/* * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "memory/allocation.inline.hpp" #include "opto/addnode.hpp" #include "opto/callnode.hpp" #include "opto/connode.hpp" #include "opto/idealGraphPrinter.hpp" #include "opto/matcher.hpp" #include "opto/memnode.hpp" #include "opto/opcodes.hpp" #include "opto/regmask.hpp" #include "opto/rootnode.hpp" #include "opto/runtime.hpp" #include "opto/type.hpp" #include "opto/vectornode.hpp" #include "runtime/atomic.hpp" #include "runtime/os.hpp" #if defined AD_MD_HPP # include AD_MD_HPP #elif defined TARGET_ARCH_MODEL_x86_32 # include "adfiles/ad_x86_32.hpp" #elif defined TARGET_ARCH_MODEL_x86_64 # include "adfiles/ad_x86_64.hpp" #elif defined TARGET_ARCH_MODEL_sparc # include "adfiles/ad_sparc.hpp" #elif defined TARGET_ARCH_MODEL_zero # include "adfiles/ad_zero.hpp" #elif defined TARGET_ARCH_MODEL_ppc_64 # include "adfiles/ad_ppc_64.hpp" #endif OptoReg::Name OptoReg::c_frame_pointer; const RegMask *Matcher::idealreg2regmask[_last_machine_leaf]; RegMask Matcher::mreg2regmask[_last_Mach_Reg]; RegMask Matcher::STACK_ONLY_mask; RegMask Matcher::c_frame_ptr_mask; const uint Matcher::_begin_rematerialize = _BEGIN_REMATERIALIZE; const uint Matcher::_end_rematerialize = _END_REMATERIALIZE; //---------------------------Matcher------------------------------------------- Matcher::Matcher() : PhaseTransform( Phase::Ins_Select ), #ifdef ASSERT _old2new_map(C->comp_arena()), _new2old_map(C->comp_arena()), #endif _shared_nodes(C->comp_arena()), _reduceOp(reduceOp), _leftOp(leftOp), _rightOp(rightOp), _swallowed(swallowed), _begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE), _end_inst_chain_rule(_END_INST_CHAIN_RULE), _must_clone(must_clone), _register_save_policy(register_save_policy), _c_reg_save_policy(c_reg_save_policy), _register_save_type(register_save_type), _ruleName(ruleName), _allocation_started(false), _states_arena(Chunk::medium_size), _visited(&_states_arena), _shared(&_states_arena), _dontcare(&_states_arena) { C->set_matcher(this); idealreg2spillmask [Op_RegI] = NULL; idealreg2spillmask [Op_RegN] = NULL; idealreg2spillmask [Op_RegL] = NULL; idealreg2spillmask [Op_RegF] = NULL; idealreg2spillmask [Op_RegD] = NULL; idealreg2spillmask [Op_RegP] = NULL; idealreg2spillmask [Op_VecS] = NULL; idealreg2spillmask [Op_VecD] = NULL; idealreg2spillmask [Op_VecX] = NULL; idealreg2spillmask [Op_VecY] = NULL; idealreg2debugmask [Op_RegI] = NULL; idealreg2debugmask [Op_RegN] = NULL; idealreg2debugmask [Op_RegL] = NULL; idealreg2debugmask [Op_RegF] = NULL; idealreg2debugmask [Op_RegD] = NULL; idealreg2debugmask [Op_RegP] = NULL; idealreg2debugmask [Op_VecS] = NULL; idealreg2debugmask [Op_VecD] = NULL; idealreg2debugmask [Op_VecX] = NULL; idealreg2debugmask [Op_VecY] = NULL; idealreg2mhdebugmask[Op_RegI] = NULL; idealreg2mhdebugmask[Op_RegN] = NULL; idealreg2mhdebugmask[Op_RegL] = NULL; idealreg2mhdebugmask[Op_RegF] = NULL; idealreg2mhdebugmask[Op_RegD] = NULL; idealreg2mhdebugmask[Op_RegP] = NULL; idealreg2mhdebugmask[Op_VecS] = NULL; idealreg2mhdebugmask[Op_VecD] = NULL; idealreg2mhdebugmask[Op_VecX] = NULL; idealreg2mhdebugmask[Op_VecY] = NULL; debug_only(_mem_node = NULL;) // Ideal memory node consumed by mach node } //------------------------------warp_incoming_stk_arg------------------------ // This warps a VMReg into an OptoReg::Name OptoReg::Name Matcher::warp_incoming_stk_arg( VMReg reg ) { OptoReg::Name warped; if( reg->is_stack() ) { // Stack slot argument? warped = OptoReg::add(_old_SP, reg->reg2stack() ); warped = OptoReg::add(warped, C->out_preserve_stack_slots()); if( warped >= _in_arg_limit ) _in_arg_limit = OptoReg::add(warped, 1); // Bump max stack slot seen if (!RegMask::can_represent_arg(warped)) { // the compiler cannot represent this method's calling sequence C->record_method_not_compilable_all_tiers("unsupported incoming calling sequence"); return OptoReg::Bad; } return warped; } return OptoReg::as_OptoReg(reg); } //---------------------------compute_old_SP------------------------------------ OptoReg::Name Compile::compute_old_SP() { int fixed = fixed_slots(); int preserve = in_preserve_stack_slots(); return OptoReg::stack2reg(round_to(fixed + preserve, Matcher::stack_alignment_in_slots())); } #ifdef ASSERT