/* * Copyright 1999-2006 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. * */ #include "incls/_precompiled.incl" #include "incls/_c1_CodeStubs_x86.cpp.incl" #define __ ce->masm()-> float ConversionStub::float_zero = 0.0; double ConversionStub::double_zero = 0.0; void ConversionStub::emit_code(LIR_Assembler* ce) { __ bind(_entry); assert(bytecode() == Bytecodes::_f2i || bytecode() == Bytecodes::_d2i, "other conversions do not require stub"); if (input()->is_single_xmm()) { __ comiss(input()->as_xmm_float_reg(), ExternalAddress((address)&float_zero)); } else if (input()->is_double_xmm()) { __ comisd(input()->as_xmm_double_reg(), ExternalAddress((address)&double_zero)); } else { __ pushl(rax); __ ftst(); __ fnstsw_ax(); __ sahf(); __ popl(rax); } Label NaN, do_return; __ jccb(Assembler::parity, NaN); __ jccb(Assembler::below, do_return); // input is > 0 -> return maxInt // result register already contains 0x80000000, so subtracting 1 gives 0x7fffffff __ decrement(result()->as_register()); __ jmpb(do_return); // input is NaN -> return 0 __ bind(NaN); __ xorl(result()->as_register(), result()->as_register()); __ bind(do_return); __ jmp(_continuation); } #ifdef TIERED void CounterOverflowStub::emit_code(LIR_Assembler* ce) { __ bind(_entry); ce->store_parameter(_bci, 0); __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::counter_overflow_id))); ce->add_call_info_here(_info); ce->verify_oop_map(_info); __ jmp(_continuation); } #endif // TIERED RangeCheckStub::RangeCheckStub(CodeEmitInfo* info, LIR_Opr index, bool throw_index_out_of_bounds_exception) : _throw_index_out_of_bounds_exception(throw_index_out_of_bounds_exception) , _index(index) { _info = info == NULL ? NULL : new CodeEmitInfo(info); } void RangeCheckStub::emit_code(LIR_Assembler* ce) { __ bind(_entry); // pass the array index on stack because all registers must be preserved if (_index->is_cpu_register()) { ce->store_parameter(_index->as_register(), 0); } else { ce->store_parameter(_index->as_jint(), 0); } Runtime1::StubID stub_id; if (_throw_index_out_of_bounds_exception) { stub_id = Runtime1::throw_index_exception_id; } else { stub_id = Runtime1::throw_range_check_failed_id; } __ call(RuntimeAddress(Runtime1::entry_for(stub_id))); ce->add_call_info_here(_info); debug_only(__ should_not_reach_here()); } void DivByZeroStub::emit_code(LIR_Assembler* ce) { if (_offset != -1) { ce->compilation()->implicit_exception_table()->append(_offset, __ offset()); } __ bind(_entry); __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::throw_div0_exception_id))); ce->add_call_info_here(_info); debug_only(__ should_not_reach_here()); } // Implementation of NewInstanceStub NewInstanceStub::NewInstanceStub(LIR_Opr klass_reg, LIR_Opr result, ciInstanceKlass* klass, CodeEmitInfo* info, Runtime1::StubID stub_id) { _result = result; _klass = klass; _klass_reg = klass_reg; _info = new CodeEmitInfo(info); assert(stub_id == Runtime1::new_instance_id || stub_id == Runtime1::fast_new_instance_id || stub_id == Runtime1::fast_new_instance_init_check_id, "need new_instance id"); _stub_id = stub_id; } void NewInstanceStub::emit_code(LIR_Assembler* ce) { assert(__ rsp_offset() == 0, "frame size should be fixed"); __ bind(_entry); __ movl(rdx, _klass_reg->as_register()); __ call(RuntimeAddress(Runtime1::entry_for(_stub_id))); ce->add_call_info_here(_info); ce->verify_oop_map(_info); assert(_result->as_register() == rax, "result must in rax,"); __ jmp(_continuation); } // Implementation of NewTypeArrayStub NewTypeArrayStub::NewTypeArrayStub(LIR_Opr klass_reg, LIR_Opr length, LIR_Opr result, CodeEmitInfo* info) { _klass_reg = klass_reg; _length = length; _result = result; _info = new CodeEmitInfo(info); } void NewTypeArrayStub::emit_code(LIR_Assembler* ce) { assert(__ rsp_offset() == 0, "frame size should be fixed"); __ bind(_entry); assert(_length->as_register() == rbx, "length must in rbx,"); assert(_klass_reg->as_register() == rdx, "klass_reg must in rdx"); __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::new_type_array_id))); ce->add_call_info_here(_info); ce->verify_oop_map(_info); assert(_result->as_register() == rax, "result must in rax,"); __ jmp(_continuation); } // Implementation of NewObjectArrayStub NewObjectArrayStub::NewObjectArrayStub(LIR_Opr klass_reg, LIR_Opr length, LIR_Opr result, CodeEmitInfo* info) { _klass_reg = klass_reg; _result = result; _length = length; _info = new CodeEmitInfo(info); } void