/* * Copyright 1999-2007 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. * */ #include "incls/_precompiled.incl" #include "incls/_c1_Runtime1_sparc.cpp.incl" // Implementation of StubAssembler int StubAssembler::call_RT(Register oop_result1, Register oop_result2, address entry_point, int number_of_arguments) { // for sparc changing the number of arguments doesn't change // anything about the frame size so we'll always lie and claim that // we are only passing 1 argument. set_num_rt_args(1); assert_not_delayed(); // bang stack before going to runtime set(-os::vm_page_size() + STACK_BIAS, G3_scratch); st(G0, SP, G3_scratch); // debugging support assert(number_of_arguments >= 0 , "cannot have negative number of arguments"); set_last_Java_frame(SP, noreg); if (VerifyThread) mov(G2_thread, O0); // about to be smashed; pass early save_thread(L7_thread_cache); // do the call call(entry_point, relocInfo::runtime_call_type); if (!VerifyThread) { delayed()->mov(G2_thread, O0); // pass thread as first argument } else { delayed()->nop(); // (thread already passed) } int call_offset = offset(); // offset of return address restore_thread(L7_thread_cache); reset_last_Java_frame(); // check for pending exceptions { Label L; Address exception_addr(G2_thread, 0, in_bytes(Thread::pending_exception_offset())); ld_ptr(exception_addr, Gtemp); br_null(Gtemp, false, pt, L); delayed()->nop(); Address vm_result_addr(G2_thread, 0, in_bytes(JavaThread::vm_result_offset())); st_ptr(G0, vm_result_addr); Address vm_result_addr_2(G2_thread, 0, in_bytes(JavaThread::vm_result_2_offset())); st_ptr(G0, vm_result_addr_2); if (frame_size() == no_frame_size) { // we use O7 linkage so that forward_exception_entry has the issuing PC call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type); delayed()->restore(); } else if (_stub_id == Runtime1::forward_exception_id) { should_not_reach_here(); } else { Address exc(G4, Runtime1::entry_for(Runtime1::forward_exception_id)); jump_to(exc, 0); delayed()->nop(); } bind(L); } // get oop result if there is one and reset the value in the thread if (oop_result1->is_valid()) { // get oop result if there is one and reset it in the thread get_vm_result (oop_result1); } else { // be a little paranoid and clear the result Address vm_result_addr(G2_thread, 0, in_bytes(JavaThread::vm_result_offset())); st_ptr(G0, vm_result_addr); } if (oop_result2->is_valid()) { get_vm_result_2(oop_result2); } else { // be a little paranoid and clear the result Address vm_result_addr_2(G2_thread, 0, in_bytes(JavaThread::vm_result_2_offset())); st_ptr(G0, vm_result_addr_2); } return call_offset; } int StubAssembler::call_RT(Register oop_result1, Register oop_result2, address entry, Register arg1) { // O0 is reserved for the thread mov(arg1, O1); return call_RT(oop_result1, oop_result2, entry, 1); } int StubAssembler::call_RT(Register oop_result1, Register oop_result2, address entry, Register arg1, Register arg2) { // O0 is reserved for the thread mov(arg1, O1); mov(arg2, O2); assert(arg2 != O1, "smashed argument"); return call_RT(oop_result1, oop_result2, entry, 2); } int StubAssembler::call_RT(Register oop_result1, Register oop_result2, address entry, Register arg1, Register arg2, Register arg3) { // O0 is reserved for the thread mov(arg1, O1); mov(arg2, O2); assert(arg2 != O1, "smashed argument"); mov(arg3, O3); assert(arg3 != O1 && arg3 != O2, "smashed argument"); return call_RT(oop_result1, oop_result2, entry, 3); } // Implementation of Runtime1 #define __ sasm-> static int cpu_reg_save_offsets[FrameMap::nof_cpu_regs]; static int fpu_reg_save_offsets[FrameMap::nof_fpu_regs]; static int reg_save_size_in_words; static int frame_size_in_bytes = -1; static OopMap* generate_oop_map(StubAssembler* sasm, bool save_fpu_registers) { assert(frame_size_in_bytes == __ total_frame_size_in_bytes(reg_save_size_in_words), " mismatch in calculation"); sasm->set_frame_size(frame_size_in_bytes / BytesPerWord); int frame_size_in_slots = frame_size_in_bytes / sizeof(jint); OopMap* oop_map = new OopMap(frame_size_in_slots, 0); int i; for (i = 0; i < FrameMap::nof_cpu_regs; i++) { Register r = as_Register(i); if (r == G1 || r == G3 || r == G4 || r == G5) { int sp_offset = cpu_reg_save_offsets[i]; oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset), r->as_VMReg()); } } if (save_fpu_registers) { for (i = 0; i < FrameMap::nof_fpu_regs; i++) { FloatRegister r = as_FloatRegister(i); int sp_offset = fpu_reg_save_offsets[i]; oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset), r->as_VMReg()); } } return oop_map; } static OopMap* save_live_registers(StubAssembler* sasm, bool save_fpu_registers = true) { assert(frame_size_in_bytes == __ total_frame_size_in_bytes(reg_save_size_in_words), " mismatch in calculation"); __ save_frame_c1(frame_size_in_bytes); sasm->set_frame_size(frame_size_in_bytes / BytesPerWord); // Record volatile registers as callee-save values in an OopMap so their save locations will be // propagated to the caller frame's RegisterMap during StackFrameStream construction (needed for // deoptimization; see compiledVFrame::create_stack_value). The caller's I, L and O registers // are saved in register windows - I's and L's in the caller's frame and O's in the stub frame // (as the stub's I's) when the runtime routine called by the stub creates its frame. // OopMap frame sizes are in c2 stack slot sizes (sizeof(jint)) int i; for (i = 0; i < FrameMap::nof_cpu_regs; i++) { Register r = as_Register(i); if (r == G1 || r == G3 || r == G4 || r == G5) { int sp_offset = cpu_reg_save_offsets[i]; __ st_ptr(r, SP, (sp_offset * BytesPerWord) + STACK_BIAS); } } if (save_fpu_registers) { for (i = 0; i < FrameMap::nof_fpu_regs; i++) { FloatRegister r = as_FloatRegister(i); int sp_offset = fpu_reg_save_offsets[i]; __ stf(FloatRegisterImpl::S, r, SP, (sp_offset * BytesPerWord) + STACK_BIAS); } } return generate_oop_map(sasm, save_fpu_registers); } static void restore_live_registers(StubAssembler* sasm, bool restore_fpu_registers = true) { for (int i = 0; i < FrameMap::nof_cpu_regs; i++) { Register r = as_Register(i); if (r == G1 || r == G3 || r == G4 || r == G5) { __ ld_ptr(SP, (cpu_reg_save_offsets[i] * BytesPerWord) + STACK_BIAS, r); } } if (restore_fpu_registers) { for (int i = 0; i < FrameMap::nof_fpu_regs; i++) { FloatRegister r = as_FloatRegister(i); __ ldf(FloatRegisterImpl::S, SP, (fpu_reg_save_offsets[i] * BytesPerWord) + STACK_BIAS, r); } } } void Runtime1::initialize_pd() { // compute word offsets from SP at which live (non-windowed) registers are captured by stub routines // // A stub routine will have a frame that is at least large enough to hold // a register window save area (obviously) and the volatile g registers // and floating registers. A user of save_live_registers can have a frame // that has more scratch area in it (although typically they will use L-regs). // in that case the frame will look like this (stack growing down) // // FP -> | | // | scratch mem | // | " " | // -------------- // | float regs | // | " " | // --------------- // | G regs | // | " " | // --------------- // | abi reg. | // | window save | // | area | // SP -> --------------- // int i; int sp_offset = round_to(frame::register_save_words, 2); // start doubleword aligned // only G int registers are saved explicitly; others are found in register windows for (i = 0; i < FrameMap::nof_cpu_regs; i++) { Register r = as_Register(i); if (r == G1 || r == G3 || r == G4 || r == G5) { cpu_reg_save_offsets[i] = sp_offset; sp_offset++; } } // all float registers are saved explicitly assert(FrameMap::nof_fpu_regs == 32, "double registers not handled here"); for (i = 0; i < FrameMap::nof_fpu_regs; i++) { fpu_reg_save_offsets[i] = sp_offset; sp_offset++; } reg_save_size_in_words = sp_offset - frame::memory_parameter_word_sp_offset; // this should