void Matcher::verify_new_nodes_only(Node* xroot) { // Make sure that the new graph only references new nodes ResourceMark rm; Unique_Node_List worklist; VectorSet visited(Thread::current()->resource_area()); worklist.push(xroot); while (worklist.size() > 0) { Node* n = worklist.pop(); visited <<= n->_idx; assert(C->node_arena()->contains(n), "dead node"); for (uint j = 0; j < n->req(); j++) { Node* in = n->in(j); if (in != NULL) { assert(C->node_arena()->contains(in), "dead node"); if (!visited.test(in->_idx)) { worklist.push(in); } } } } } #endif //---------------------------match--------------------------------------------- void Matcher::match( ) { if( MaxLabelRootDepth < 100 ) { // Too small? assert(false, "invalid MaxLabelRootDepth, increase it to 100 minimum"); MaxLabelRootDepth = 100; } // One-time initialization of some register masks. init_spill_mask( C->root()->in(1) ); _return_addr_mask = return_addr(); #ifdef _LP64 // Pointers take 2 slots in 64-bit land _return_addr_mask.Insert(OptoReg::add(return_addr(),1)); #endif // Map a Java-signature return type into return register-value // machine registers for 0, 1 and 2 returned values. const TypeTuple *range = C->tf()->range(); if( range->cnt() > TypeFunc::Parms ) { // If not a void function // Get ideal-register return type int ireg = range->field_at(TypeFunc::Parms)->ideal_reg(); // Get machine return register uint sop = C->start()->Opcode(); OptoRegPair regs = return_value(ireg, false); // And mask for same _return_value_mask = RegMask(regs.first()); if( OptoReg::is_valid(regs.second()) ) _return_value_mask.Insert(regs.second()); } // --------------- // Frame Layout // Need the method signature to determine the incoming argument types, // because the types determine which registers the incoming arguments are // in, and this affects the matched code. const TypeTuple *domain = C->tf()->domain(); uint argcnt = domain->cnt() - TypeFunc::Parms; BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, argcnt ); VMRegPair *vm_parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt ); _parm_regs = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt ); _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt ); uint i; for( i = 0; ifield_at(i+TypeFunc::Parms)->basic_type(); } // Pass array of ideal registers and length to USER code (from the AD file) // that will convert this to an array of register numbers. const StartNode *start = C->start(); start->calling_convention( sig_bt, vm_parm_regs, argcnt ); #ifdef ASSERT // Sanity check users' calling convention. Real handy while trying to // get the initial port correct. { for (uint i = 0; iis_valid() && !vm_parm_regs[i].second()->is_valid() ) { assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" ); _parm_regs[i].set_bad(); continue; } VMReg parm_reg = vm_parm_regs[i].first(); assert(parm_reg->is_valid(), "invalid arg?"); if (parm_reg->is_reg()) { OptoReg::Name opto_parm_reg = OptoReg::as_OptoReg(parm_reg); assert(can_be_java_arg(opto_parm_reg) || C->stub_function() == CAST_FROM_FN_PTR(address, OptoRuntime::rethrow_C) || opto_parm_reg == inline_cache_reg(), "parameters in register must be preserved by runtime stubs"); } for (uint j = 0; j < i; j++) { assert(parm_reg != vm_parm_regs[j].first(), "calling conv. must produce distinct regs"); } } } #endif // Do some initial frame layout. // Compute the old incoming SP (may be called FP) as // OptoReg::stack0() + locks + in_preserve_stack_slots + pad2. _old_SP = C->compute_old_SP(); assert( is_even(_old_SP), "must be even" ); // Compute highest incoming stack argument as // _old_SP + out_preserve_stack_slots + incoming argument size. _in_arg_limit = OptoReg::add(_old_SP, C->out_preserve_stack_slots()); assert( is_even(_in_arg_limit), "out_preserve must be even" ); for( i = 0; i < argcnt; i++ ) { // Permit args to have no register _calling_convention_mask[i].Clear(); if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) { continue; } // calling_convention returns stack arguments as a count of // slots beyond OptoReg::stack0()/VMRegImpl::stack0. We need to convert this to // the allocators point of view, taking into account all the // preserve area, locks & pad2. OptoReg::Name reg1 = warp_incoming_stk_arg(vm_parm_regs[i].first()); if( OptoReg::is_valid(reg1)) _calling_convention_mask[i].Insert(reg1); OptoReg::Name reg2 = warp_incoming_stk_arg(vm_parm_regs[i].second()); if( OptoReg::is_valid(reg2)) _calling_convention_mask[i].Insert(reg2); // Saved biased stack-slot register number _parm_regs[i].set_pair(reg2, reg1); } // Finally, make sure the incoming arguments take up an even number of // words, in case the arguments or locals need to contain doubleword stack // slots. The rest of the system assumes that stack slot pairs (in // particular, in the spill area) which look aligned will in fact be // aligned relative to the stack pointer in the target machine. Double // stack slots will always be allocated aligned. _new_SP = OptoReg::Name(round_to(_in_arg_limit, RegMask::SlotsPerLong)); // Compute highest outgoing stack argument as // _new_SP + out_preserve_stack_slots + max(outgoing argument size). _out_arg_limit = OptoReg::add(_new_SP, C->out_preserve_stack_slots()); assert( is_even(_out_arg_limit), "out_preserve must be even" ); if (!RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1))) { // the compiler cannot represent this method's calling sequence C->record_method_not_compilable("must be able to represent all call arguments in reg mask"); } if (C->failing()) return; // bailed out on incoming arg failure // --------------- // Collect roots of matcher trees. Every node for which // _shared[_idx] is cleared is guaranteed to not be shared, and thus // can be a valid interior of some tree. find_shared( C->root() ); find_shared( C->top() ); C->print_method(PHASE_BEFORE_MATCHING); // Create new ideal node ConP #NULL even if it does exist in old space // to avoid false sharing if the corresponding mach node is not used. // The corresponding mach node is only used in rare cases for derived // pointers. Node* new_ideal_null = ConNode::make(C, TypePtr::NULL_PTR); // Swap out to old-space; emptying new-space Arena *old = C->node_arena()->move_contents(C->old_arena()); // Save debug and profile information for nodes in old space: _old_node_note_array = C->node_note_array(); if (_old_node_note_array != NULL) { C->set_node_note_array(new(C->comp_arena()) GrowableArray (C->comp_arena(), _old_node_note_array->length(), 0, NULL)); } // Pre-size the new_node table to avoid the need for range checks. grow_new_node_array(C->unique()); // Reset node counter so MachNodes start with _idx at 0 int live_nodes = C->live_nodes(); C->set_unique(0); C->reset_dead_node_list(); // Recursively match trees from old space into new space. // Correct leaves of new-space Nodes; they point to old-space. _visited.Clear(); // Clear visit bits for xform call C->set_cached_top_node(xform( C->top(), live_nodes)); if (!C->failing()) { Node* xroot = xform( C->root(), 1 ); if (xroot == NULL) { Matcher::soft_match_failure(); // recursive matching process failed C->record_method_not_compilable("instruction match failed"); } else { // During matching shared constants were attached to C->root() // because xroot wasn't available yet, so transfer the uses to // the xroot. for( DUIterator_Fast jmax, j = C->root()->fast_outs(jmax); j < jmax; j++ ) { Node* n = C->root()->fast_out(j); if (C->node_arena()->contains(n)) { assert(n->in(0) == C->root(), "should be control user"); n->set_req(0, xroot); --j; --jmax; } } // Generate new mach node for ConP #NULL assert(new_ideal_null != NULL, "sanity"); _mach_null = match_tree(new_ideal_null); // Don't set control, it will confuse GCM since there are no uses. // The control will be set when this node is used first time // in find_base_for_derived(). assert(_mach_null != NULL, ""); C->set_root(xroot->is_Root() ? xroot->as_Root() : NULL); #ifdef ASSERT verify_new_nodes_only(xroot); #endif } } if (C->top() == NULL || C->root() == NULL) { C->record_method_not_compilable("graph lost"); // %%% cannot happen? } if (C->failing()) { // delete old; old->destruct_contents(); return; } assert( C->top(), "" ); assert( C->root(), "" ); validate_null_checks(); // Now smoke old-space NOT_DEBUG( old->destruct_contents() ); // ------------------------ // Set up save-on-entry registers Fixup_Save_On_Entry( ); } //------------------------------Fixup_Save_On_Entry---------------------------- // The stated