NewObjectArrayStub::emit_code(LIR_Assembler* ce) { assert(__ rsp_offset() == 0, "frame size should be fixed"); __ bind(_entry); assert(_length->as_register() == rbx, "length must in rbx,"); assert(_klass_reg->as_register() == rdx, "klass_reg must in rdx"); __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::new_object_array_id))); ce->add_call_info_here(_info); ce->verify_oop_map(_info); assert(_result->as_register() == rax, "result must in rax,"); __ jmp(_continuation); } // Implementation of MonitorAccessStubs MonitorEnterStub::MonitorEnterStub(LIR_Opr obj_reg, LIR_Opr lock_reg, CodeEmitInfo* info) : MonitorAccessStub(obj_reg, lock_reg) { _info = new CodeEmitInfo(info); } void MonitorEnterStub::emit_code(LIR_Assembler* ce) { assert(__ rsp_offset() == 0, "frame size should be fixed"); __ bind(_entry); ce->store_parameter(_obj_reg->as_register(), 1); ce->store_parameter(_lock_reg->as_register(), 0); Runtime1::StubID enter_id; if (ce->compilation()->has_fpu_code()) { enter_id = Runtime1::monitorenter_id; } else { enter_id = Runtime1::monitorenter_nofpu_id; } __ call(RuntimeAddress(Runtime1::entry_for(enter_id))); ce->add_call_info_here(_info); ce->verify_oop_map(_info); __ jmp(_continuation); } void MonitorExitStub::emit_code(LIR_Assembler* ce) { __ bind(_entry); if (_compute_lock) { // lock_reg was destroyed by fast unlocking attempt => recompute it ce->monitor_address(_monitor_ix, _lock_reg); } ce->store_parameter(_lock_reg->as_register(), 0); // note: non-blocking leaf routine => no call info needed Runtime1::StubID exit_id; if (ce->compilation()->has_fpu_code()) { exit_id = Runtime1::monitorexit_id; } else { exit_id = Runtime1::monitorexit_nofpu_id; } __ call(RuntimeAddress(Runtime1::entry_for(exit_id))); __ jmp(_continuation); } // Implementation of patching: // - Copy the code at given offset to an inlined buffer (first the bytes, then the number of bytes) // - Replace original code with a call to the stub // At Runtime: // - call to stub, jump to runtime // - in runtime: preserve all registers (rspecially objects, i.e., source and destination object) // - in runtime: after initializing class, restore original code, reexecute instruction int PatchingStub::_patch_info_offset = -NativeGeneralJump::instruction_size; void PatchingStub::align_patch_site(MacroAssembler* masm) { // We're patching a 5-7 byte instruction on intel and we need to // make sure that we don't see a piece of the instruction. It // appears mostly impossible on Intel to simply invalidate other // processors caches and since they may do aggressive prefetch it's // very hard to make a guess about what code might be in the icache. // Force the instruction to be double word aligned so that it // doesn't span a cache line. masm->align(round_to(NativeGeneralJump::instruction_size, wordSize)); } void PatchingStub::emit_code(LIR_Assembler* ce) { assert(NativeCall::instruction_size <= _bytes_to_copy && _bytes_to_copy <= 0xFF, "not enough room for call"); Label call_patch; // static field accesses have special semantics while the class // initializer is being run so we emit a test which can be used to // check that this code is being executed by the initializing // thread. address being_initialized_entry = __ pc(); if (CommentedAssembly) { __ block_comment(" patch template"); } if (_id == load_klass_id) { // produce a copy of the load klass instruction for use by the being initialized case address start = __ pc(); jobject o = NULL; __ movoop(_obj, o); #ifdef ASSERT for (int i = 0; i < _bytes_to_copy; i++) { address ptr = (address)(_pc_start + i); int a_byte = (*ptr) & 0xFF; assert(a_byte == *start++, "should be the same code"); } #endif } else { // make a copy the code which is going to be patched. for ( int i = 0; i < _bytes_to_copy; i++) { address ptr = (address)(_pc_start + i); int a_byte = (*ptr) & 0xFF; __ a_byte (a_byte); *ptr = 0x90; // make the site look like a nop } } address end_of_patch = __ pc(); int bytes_to_skip = 0; if (_id == load_klass_id) { int offset = __ offset(); if (CommentedAssembly) { __ block_comment(" being_initialized check"); } assert(_obj != noreg, "must be a valid register"); Register tmp = rax; if (_obj == tmp) tmp = rbx; __ pushl(tmp); __ get_thread(tmp); __ cmpl(tmp, Address(_obj, instanceKlass::init_thread_offset_in_bytes() + sizeof(klassOopDesc))); __ popl(tmp); __ jcc(Assembler::notEqual, call_patch); // access_field patches may execute the patched code before it's // copied