match assembler::total_frame_size_in_bytes, which // isn't callable from this context. It's checked by an assert when // it's used though. frame_size_in_bytes = align_size_up(sp_offset * wordSize, 8); } OopMapSet* Runtime1::generate_exception_throw(StubAssembler* sasm, address target, bool has_argument) { // make a frame and preserve the caller's caller-save registers OopMap* oop_map = save_live_registers(sasm); int call_offset; if (!has_argument) { call_offset = __ call_RT(noreg, noreg, target); } else { call_offset = __ call_RT(noreg, noreg, target, G4); } OopMapSet* oop_maps = new OopMapSet(); oop_maps->add_gc_map(call_offset, oop_map); __ should_not_reach_here(); return oop_maps; } OopMapSet* Runtime1::generate_stub_call(StubAssembler* sasm, Register result, address target, Register arg1, Register arg2, Register arg3) { // make a frame and preserve the caller's caller-save registers OopMap* oop_map = save_live_registers(sasm); int call_offset; if (arg1 == noreg) { call_offset = __ call_RT(result, noreg, target); } else if (arg2 == noreg) { call_offset = __ call_RT(result, noreg, target, arg1); } else if (arg3 == noreg) { call_offset = __ call_RT(result, noreg, target, arg1, arg2); } else { call_offset = __ call_RT(result, noreg, target, arg1, arg2, arg3); } OopMapSet* oop_maps = NULL; oop_maps = new OopMapSet(); oop_maps->add_gc_map(call_offset, oop_map); restore_live_registers(sasm); __ ret(); __ delayed()->restore(); return oop_maps; } OopMapSet* Runtime1::generate_patching(StubAssembler* sasm, address target) { // make a frame and preserve the caller's caller-save registers OopMap* oop_map = save_live_registers(sasm); // call the runtime patching routine, returns non-zero if nmethod got deopted. int call_offset = __ call_RT(noreg, noreg, target); OopMapSet* oop_maps = new OopMapSet(); oop_maps->add_gc_map(call_offset, oop_map); // re-execute the patched instruction or, if the nmethod was deoptmized, return to the // deoptimization handler entry that will cause re-execution of the current bytecode DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob(); assert(deopt_blob != NULL, "deoptimization blob must have been created"); Label no_deopt; __ tst(O0); __ brx(Assembler::equal, false, Assembler::pt, no_deopt); __ delayed()->nop(); // return to the deoptimization handler entry for unpacking and rexecute // if we simply returned the we'd deopt as if any call we patched had just // returned. restore_live_registers(sasm); __ restore(); __ br(Assembler::always, false, Assembler::pt, deopt_blob->unpack_with_reexecution(), relocInfo::runtime_call_type); __ delayed()->nop(); __ bind(no_deopt); restore_live_registers(sasm); __ ret(); __ delayed()->restore(); return oop_maps; } OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) { OopMapSet* oop_maps = NULL; // for better readability const bool must_gc_arguments = true; const bool dont_gc_arguments = false; // stub code & info for the different stubs switch (id) { case forward_exception_id: { // we're handling an exception in the context of a compiled // frame. The registers have been saved in the standard // places. Perform an exception lookup in the caller and // dispatch to the handler if found. Otherwise unwind and // dispatch to the callers exception handler. oop_maps = new OopMapSet(); OopMap* oop_map = generate_oop_map(sasm, true); // transfer the pending exception to the exception_oop __ ld_ptr(G2_thread, in_bytes(JavaThread::pending_exception_offset()), Oexception); __ ld_ptr(Oexception, 0, G0); __ st_ptr(G0, G2_thread, in_bytes(JavaThread::pending_exception_offset())); __ add(I7, frame::pc_return_offset, Oissuing_pc); generate_handle_exception(sasm, oop_maps, oop_map); __ should_not_reach_here(); } break; case new_instance_id: case fast_new_instance_id: case fast_new_instance_init_check_id: { Register G5_klass = G5; // Incoming Register O0_obj = O0; // Outgoing if (id == new_instance_id) { __ set_info("new_instance", dont_gc_arguments); } else if (id == fast_new_instance_id) { __ set_info("fast new_instance", dont_gc_arguments); } else { assert(id == fast_new_instance_init_check_id, "bad StubID"); __ set_info("fast new_instance init check", dont_gc_arguments); } if ((id == fast_new_instance_id || id == fast_new_instance_init_check_id) && UseTLAB && FastTLABRefill) { Label slow_path; Register G1_obj_size = G1; Register G3_t1 = G3; Register G4_t2 = G4; assert_different_registers(G5_klass, G1_obj_size, G3_t1, G4_t2); // Push a frame since we may do dtrace notification for the // allocation which requires calling out and we don't want // to stomp the real return address. __ save_frame(0); if (id == fast_new_instance_init_check_id) { // make sure the klass is initialized __ ld(G5_klass, instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc), G3_t1); __ cmp(G3_t1, instanceKlass::fully_initialized); __ br(Assembler::notEqual, false, Assembler::pn, slow_path); __ delayed()->nop(); } #ifdef ASSERT // assert object can be fast path allocated { Label ok, not_ok; __ ld(G5_klass, Klass::layout_helper_offset_in_bytes() + sizeof(oopDesc), G1_obj_size); __ cmp(G1_obj_size, 0); // make sure it's an instance (LH > 0) __ br(Assembler::lessEqual, false, Assembler::pn, not_ok); __ delayed()->nop(); __ btst(Klass::_lh_instance_slow_path_bit, G1_obj_size); __ br(Assembler::zero, false, Assembler::pn, ok); __ delayed()->nop(); __ bind(not_ok); __ stop("assert(can be fast path allocated)"); __ should_not_reach_here(); __ bind(ok); } #endif // ASSERT // if we got here then the TLAB allocation failed, so try // refilling the TLAB or allocating directly from eden. Label retry_tlab, try_eden; __ tlab_refill(retry_tlab, try_eden, slow_path); // preserves G5_klass __ bind(retry_tlab); // get the instance size __ ld(G5_klass, klassOopDesc::header_size() * HeapWordSize + Klass::layout_helper_offset_in_bytes(), G1_obj_size); __ tlab_allocate(O0_obj, G1_obj_size, 0, G3_t1, slow_path); __ initialize_object(O0_obj, G5_klass, G1_obj_size, 0, G3_t1, G4_t2); __ verify_oop(O0_obj); __ mov(O0, I0); __ ret(); __ delayed()->restore(); __ bind(try_eden); // get the instance size __ ld(G5_klass, klassOopDesc::header_size() * HeapWordSize + Klass::layout_helper_offset_in_bytes(), G1_obj_size); __ eden_allocate(O0_obj, G1_obj_size, 0, G3_t1, G4_t2, slow_path); __ initialize_object(O0_obj, G5_klass, G1_obj_size, 0, G3_t1, G4_t2); __ verify_oop(O0_obj); __ mov(O0, I0); __ ret(); __ delayed()->restore(); __ bind(slow_path); // pop this frame so generate_stub_call can push it's own __ restore(); } oop_maps = generate_stub_call(sasm, I0, CAST_FROM_FN_PTR(address, new_instance), G5_klass); // I0->O0: new instance } break; #ifdef TIERED case counter_overflow_id: // G4 contains bci oop_maps = generate_stub_call(sasm, noreg, CAST_FROM_FN_PTR(address, counter_overflow), G4); break; #endif // TIERED case new_type_array_id: case new_object_array_id: { Register G5_klass = G5; // Incoming Register G4_length = G4; // Incoming Register O0_obj = O0; // Outgoing Address klass_lh(G5_klass, 0, ((klassOopDesc::header_size() * HeapWordSize) + Klass::layout_helper_offset_in_bytes())); assert(Klass::_lh_header_size_shift % BitsPerByte == 0, "bytewise"); assert(Klass::_lh_header_size_mask == 0xFF, "bytewise"); // Use this offset to pick out an individual byte of the layout_helper: const int klass_lh_header_size_offset = ((BytesPerInt - 1) // 3 - 2 selects byte {0,1,0,0} - Klass::_lh_header_size_shift / BitsPerByte); if (id == new_type_array_id) { __ set_info("new_type_array", dont_gc_arguments); } else { __ set_info("new_object_array", dont_gc_arguments); } #ifdef ASSERT // assert object type is really an array of the proper kind { Label ok; Register G3_t1 = G3; __ ld(klass_lh, G3_t1); __ sra(G3_t1, Klass::_lh_array_tag_shift, G3_t1); int tag = ((id == new_type_array_id) ? Klass::_lh_array_tag_type_value : Klass::_lh_array_tag_obj_value); __ cmp(G3_t1, tag); __ brx(Assembler::equal, false, Assembler::pt, ok); __ delayed()->nop(); __ stop("assert(is an array klass)"); __ should_not_reach_here(); __ bind(ok); } #endif // ASSERT if (UseTLAB && FastTLABRefill) { Label slow_path; Register G1_arr_size = G1; Register G3_t1 = G3; Register O1_t2 = O1; assert_different_registers(G5_klass, G4_length, G1_arr_size, G3_t1, O1_t2); // check that array length is small enough for fast path __ set(C1_MacroAssembler::max_array_allocation_length, G3_t1); __ cmp(G4_length, G3_t1); __ br(Assembler::greaterUnsigned, false, Assembler::pn, slow_path); __ delayed()->nop(); // if we got here then the TLAB allocation failed, so try // refilling the TLAB or allocating directly from eden. Label retry_tlab, try_eden; __ tlab_refill(retry_tlab, try_eden, slow_path); // preserves G4_length and G5_klass __ bind(retry_tlab); // get the allocation size: (length << (layout_helper & 0x1F)) + header_size __ ld(klass_lh, G3_t1); __ sll(G4_length, G3_t1, G1_arr_size); __ srl(G3_t1, Klass::_lh_header_size_shift, G3_t1); __ and3(G3_t1, Klass::_lh_header_size_mask, G3_t1); __ add(G1_arr_size, G3_t1, G1_arr_size); __ add(G1_arr_size, MinObjAlignmentInBytesMask, G1_arr_size); // align up __ and3(G1_arr_size, ~MinObjAlignmentInBytesMask, G1_arr_size); __ tlab_allocate(O0_obj, G1_arr_size, 0, G3_t1, slow_path); // preserves G1_arr_size __ initialize_header(O0_obj, G5_klass, G4_length, G3_t1, O1_t2); __ ldub(klass_lh, G3_t1, klass_lh_header_size_offset); __ sub(G1_arr_size, G3_t1, O1_t2); // body length __ add(O0_obj, G3_t1, G3_t1); // body start __ initialize_body(G3_t1, O1_t2); __ verify_oop(O0_obj); __ retl(); __ delayed()->nop(); __ bind(try_eden); // get the allocation size: (length << (layout_helper & 0x1F)) + header_size __ ld(klass_lh, G3_t1); __ sll(G4_length, G3_t1, G1_arr_size); __ srl(G3_t1, Klass::_lh_header_size_shift, G3_t1); __ and3(G3_t1, Klass::_lh_header_size_mask, G3_t1); __ add(G1_arr_size, G3_t1, G1_arr_size); __ add(G1_arr_size, MinObjAlignmentInBytesMask, G1_arr_size); __ and3(G1_arr_size, ~MinObjAlignmentInBytesMask, G1_arr_size); __ eden_allocate(O0_obj, G1_arr_size, 0, G3_t1, O1_t2, slow_path); // preserves G1_arr_size __ initialize_header(O0_obj, G5_klass, G4_length, G3_t1, O1_t2); __ ldub(klass_lh, G3_t1, klass_lh_header_size_offset); __ sub(G1_arr_size, G3_t1, O1_t2); // body length __ add(O0_obj, G3_t1, G3_t1); // body start __ initialize_body(G3_t1, O1_t2); __ verify_oop(O0_obj); __ retl(); __ delayed()->nop(); __ bind(slow_path); } if (id == new_type_array_id) { oop_maps = generate_stub_call(sasm, I0, CAST_FROM_FN_PTR(address, new_type_array), G5_klass, G4_length); } else { oop_maps = generate_stub_call(sasm, I0, CAST_FROM_FN_PTR(address, new_object_array), G5_klass, G4_length); } // I0 -> O0: new array } break; case new_multi_array_id: { // O0: klass // O1: rank // O2: address of 1st dimension __ set_info("new_multi_array", dont_gc_arguments); oop_maps = generate_stub_call(sasm, I0, CAST_FROM_FN_PTR(address, new_multi_array), I0, I1, I2); // I0 -> O0: new multi array } break; case register_finalizer_id: { __ set_info("register_finalizer", dont_gc_arguments); // load the klass and check the has finalizer flag Label register_finalizer; Register t = O1; __ ld_ptr(O0, oopDesc::klass_offset_in_bytes(), t); __ ld(t, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc), t); __ set(JVM_ACC_HAS_FINALIZER, G3); __ andcc(G3, t, G0); __ br(Assembler::notZero, false, Assembler::pt, register_finalizer); __ delayed()->nop(); // do a leaf return __ retl(); __ delayed()->nop(); __ bind(register_finalizer); OopMap* oop_map = save_live_registers(sasm); int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, SharedRuntime::register_finalizer), I0); oop_maps = new OopMapSet(); oop_maps->add_gc_map(call_offset, oop_map); // Now restore all the live registers