purpose of this routine is to take care of save-on-entry // registers. However, the overall goal of the Match phase is to convert into // machine-specific instructions which have RegMasks to guide allocation. // So what this procedure really does is put a valid RegMask on each input // to the machine-specific variations of all Return, TailCall and Halt // instructions. It also adds edgs to define the save-on-entry values (and of // course gives them a mask). static RegMask *init_input_masks( uint size, RegMask &ret_adr, RegMask &fp ) { RegMask *rms = NEW_RESOURCE_ARRAY( RegMask, size ); // Do all the pre-defined register masks rms[TypeFunc::Control ] = RegMask::Empty; rms[TypeFunc::I_O ] = RegMask::Empty; rms[TypeFunc::Memory ] = RegMask::Empty; rms[TypeFunc::ReturnAdr] = ret_adr; rms[TypeFunc::FramePtr ] = fp; return rms; } //---------------------------init_first_stack_mask----------------------------- // Create the initial stack mask used by values spilling to the stack. // Disallow any debug info in outgoing argument areas by setting the // initial mask accordingly. void Matcher::init_first_stack_mask() { // Allocate storage for spill masks as masks for the appropriate load type. RegMask *rms = (RegMask*)C->comp_arena()->Amalloc_D(sizeof(RegMask) * (3*6+4)); idealreg2spillmask [Op_RegN] = &rms[0]; idealreg2spillmask [Op_RegI] = &rms[1]; idealreg2spillmask [Op_RegL] = &rms[2]; idealreg2spillmask [Op_RegF] = &rms[3]; idealreg2spillmask [Op_RegD] = &rms[4]; idealreg2spillmask [Op_RegP] = &rms[5]; idealreg2debugmask [Op_RegN] = &rms[6]; idealreg2debugmask [Op_RegI] = &rms[7]; idealreg2debugmask [Op_RegL] = &rms[8]; idealreg2debugmask [Op_RegF] = &rms[9]; idealreg2debugmask [Op_RegD] = &rms[10]; idealreg2debugmask [Op_RegP] = &rms[11]; idealreg2mhdebugmask[Op_RegN] = &rms[12]; idealreg2mhdebugmask[Op_RegI] = &rms[13]; idealreg2mhdebugmask[Op_RegL] = &rms[14]; idealreg2mhdebugmask[Op_RegF] = &rms[15]; idealreg2mhdebugmask[Op_RegD] = &rms[16]; idealreg2mhdebugmask[Op_RegP] = &rms[17]; idealreg2spillmask [Op_VecS] = &rms[18]; idealreg2spillmask [Op_VecD] = &rms[19]; idealreg2spillmask [Op_VecX] = &rms[20]; idealreg2spillmask [Op_VecY] = &rms[21]; OptoReg::Name i; // At first, start with the empty mask C->FIRST_STACK_mask().Clear(); // Add in the incoming argument area OptoReg::Name init_in = OptoReg::add(_old_SP, C->out_preserve_stack_slots()); for (i = init_in; i < _in_arg_limit; i = OptoReg::add(i,1)) { C->FIRST_STACK_mask().Insert(i); } // Add in all bits past the outgoing argument area guarantee(RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1)), "must be able to represent all call arguments in reg mask"); OptoReg::Name init = _out_arg_limit; for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1)) { C->FIRST_STACK_mask().Insert(i); } // Finally, set the "infinite stack" bit. C->FIRST_STACK_mask().set_AllStack(); // Make spill masks. Registers for their class, plus FIRST_STACK_mask. RegMask aligned_stack_mask = C->FIRST_STACK_mask(); // Keep spill masks aligned. aligned_stack_mask.clear_to_pairs(); assert(aligned_stack_mask.is_AllStack(), "should be infinite stack"); *idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP]; #ifdef _LP64 *idealreg2spillmask[Op_RegN] = *idealreg2regmask[Op_RegN]; idealreg2spillmask[Op_RegN]->OR(C->FIRST_STACK_mask()); idealreg2spillmask[Op_RegP]->OR(aligned_stack_mask); #else idealreg2spillmask[Op_RegP]->OR(C->FIRST_STACK_mask()); #endif *idealreg2spillmask[Op_RegI] = *idealreg2regmask[Op_RegI]; idealreg2spillmask[Op_RegI]->OR(C->FIRST_STACK_mask()); *idealreg2spillmask[Op_RegL] = *idealreg2regmask[Op_RegL]; idealreg2spillmask[Op_RegL]->OR(aligned_stack_mask); *idealreg2spillmask[Op_RegF] = *idealreg2regmask[Op_RegF]; idealreg2spillmask[Op_RegF]->OR(C->FIRST_STACK_mask()); *idealreg2spillmask[Op_RegD] = *idealreg2regmask[Op_RegD]; idealreg2spillmask[Op_RegD]->OR(aligned_stack_mask); if (Matcher::vector_size_supported(T_BYTE,4)) { *idealreg2spillmask[Op_VecS] = *idealreg2regmask[Op_VecS]; idealreg2spillmask[Op_VecS]->OR(C->FIRST_STACK_mask()); } if (Matcher::vector_size_supported(T_FLOAT,2)) { // For VecD we need dual alignment and 8 bytes (2 slots) for spills. // RA guarantees such alignment since it is needed for Double