst->encoding()); emit_int8((unsigned char)0xF7); emit_int8((unsigned char)(0xD8 | encode)); } void Assembler::notq(Register dst) { int encode = prefixq_and_encode(dst->encoding()); emit_int8((unsigned char)0xF7); emit_int8((unsigned char)(0xD0 | encode)); } void Assembler::orq(Address dst, int32_t imm32) { InstructionMark im(this); prefixq(dst); emit_int8((unsigned char)0x81); emit_operand(rcx, dst, 4); emit_int32(imm32); } void Assembler::orq(Register dst, int32_t imm32) { (void) prefixq_and_encode(dst->encoding()); emit_arith(0x81, 0xC8, dst, imm32); } void Assembler::orq(Register dst, Address src) { InstructionMark im(this); prefixq(src, dst); emit_int8(0x0B); emit_operand(dst, src); } void Assembler::orq(Register dst, Register src) { (void) prefixq_and_encode(dst->encoding(), src->encoding()); emit_arith(0x0B, 0xC0, dst, src); } void Assembler::popa() { // 64bit movq(r15, Address(rsp, 0)); movq(r14, Address(rsp, wordSize)); movq(r13, Address(rsp, 2 * wordSize)); movq(r12, Address(rsp, 3 * wordSize)); movq(r11, Address(rsp, 4 * wordSize)); movq(r10, Address(rsp, 5 * wordSize)); movq(r9, Address(rsp, 6 * wordSize)); movq(r8, Address(rsp, 7 * wordSize)); movq(rdi, Address(rsp, 8 * wordSize)); movq(rsi, Address(rsp, 9 * wordSize)); movq(rbp, Address(rsp, 10 * wordSize)); // skip rsp movq(rbx, Address(rsp, 12 * wordSize)); movq(rdx, Address(rsp, 13 * wordSize)); movq(rcx, Address(rsp, 14 * wordSize)); movq(rax, Address(rsp, 15 * wordSize)); addq(rsp, 16 * wordSize); } void Assembler::popcntq(Register dst, Address src) { assert(VM_Version::supports_popcnt(), "must support"); InstructionMark im(this); emit_int8((unsigned char)0xF3); prefixq(src, dst); emit_int8((unsigned char)0x0F); emit_int8((unsigned char)0xB8); emit_operand(dst, src); } void Assembler::popcntq(Register dst, Register src) { assert(VM_Version::supports_popcnt(), "must support"); emit_int8((unsigned char)0xF3); int encode = prefixq_and_encode(dst->encoding(), src->encoding()); emit_int8((unsigned char)0x0F); emit_int8((unsigned char)0xB8); emit_int8((unsigned char)(0xC0 | encode)); } void Assembler::popq(Address dst) { InstructionMark im(this); prefixq(dst); emit_int8((unsigned char)0x8F); emit_operand(rax, dst); } void Assembler::pusha() { // 64bit // we have to store original rsp. ABI says that 128 bytes // below rsp are local scratch. movq(Address(rsp, -5 * wordSize), rsp); subq(rsp, 16 * wordSize); movq(Address(rsp, 15 * wordSize), rax); movq(Address(rsp, 14 * wordSize), rcx); movq(Address(rsp, 13 * wordSize), rdx); movq(Address(rsp, 12 * wordSize), rbx); // skip rsp movq(Address(rsp, 10 * wordSize), rbp); movq(Address(rsp, 9 * wordSize), rsi); movq(Address(rsp, 8 * wordSize), rdi); movq(Address(rsp, 7 * wordSize), r8); movq(Address(rsp, 6 * wordSize), r9); movq(Address(rsp, 5 * wordSize), r10); movq(Address(rsp, 4 * wordSize), r11); movq(Address(rsp, 3 * wordSize), r12); movq(Address(rsp, 2 * wordSize), r13); movq(Address(rsp, wordSize), r14); movq(Address(rsp, 0), r15); } void Assembler::pushq(Address src) { InstructionMark im(this); prefixq(src); emit_int8((unsigned char)0xFF); emit_operand(rsi, src); } void Assembler::rclq(Register dst, int imm8) { assert(isShiftCount(imm8 >> 1), "illegal shift count"); int encode = prefixq_and_encode(dst->encoding()); if (imm8 == 1) { emit_int8((unsigned char)0xD1); emit_int8((unsigned char)(0xD0 | encode)); } else { emit_int8((unsigned char)0xC1); emit_int8((unsigned char)(0xD0 | encode)); emit_int8(imm8); } } void Assembler::rorq(Register dst, int imm8) { assert(isShiftCount(imm8 >> 1), "illegal shift count"); int encode = prefixq_and_encode(dst->encoding()); if (imm8 == 1) { emit_int8((unsigned char)0xD1); emit_int8((unsigned char)(0xC8 | encode)); } else { emit_int8((unsigned char)0xC1); emit_int8((unsigned char)(0xc8 | encode)); emit_int8(imm8); } } void Assembler::rorxq(Register dst, Register src, int imm8) { assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported"); int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F_3A, true, false); emit_int8((unsigned char)0xF0); emit_int8((unsigned char)(0xC0 | encode)); emit_int8(imm8); } void Assembler::sarq(Register dst, int imm8) { assert(isShiftCount(imm8 >> 1), "illegal shift count"); int encode = prefixq_and_encode(dst->encoding()); if (imm8 == 1) { emit_int8((unsigned char)0xD1); emit_int8((unsigned char)(0xF8 | encode)); } else { emit_int8((unsigned char)0xC1); emit_int8((unsigned char)(0xF8 | encode)); emit_int8(imm8); } } void Assembler::sarq(Register dst) { int encode = prefixq_and_encode(dst->encoding()); emit_int8((unsigned char)0xD3); emit_int8((unsigned char)(0xF8 | encode)); } void Assembler::sbbq(Address dst, int32_t imm32) { InstructionMark im(this); prefixq(dst); emit_arith_operand(0x81, rbx, dst, imm32); } void Assembler::sbbq(Register dst, int32_t imm32) { (void) prefixq_and_encode(dst->encoding()); emit_arith(0x81, 0xD8, dst, imm32); } void Assembler::sbbq(Register dst, Address src) { InstructionMark im(this); prefixq(src, dst); emit_int8(0x1B); emit_operand(dst, src); } void Assembler::sbbq(Register dst, Register src) { (void) prefixq_and_encode(dst->encoding(), src->encoding()); emit_arith(0x1B, 0xC0, dst, src); } void Assembler::shlq(Register dst, int imm8) { assert(isShiftCount(imm8 >> 1), "illegal shift count"); int encode = prefixq_and_encode(dst->encoding()); if (imm8 == 1) { emit_int8((unsigned char)0xD1); emit_int8((unsigned char)(0xE0 | encode)); } else { emit_int8((unsigned char)0xC1); emit_int8((unsigned char)(0xE0 | encode)); emit_int8(imm8); } } void Assembler::shlq(Register dst) { int encode = prefixq_and_encode(dst->encoding()); emit_int8((unsigned char)0xD3); emit_int8((unsigned char)(0xE0 | encode)); } void Assembler::shrq(Register dst, int imm8) { assert(isShiftCount(imm8 >> 1), "illegal shift count"); int encode = prefixq_and_encode(dst->encoding()); emit_int8((unsigned char)0xC1); emit_int8((unsigned char)(0xE8 | encode)); emit_int8(imm8); } void Assembler::shrq(Register dst) { int encode = prefixq_and_encode(dst->encoding()); emit_int8((unsigned char)0xD3); emit_int8(0xE8 | encode); } void Assembler::subq(Address dst, int32_t imm32) { InstructionMark im(this); prefixq(dst); emit_arith_operand(0x81, rbp, dst, imm32); } void Assembler::subq(Address dst, Register src) { InstructionMark im(this); prefixq(dst, src); emit_int8(0x29); emit_operand(src, dst); } void Assembler::subq(Register dst, int32_t imm32) { (void) prefixq_and_encode(dst->encoding()); emit_arith(0x81, 0xE8, dst, imm32); } // Force generation of a 4 byte immediate value even if it fits into 8bit void Assembler::subq_imm32(Register dst, int32_t imm32) { (void) prefixq_and_encode(dst->encoding()); emit_arith_imm32(0x81, 0xE8, dst, imm32); } void Assembler::subq(Register dst, Address src) { InstructionMark im(this); prefixq(src, dst); emit_int8(0x2B); emit_operand(dst, src); } void Assembler::subq(Register dst, Register src) { (void) prefixq_and_encode(dst->encoding(), src->encoding()); emit_arith(0x2B, 0xC0, dst, src); } void Assembler::testq(Register dst, int32_t imm32) { // not using emit_arith because test // doesn't support sign-extension of // 8bit operands int encode = dst->encoding(); if (encode == 0) { prefix(REX_W); emit_int8((unsigned char)0xA9); } else { encode = prefixq_and_encode(encode); emit_int8((unsigned char)0xF7); emit_int8((unsigned char)(0xC0 | encode)); } emit_int32(imm32); } void Assembler::testq(Register dst, Register src) { (void) prefixq_and_encode(dst->encoding(), src->encoding()); emit_arith(0x85, 0xC0, dst, src); } void Assembler::xaddq(Address dst, Register src) { InstructionMark im(this); prefixq(dst, src); emit_int8(0x0F); emit_int8((unsigned char)0xC1); emit_operand(src, dst); } void Assembler::xchgq(Register dst, Address src) { InstructionMark im(this); prefixq(src, dst); emit_int8((unsigned char)0x87); emit_operand(dst, src); } void Assembler::xchgq(Register dst, Register src) { int encode = prefixq_and_encode(dst->encoding(), src->encoding()); emit_int8((unsigned char)0x87); emit_int8((unsigned char)(0xc0 | encode)); } void Assembler::xorq(Register dst, Register src) { (void) prefixq_and_encode(dst->encoding(), src->encoding()); emit_arith(0x33, 0xC0, dst, src); } void Assembler::xorq(Register dst, Address src) { InstructionMark im(this); prefixq(src, dst); emit_int8(0x33); emit_operand(dst, src); } #endif // !LP64