restore_live_registers(sasm); __ ret(); __ delayed()->restore(); } break; case throw_range_check_failed_id: { __ set_info("range_check_failed", dont_gc_arguments); // arguments will be discarded // G4: index oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_range_check_exception), true); } break; case throw_index_exception_id: { __ set_info("index_range_check_failed", dont_gc_arguments); // arguments will be discarded // G4: index oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_index_exception), true); } break; case throw_div0_exception_id: { __ set_info("throw_div0_exception", dont_gc_arguments); oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_div0_exception), false); } break; case throw_null_pointer_exception_id: { __ set_info("throw_null_pointer_exception", dont_gc_arguments); oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_null_pointer_exception), false); } break; case handle_exception_id: { __ set_info("handle_exception", dont_gc_arguments); // make a frame and preserve the caller's caller-save registers oop_maps = new OopMapSet(); OopMap* oop_map = save_live_registers(sasm); __ mov(Oexception->after_save(), Oexception); __ mov(Oissuing_pc->after_save(), Oissuing_pc); generate_handle_exception(sasm, oop_maps, oop_map); } break; case unwind_exception_id: { // O0: exception // I7: address of call to this method __ set_info("unwind_exception", dont_gc_arguments); __ mov(Oexception, Oexception->after_save()); __ add(I7, frame::pc_return_offset, Oissuing_pc->after_save()); __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), Oissuing_pc->after_save()); __ verify_not_null_oop(Oexception->after_save()); __ jmp(O0, 0); __ delayed()->restore(); } break; case throw_array_store_exception_id: { __ set_info("throw_array_store_exception", dont_gc_arguments); oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_array_store_exception), false); } break; case throw_class_cast_exception_id: { // G4: object __ set_info("throw_class_cast_exception", dont_gc_arguments); oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_class_cast_exception), true); } break; case throw_incompatible_class_change_error_id: { __ set_info("throw_incompatible_class_cast_exception", dont_gc_arguments); oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_incompatible_class_change_error), false); } break; case slow_subtype_check_id: { // Support for uint StubRoutine::partial_subtype_check( Klass sub, Klass super ); // Arguments : // // ret : G3 // sub : G3, argument, destroyed // super: G1, argument, not changed // raddr: O7, blown by call Label loop, miss; __ save_frame(0); // Blow no registers! __ ld_ptr( G3, sizeof(oopDesc) + Klass::secondary_supers_offset_in_bytes(), L3 ); __ lduw(L3,arrayOopDesc::length_offset_in_bytes(),L0); // length in l0 __ add(L3,arrayOopDesc::base_offset_in_bytes(T_OBJECT),L1); // ptr into array __ clr(L4); // Index // Load a little early; will load 1 off the end of the array. // Ok for now; revisit if we have other uses of this routine. __ ld_ptr(L1,0,L2); // Will load a little early // The scan loop __ bind(loop); __ add(L1,wordSize,L1); // Bump by OOP size __ cmp(L4,L0); __ br(Assembler::equal,false,Assembler::pn,miss); __ delayed()->inc(L4); // Bump index __ subcc(L2,G1,L3); // Check for match; zero in L3 for a hit __ brx( Assembler::notEqual, false, Assembler::pt, loop ); __ delayed()->ld_ptr(L1,0,L2); // Will load a little early // Got a hit; report success; set cache __ st_ptr( G1, G3, sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() ); __ mov(1, G3); __ ret(); // Result in G5 is ok; flags set __ delayed()->restore(); // free copy or add can go here __ bind(miss); __ mov(0, G3); __ ret(); // Result in G5 is ok; flags set __ delayed()->restore(); // free copy or add can go here } case monitorenter_nofpu_id: case monitorenter_id: { // G4: object // G5: lock address __ set_info("monitorenter", dont_gc_arguments); int