and Long values. *idealreg2spillmask[Op_VecD] = *idealreg2regmask[Op_VecD]; idealreg2spillmask[Op_VecD]->OR(aligned_stack_mask); } if (Matcher::vector_size_supported(T_FLOAT,4)) { // For VecX we need quadro alignment and 16 bytes (4 slots) for spills. // // RA can use input arguments stack slots for spills but until RA // we don't know frame size and offset of input arg stack slots. // // Exclude last input arg stack slots to avoid spilling vectors there // otherwise vector spills could stomp over stack slots in caller frame. OptoReg::Name in = OptoReg::add(_in_arg_limit, -1); for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecX); k++) { aligned_stack_mask.Remove(in); in = OptoReg::add(in, -1); } aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecX); assert(aligned_stack_mask.is_AllStack(), "should be infinite stack"); *idealreg2spillmask[Op_VecX] = *idealreg2regmask[Op_VecX]; idealreg2spillmask[Op_VecX]->OR(aligned_stack_mask); } if (Matcher::vector_size_supported(T_FLOAT,8)) { // For VecY we need octo alignment and 32 bytes (8 slots) for spills. OptoReg::Name in = OptoReg::add(_in_arg_limit, -1); for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecY); k++) { aligned_stack_mask.Remove(in); in = OptoReg::add(in, -1); } aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecY); assert(aligned_stack_mask.is_AllStack(), "should be infinite stack"); *idealreg2spillmask[Op_VecY] = *idealreg2regmask[Op_VecY]; idealreg2spillmask[Op_VecY]->OR(aligned_stack_mask); } if (UseFPUForSpilling) { // This mask logic assumes that the spill operations are // symmetric and that the registers involved are the same size. // On sparc for instance we may have to use 64 bit moves will // kill 2 registers when used with F0-F31. idealreg2spillmask[Op_RegI]->OR(*idealreg2regmask[Op_RegF]); idealreg2spillmask[Op_RegF]->OR(*idealreg2regmask[Op_RegI]); #ifdef _LP64 idealreg2spillmask[Op_RegN]->OR(*idealreg2regmask[Op_RegF]); idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]); idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]); idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegD]); #else idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegF]); #ifdef ARM // ARM has support for moving 64bit values between a pair of // integer registers and a double register idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]); idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]); #endif #endif } // Make up debug masks. Any spill slot plus callee-save registers. // Caller-save registers are assumed to be trashable by the various // inline-cache fixup routines. *idealreg2debugmask [Op_RegN]= *idealreg2spillmask[Op_RegN]; *idealreg2debugmask [Op_RegI]= *idealreg2spillmask[Op_RegI]; *idealreg2debugmask [Op_RegL]= *idealreg2spillmask[Op_RegL]; *idealreg2debugmask [Op_RegF]= *idealreg2spillmask[Op_RegF]; *idealreg2debugmask [Op_RegD]= *idealreg2spillmask[Op_RegD]; *idealreg2debugmask [Op_RegP]= *idealreg2spillmask[Op_RegP]; *idealreg2mhdebugmask[Op_RegN]= *idealreg2spillmask[Op_RegN]; *idealreg2mhdebugmask[Op_RegI]= *idealreg2spillmask[Op_RegI]; *idealreg2mhdebugmask[Op_RegL]= *idealreg2spillmask[Op_RegL]; *idealreg2mhdebugmask[Op_RegF]= *idealreg2spillmask[Op_RegF]; *idealreg2mhdebugmask[Op_RegD]= *idealreg2spillmask[Op_RegD]; *idealreg2mhdebugmask[Op_RegP]= *idealreg2spillmask[Op_RegP]; // Prevent stub compilations from attempting to reference // callee-saved registers from debug info bool exclude_soe = !Compile::current()->is_method_compilation(); for( i=OptoReg::Name(0); iRemove(i); idealreg2debugmask [Op_RegI]->Remove(i); // Exclude save-on-call idealreg2debugmask [Op_RegL]->Remove(i); // registers from debug idealreg2debugmask [Op_RegF]->Remove(i); // masks idealreg2debugmask [Op_RegD]->Remove(i); idealreg2debugmask [Op_RegP]->Remove(i); idealreg2mhdebugmask[Op_RegN]->Remove(i); idealreg2mhdebugmask[Op_RegI]->Remove(i); idealreg2mhdebugmask[Op_RegL]->Remove(i); idealreg2mhdebugmask[Op_RegF]->Remove(i); idealreg2mhdebugmask[Op_RegD]->Remove(i); idealreg2mhdebugmask[Op_RegP]->Remove(i); } } // Subtract the register we use to save the SP for MethodHandle // invokes to from the debug mask. const RegMask save_mask = method_handle_invoke_SP_save_mask(); idealreg2mhdebugmask[Op_RegN]->SUBTRACT(save_mask); idealreg2mhdebugmask[Op_RegI]->SUBTRACT(save_mask); idealreg2mhdebugmask[Op_RegL]->SUBTRACT(save_mask); idealreg2mhdebugmask[Op_RegF]->SUBTRACT(save_mask); idealreg2mhdebugmask[Op_RegD]->SUBTRACT(save_mask); idealreg2mhdebugmask[Op_RegP]->SUBTRACT(save_mask); } //---------------------------is_save_on_entry---------------------------------- bool Matcher::is_save_on_entry( int reg ) { return _register_save_policy[reg] == 'E' || _register_save_policy[reg] == 'A' || // Save-on-entry register? // Also save argument registers in the trampolining stubs (C->save_argument_registers() && is_spillable_arg(reg)); } //---------------------------Fixup_Save_On_Entry------------------------------- void Matcher::Fixup_Save_On_Entry( ) { init_first_stack_mask(); Node *root = C->root(); // Short name for root // Count number of save-on-entry registers. uint soe_cnt = number_of_saved_registers(); uint i; // Find the procedure Start Node StartNode *start = C->start(); assert( start, "Expect a start node" ); // Save argument registers in the trampolining stubs if( C->save_argument_registers() ) for( i = 0; i < _last_Mach_Reg; i++ ) if( is_spillable_arg(i) ) soe_cnt++; // Input RegMask array shared by all Returns. // The type for doubles and longs has a count of 2, but // there is only 1 returned value uint ret_edge_cnt = TypeFunc::Parms + ((C->tf()->range()->cnt() == TypeFunc::Parms) ? 0 : 1); RegMask *ret_rms = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask ); // Returns have 0 or 1 returned values depending on call signature. // Return register is specified by return_value in the AD file. if (ret_edge_cnt > TypeFunc::Parms) ret_rms[TypeFunc::Parms+0] = _return_value_mask; // Input RegMask array shared by all Rethrows. uint reth_edge_cnt = TypeFunc::Parms+1; RegMask *reth_rms = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask ); // Rethrow takes exception oop only, but in the argument 0 slot. reth_rms[TypeFunc::Parms] = mreg2regmask[find_receiver(false)]; #ifdef _LP64 // Need two slots for ptrs in 64-bit land reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(find_receiver(false)),1)); #endif // Input RegMask array shared by all TailCalls uint tail_call_edge_cnt = TypeFunc::Parms+2; RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask ); // Input RegMask array shared by all TailJumps uint tail_jump_edge_cnt = TypeFunc::Parms+2; RegMask *tail_jump_rms = init_input_masks( tail_jump_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask ); // TailCalls have 2 returned values (target & moop), whose masks come // from the usual MachNode/MachOper mechanism. Find a sample // TailCall to extract these masks and put the correct masks into // the tail_call_rms array. for( i=1; i < root->req(); i++ ) { MachReturnNode *m = root->in(i)->as_MachReturn(); if( m->ideal_Opcode() == Op_TailCall ) { tail_call_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0); tail_call_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1); break; } } // TailJumps have 2 returned values (target & ex_oop), whose masks come // from the usual MachNode/MachOper mechanism. Find a sample // TailJump to extract these masks and put the correct masks into // the tail_jump_rms array. for( i=1; i < root->req(); i++ ) { MachReturnNode *m = root->in(i)->as_MachReturn(); if( m->ideal_Opcode() == Op_TailJump ) { tail_jump_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0); tail_jump_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1); break; } } // Input RegMask array shared by all Halts uint halt_edge_cnt = TypeFunc::Parms; RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask ); // Capture the return input masks into each exit flavor for( i=1; i < root->req(); i++ ) { MachReturnNode *exit = root->in(i)->as_MachReturn(); switch( exit->ideal_Opcode() ) { case Op_Return : exit->_in_rms = ret_rms; break; case Op_Rethrow : exit->_in_rms = reth_rms; break; case Op_TailCall : exit->_in_rms = tail_call_rms; break; case Op_TailJump : exit->_in_rms = tail_jump_rms; break; case Op_Halt : exit->_in_rms = halt_rms; break; default : ShouldNotReachHere(); } } // Next unused projection number from Start. int proj_cnt = C->tf()->domain()->cnt(); // Do all the