back into place so we need to jump back into the main // code of the nmethod to continue execution. __ jmp(_patch_site_continuation); // make sure this extra code gets skipped bytes_to_skip += __ offset() - offset; } if (CommentedAssembly) { __ block_comment("patch data encoded as movl"); } // Now emit the patch record telling the runtime how to find the // pieces of the patch. We only need 3 bytes but for readability of // the disassembly we make the data look like a movl reg, imm32, // which requires 5 bytes int sizeof_patch_record = 5; bytes_to_skip += sizeof_patch_record; // emit the offsets needed to find the code to patch int being_initialized_entry_offset = __ pc() - being_initialized_entry + sizeof_patch_record; __ a_byte(0xB8); __ a_byte(0); __ a_byte(being_initialized_entry_offset); __ a_byte(bytes_to_skip); __ a_byte(_bytes_to_copy); address patch_info_pc = __ pc(); assert(patch_info_pc - end_of_patch == bytes_to_skip, "incorrect patch info"); address entry = __ pc(); NativeGeneralJump::insert_unconditional((address)_pc_start, entry); address target = NULL; switch (_id) { case access_field_id: target = Runtime1::entry_for(Runtime1::access_field_patching_id); break; case load_klass_id: target = Runtime1::entry_for(Runtime1::load_klass_patching_id); break; default: ShouldNotReachHere(); } __ bind(call_patch); if (CommentedAssembly) { __ block_comment("patch entry point"); } __ call(RuntimeAddress(target)); assert(_patch_info_offset == (patch_info_pc - __ pc()), "must not change"); ce->add_call_info_here(_info); int jmp_off = __ offset(); __ jmp(_patch_site_entry); // Add enough nops so deoptimization can overwrite the jmp above with a call // and not destroy the world. for (int j = __ offset() ; j < jmp_off + 5 ; j++ ) { __ nop(); } if (_id == load_klass_id) { CodeSection* cs = __ code_section(); RelocIterator iter(cs, (address)_pc_start, (address)(_pc_start + 1)); relocInfo::change_reloc_info_for_address(&iter, (address) _pc_start, relocInfo::oop_type, relocInfo::none); } } void ImplicitNullCheckStub::emit_code(LIR_Assembler* ce) { ce->compilation()->implicit_exception_table()->append(_offset, __ offset()); __ bind(_entry); __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::throw_null_pointer_exception_id))); ce->add_call_info_here(_info); debug_only(__ should_not_reach_here()); } void SimpleExceptionStub::emit_code(LIR_Assembler* ce) { assert(__ rsp_offset() == 0, "frame size should be fixed"); __ bind(_entry); // pass the object on stack because all registers must be preserved if (_obj->is_cpu_register()) { ce->store_parameter(_obj->as_register(), 0); } __ call(RuntimeAddress(Runtime1::entry_for(_stub))); ce->add_call_info_here(_info); debug_only(__ should_not_reach_here()); } ArrayStoreExceptionStub::ArrayStoreExceptionStub(CodeEmitInfo* info): _info(info) { } void ArrayStoreExceptionStub::emit_code(LIR_Assembler* ce) { assert(__ rsp_offset() == 0, "frame size should be fixed"); __ bind(_entry); __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::throw_array_store_exception_id))); ce->add_call_info_here(_info); debug_only(__ should_not_reach_here()); } void ArrayCopyStub::emit_code(LIR_Assembler* ce) { //---------------slow case: call to native----------------- __ bind(_entry); // Figure out where the args should go // This should really convert the IntrinsicID to the methodOop and signature // but I don't know how to do that. // VMRegPair args[5]; BasicType signature[5] = { T_OBJECT, T_INT, T_OBJECT, T_INT, T_INT}; SharedRuntime::java_calling_convention(signature, args, 5, true); // push parameters // (src, src_pos, dest, destPos, length) Register r[5]; r[0] = src()->as_register(); r[1] = src_pos()->as_register(); r[2] = dst()->as_register(); r[3] = dst_pos()->as_register(); r[4] = length()->as_register(); // next registers will get stored on the stack for (int i = 0; i < 5 ; i++ ) { VMReg r_1 = args[i].first(); if (r_1->is_stack()) { int st_off = r_1->reg2stack() * wordSize; __ movl (Address(rsp, st_off), r[i]); } else { assert(r[i] == args[i].first()->as_Register(), "Wrong register for arg "); } } ce->align_call(lir_static_call); ce->emit_static_call_stub(); AddressLiteral resolve(SharedRuntime::get_resolve_static_call_stub(), relocInfo::static_call_type); __ call(resolve); ce->add_call_info_here(info()); #ifndef PRODUCT __ increment(ExternalAddress((address)&Runtime1::_arraycopy_slowcase_cnt)); #endif __ jmp(_continuation); } #undef __