save_fpu_registers = (id == monitorenter_id); // make a frame and preserve the caller's caller-save registers OopMap* oop_map = save_live_registers(sasm, save_fpu_registers); int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorenter), G4, G5); oop_maps = new OopMapSet(); oop_maps->add_gc_map(call_offset, oop_map); restore_live_registers(sasm, save_fpu_registers); __ ret(); __ delayed()->restore(); } break; case monitorexit_nofpu_id: case monitorexit_id: { // G4: lock address // note: really a leaf routine but must setup last java sp // => use call_RT for now (speed can be improved by // doing last java sp setup manually) __ set_info("monitorexit", dont_gc_arguments); int save_fpu_registers = (id == monitorexit_id); // make a frame and preserve the caller's caller-save registers OopMap* oop_map = save_live_registers(sasm, save_fpu_registers); int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorexit), G4); oop_maps = new OopMapSet(); oop_maps->add_gc_map(call_offset, oop_map); restore_live_registers(sasm, save_fpu_registers); __ ret(); __ delayed()->restore(); } break; case access_field_patching_id: { __ set_info("access_field_patching", dont_gc_arguments); oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, access_field_patching)); } break; case load_klass_patching_id: { __ set_info("load_klass_patching", dont_gc_arguments); oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_klass_patching)); } break; case jvmti_exception_throw_id: { // Oexception : exception __ set_info("jvmti_exception_throw", dont_gc_arguments); oop_maps = generate_stub_call(sasm, noreg, CAST_FROM_FN_PTR(address, Runtime1::post_jvmti_exception_throw), I0); } break; case dtrace_object_alloc_id: { // O0: object __ set_info("dtrace_object_alloc", dont_gc_arguments); // we can't gc here so skip the oopmap but make sure that all // the live registers get saved. save_live_registers(sasm); __ save_thread(L7_thread_cache); __ call(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), relocInfo::runtime_call_type); __ delayed()->mov(I0, O0); __ restore_thread(L7_thread_cache); restore_live_registers(sasm); __ ret(); __ delayed()->restore(); } break; default: { __ set_info("unimplemented entry", dont_gc_arguments); __ save_frame(0); __ set((int)id, O1); __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), O1); __ should_not_reach_here(); } break; } return oop_maps; } void Runtime1::generate_handle_exception(StubAssembler* sasm, OopMapSet* oop_maps, OopMap* oop_map, bool) { Label no_deopt; Label no_handler; __ verify_not_null_oop(Oexception); // save the exception and issuing pc in the thread __ st_ptr(Oexception, G2_thread, in_bytes(JavaThread::exception_oop_offset())); __ st_ptr(Oissuing_pc, G2_thread, in_bytes(JavaThread::exception_pc_offset())); // save the real return address and use the throwing pc as the return address to lookup (has bci & oop map) __ mov(I7, L0); __ mov(Oissuing_pc, I7); __ sub(I7, frame::pc_return_offset, I7); int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, exception_handler_for_pc)); // Note: if nmethod has been deoptimized then regardless of // whether it had a handler or not we will deoptimize // by entering the deopt blob with a pending exception. __ tst(O0); __ br(Assembler::zero, false, Assembler::pn, no_handler); __ delayed()->nop(); // restore the registers that were saved at the beginning and jump to the exception handler. restore_live_registers(sasm); __ jmp(O0, 0); __ delayed()->restore(); __ bind(no_handler); __ mov(L0, I7); // restore return address // restore exception oop __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), Oexception->after_save()); __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset())); __ restore(); Address exc(G4, Runtime1::entry_for(Runtime1::unwind_exception_id)); __ jump_to(exc, 0); __ delayed()->nop(); oop_maps->add_gc_map(call_offset, oop_map); } #undef __ #define __ masm->