/* * Copyright (c) 2006, 2018, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "runtime/sharedRuntime.hpp" #include "utilities/copy.hpp" // Copy bytes; larger units are filled atomically if everything is aligned. void Copy::conjoint_memory_atomic(void* from, void* to, size_t size) { address src = (address) from; address dst = (address) to; uintptr_t bits = (uintptr_t) src | (uintptr_t) dst | (uintptr_t) size; // (Note: We could improve performance by ignoring the low bits of size, // and putting a short cleanup loop after each bulk copy loop. // There are plenty of other ways to make this faster also, // and it's a slippery slope. For now, let's keep this code simple // since the simplicity helps clarify the atomicity semantics of // this operation. There are also CPU-specific assembly versions // which may or may not want to include such optimizations.) if (bits % sizeof(jlong) == 0) { Copy::conjoint_jlongs_atomic((jlong*) src, (jlong*) dst, size / sizeof(jlong)); } else if (bits % sizeof(jint) == 0) { Copy::conjoint_jints_atomic((jint*) src, (jint*) dst, size / sizeof(jint)); } else if (bits % sizeof(jshort) == 0) { Copy::conjoint_jshorts_atomic((jshort*) src, (jshort*) dst, size / sizeof(jshort)); } else { // Not aligned, so no need to be atomic. Copy::conjoint_jbytes((void*) src, (void*) dst, size); } } class CopySwap : AllStatic { public: /** * Copy and byte swap elements * * @param src address of source * @param dst address of destination * @param byte_count number of bytes to copy * @param elem_size size of the elements to copy-swap */ static void conjoint_swap(address src, address dst, size_t byte_count, size_t elem_size) { assert(src != NULL, "address must not be NULL"); assert(dst != NULL, "address must not be NULL"); assert(elem_size == 2 || elem_size == 4 || elem_size == 8, err_msg("incorrect element size: " SIZE_FORMAT, elem_size)); assert(is_size_aligned(byte_count, elem_size), err_msg("byte_count " SIZE_FORMAT " must be multiple of element size " SIZE_FORMAT, byte_count, elem_size)); address src_end = src + byte_count; if (dst <= src || dst >= src_end) { do_conjoint_swap(src, dst, byte_count, elem_size); } else { do_conjoint_swap(src, dst, byte_count, elem_size); } } private: /** * Byte swap a 16-bit value */ static uint16_t byte_swap(uint16_t x) { return (x << 8) | (x >> 8); } /** * Byte swap a 32-bit value */ static uint32_t byte_swap(uint32_t x) { uint16_t lo = (uint16_t)x; uint16_t hi = (uint16_t)(x >> 16); return ((uint32_t)byte_swap(lo) << 16) | (uint32_t)byte_swap(hi); } /** * Byte swap a 64-bit value */ static uint64_t byte_swap(uint64_t x) { uint32_t lo = (uint32_t)x; uint32_t hi = (uint32_t)(x >> 32); return ((uint64_t)byte_swap(lo) << 32) | (uint64_t)byte_swap(hi); } enum CopyDirection { RIGHT, // lower -> higher address LEFT // higher -> lower address }; /** * Copy and byte swap elements * * - type of element to copy * - copy direction * - true if src argument is aligned to element size * - true if dst argument is aligned to element size * * @param src address of source * @param dst address of destination * @param byte_count number of bytes to copy */ template static void do_conjoint_swap(address src, address dst, size_t byte_count) { address cur_src, cur_dst; switch (D) { case RIGHT: cur_src = src; cur_dst = dst; break; case LEFT: cur_src = src + byte_count - sizeof(T); cur_dst = dst + byte_count - sizeof(T); break; } for (size_t i = 0; i < byte_count / sizeof(T); i++) { T tmp; if (is_src_aligned) { tmp = *(T*)cur_src; } else { memcpy(&tmp, cur_src, sizeof(T)); } tmp = byte_swap(tmp); if (is_dst_aligned) { *(T*)cur_dst = tmp; } else { memcpy(cur_dst, &tmp, sizeof(T)); } switch (D) { case RIGHT: cur_src += sizeof(T); cur_dst += sizeof(T); break; case LEFT: cur_src -= sizeof(T); cur_dst -= sizeof(T); break; } } } /** * Copy and byte swap elements * * - type of element to copy * - copy direction * * @param src address of source * @param dst address of destination * @param byte_count number of bytes to copy */ template static void do_conjoint_swap(address src, address dst, size_t byte_count) { if (is_ptr_aligned(src, sizeof(T))) { if (is_ptr_aligned(dst, sizeof(T))) { do_conjoint_swap(src, dst, byte_count); } else { do_conjoint_swap(src, dst, byte_count); } } else { if (is_ptr_aligned(dst, sizeof(T))) { do_conjoint_swap(src, dst, byte_count); } else { do_conjoint_swap(src, dst, byte_count); } } } /** * Copy and byte swap elements * * - copy direction * * @param src address of source * @param dst address of destination * @param byte_count number of bytes to copy * @param elem_size size of the elements to copy-swap */ template static void do_conjoint_swap(address src, address dst, size_t byte_count, size_t elem_size) { switch (elem_size) { case 2: do_conjoint_swap(src, dst, byte_count); break; case 4: do_conjoint_swap(src, dst, byte_count); break; case 8: do_conjoint_swap(src, dst, byte_count); break; default: guarantee(false, err_msg("do_conjoint_swap: Invalid elem_size %zd\n", elem_size)); } } }; void Copy::conjoint_swap(address src, address dst, size_t byte_count, size_t elem_size) { CopySwap::conjoint_swap(src, dst, byte_count, elem_size); } // Fill bytes; larger units are filled atomically if everything is aligned. void Copy::fill_to_memory_atomic(void* to, size_t size, jubyte value) { address dst = (address) to; uintptr_t bits = (uintptr_t) to | (uintptr_t) size; if (bits % sizeof(jlong) == 0) { jlong fill = (julong)( (jubyte)value ); // zero-extend if (fill != 0) { fill += fill << 8; fill += fill << 16; fill += fill << 32; } //Copy::fill_to_jlongs_atomic((jlong*) dst, size / sizeof(jlong)); for (uintptr_t off = 0; off < size; off += sizeof(jlong)) { *(jlong*)(dst + off) = fill; } } else if (bits % sizeof(jint) == 0) { jint fill = (juint)( (jubyte)value ); // zero-extend if (fill != 0) { fill += fill << 8; fill += fill << 16; } //Copy::fill_to_jints_atomic((jint*) dst, size / sizeof(jint)); for (uintptr_t off = 0; off < size; off += sizeof(jint)) { *(jint*)(dst + off) = fill; } } else if (bits % sizeof(jshort) == 0) { jshort fill = (jushort)( (jubyte)value ); // zero-extend fill += fill << 8; //Copy::fill_to_jshorts_atomic((jshort*) dst, size / sizeof(jshort)); for (uintptr_t off = 0; off < size; off += sizeof(jshort)) { *(jshort*)(dst + off) = fill; } } else { // Not aligned, so no need to be atomic. Copy::fill_to_bytes(dst, size, value); } }