save-on-entry registers. Make projections from Start for // them, and give them a use at the exit points. To the allocator, they // look like incoming register arguments. for( i = 0; i < _last_Mach_Reg; i++ ) { if( is_save_on_entry(i) ) { // Add the save-on-entry to the mask array ret_rms [ ret_edge_cnt] = mreg2regmask[i]; reth_rms [ reth_edge_cnt] = mreg2regmask[i]; tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i]; tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i]; // Halts need the SOE registers, but only in the stack as debug info. // A just-prior uncommon-trap or deoptimization will use the SOE regs. halt_rms [ halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]]; Node *mproj; // Is this a RegF low half of a RegD? Double up 2 adjacent RegF's // into a single RegD. if( (i&1) == 0 && _register_save_type[i ] == Op_RegF && _register_save_type[i+1] == Op_RegF && is_save_on_entry(i+1) ) { // Add other bit for double ret_rms [ ret_edge_cnt].Insert(OptoReg::Name(i+1)); reth_rms [ reth_edge_cnt].Insert(OptoReg::Name(i+1)); tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1)); tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1)); halt_rms [ halt_edge_cnt].Insert(OptoReg::Name(i+1)); mproj = new (C) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegD ); proj_cnt += 2; // Skip 2 for doubles } else if( (i&1) == 1 && // Else check for high half of double _register_save_type[i-1] == Op_RegF && _register_save_type[i ] == Op_RegF && is_save_on_entry(i-1) ) { ret_rms [ ret_edge_cnt] = RegMask::Empty; reth_rms [ reth_edge_cnt] = RegMask::Empty; tail_call_rms[tail_call_edge_cnt] = RegMask::Empty; tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty; halt_rms [ halt_edge_cnt] = RegMask::Empty; mproj = C->top(); } // Is this a RegI low half of a RegL? Double up 2 adjacent RegI's // into a single RegL. else if( (i&1) == 0 && _register_save_type[i ] == Op_RegI && _register_save_type[i+1] == Op_RegI && is_save_on_entry(i+1) ) { // Add other bit for long ret_rms [ ret_edge_cnt].Insert(OptoReg::Name(i+1)); reth_rms [ reth_edge_cnt].Insert(OptoReg::Name(i+1)); tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1)); tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1)); halt_rms [ halt_edge_cnt].Insert(OptoReg::Name(i+1)); mproj = new (C) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegL ); proj_cnt += 2; // Skip 2 for longs } else if( (i&1) == 1 && // Else check for high half of long _register_save_type[i-1] == Op_RegI && _register_save_type[i ] == Op_RegI && is_save_on_entry(i-1) ) { ret_rms [ ret_edge_cnt] = RegMask::Empty; reth_rms [ reth_edge_cnt] = RegMask::Empty; tail_call_rms[tail_call_edge_cnt] = RegMask::Empty; tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty; halt_rms [ halt_edge_cnt] = RegMask::Empty; mproj = C->top(); } else { // Make a projection for it off the Start mproj = new (C) MachProjNode( start, proj_cnt++, ret_rms[ret_edge_cnt], _register_save_type[i] ); } ret_edge_cnt ++; reth_edge_cnt ++; tail_call_edge_cnt ++; tail_jump_edge_cnt ++; halt_edge_cnt ++; // Add a use of the SOE register to all exit paths for( uint j=1; j < root->req(); j++ ) root->in(j)->add_req(mproj); } // End of if a save-on-entry register } // End of for all machine registers } //------------------------------init_spill_mask-------------------------------- void Matcher::init_spill_mask( Node *ret ) { if( idealreg2regmask[Op_RegI] ) return; // One time only init OptoReg::c_frame_pointer = c_frame_pointer(); c_frame_ptr_mask = c_frame_pointer(); #ifdef _LP64 // pointers are twice as big c_frame_ptr_mask.Insert(OptoReg::add(c_frame_pointer(),1)); #endif // Start at OptoReg::stack0() STACK_ONLY_mask.Clear(); OptoReg::Name init = OptoReg::stack2reg(0); // STACK_ONLY_mask is all stack bits OptoReg::Name i; for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1)) STACK_ONLY_mask.Insert(i); // Also set the "infinite stack" bit. STACK_ONLY_mask.set_AllStack(); // Copy the register names over into the shared world for( i=OptoReg::Name(0); iin(TypeFunc::FramePtr); Node *mem = ret->in(TypeFunc::Memory); const TypePtr* atp = TypePtr::BOTTOM; // Share frame pointer while making spill ops set_shared(fp); // Compute generic short-offset Loads #ifdef _LP64 MachNode *spillCP = match_tree(new (C) LoadNNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM,MemNode::unordered)); #endif MachNode *spillI = match_tree(new (C) LoadINode(NULL,mem,fp,atp,TypeInt::INT,MemNode::unordered)); MachNode *spillL = match_tree(new (C) LoadLNode(NULL,mem,fp,atp,TypeLong::LONG,MemNode::unordered, LoadNode::DependsOnlyOnTest,false)); MachNode *spillF = match_tree(new (C) LoadFNode(NULL,mem,fp,atp,Type::FLOAT,MemNode::unordered)); MachNode *spillD = match_tree(new (C) LoadDNode(NULL,mem,fp,atp,Type::DOUBLE,MemNode::unordered)); MachNode *spillP = match_tree(new (C) LoadPNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM,MemNode::unordered)); assert(spillI != NULL && spillL != NULL && spillF != NULL && spillD != NULL && spillP != NULL, ""); // Get the ADLC notion of the right regmask, for each basic type. #ifdef _LP64 idealreg2regmask[Op_RegN] = &spillCP->out_RegMask(); #endif idealreg2regmask[Op_RegI] = &spillI->out_RegMask(); idealreg2regmask[Op_RegL] = &spillL->out_RegMask(); idealreg2regmask[Op_RegF] = &spillF->out_RegMask(); idealreg2regmask[Op_RegD] = &spillD->out_RegMask(); idealreg2regmask[Op_RegP] = &spillP->out_RegMask(); // Vector regmasks. if (Matcher::vector_size_supported(T_BYTE,4)) { TypeVect::VECTS = TypeVect::make(T_BYTE, 4); MachNode *spillVectS = match_tree(new (C) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTS)); idealreg2regmask[Op_VecS] = &spillVectS->out_RegMask(); } if (Matcher::vector_size_supported(T_FLOAT,2)) { MachNode *spillVectD = match_tree(new (C) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTD)); idealreg2regmask[Op_VecD] = &spillVectD->out_RegMask(); } if (Matcher::vector_size_supported(T_FLOAT,4)) { MachNode *spillVectX = match_tree(new (C) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTX)); idealreg2regmask[Op_VecX] = &spillVectX->out_RegMask(); } if (Matcher::vector_size_supported(T_FLOAT,8)) { MachNode *spillVectY = match_tree(new (C) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTY)); idealreg2regmask[Op_VecY] = &spillVectY->out_RegMask(); } } #ifdef ASSERT static void match_alias_type(Compile* C, Node* n, Node* m) { if (!VerifyAliases) return; // do not go looking for trouble by default const TypePtr* nat = n->adr_type(); const TypePtr* mat = m->adr_type(); int nidx = C->get_alias_index(nat); int midx = C->get_alias_index(mat); // Detune the assert for cases like (AndI 0xFF (LoadB p)). if (nidx == Compile::AliasIdxTop && midx >= Compile::AliasIdxRaw) { for (uint i = 1; i < n->req(); i++) { Node* n1 = n->in(i); const TypePtr* n1at = n1->adr_type(); if (n1at != NULL) { nat = n1at; nidx = C->get_alias_index(n1at); } } } // %%% Kludgery. Instead, fix ideal adr_type methods for all these cases: if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxRaw) { switch (n->Opcode()) { case Op_PrefetchRead: case Op_PrefetchWrite: case Op_PrefetchAllocation: nidx = Compile::AliasIdxRaw; nat = TypeRawPtr::BOTTOM; break; } } if (nidx == Compile::AliasIdxRaw && midx == Compile::AliasIdxTop) { switch (n->Opcode()) { case Op_ClearArray: midx = Compile::AliasIdxRaw; mat = TypeRawPtr::BOTTOM; break; } } if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxBot) { switch (n->Opcode()) { case Op_Return: case Op_Rethrow: case Op_Halt: case Op_TailCall: case Op_TailJump: nidx = Compile::AliasIdxBot; nat = TypePtr::BOTTOM; break; } } if (nidx == Compile::AliasIdxBot && midx == Compile::AliasIdxTop) { switch (n->Opcode()) { case Op_StrComp: case Op_StrEquals: case Op_StrIndexOf: case Op_AryEq: case Op_MemBarVolatile: case Op_MemBarCPUOrder: // %%% these ideals should have narrower adr_type? case Op_EncodeISOArray: nidx = Compile::AliasIdxTop; nat = NULL; break; } } if (nidx != midx) { if (PrintOpto || (PrintMiscellaneous && (WizardMode || Verbose))) { tty->print_cr("==== Matcher alias shift %d => %d", nidx, midx); n->dump(); m->dump(); } assert(C->subsume_loads() && C->must_alias(nat, midx), "must not lose alias info when matching"); } } #endif //------------------------------MStack----------------------------------------- // State and MStack class used in xform() and find_shared() iterative methods. enum Node_State { Pre_Visit, // node has to be pre-visited Visit, // visit node Post_Visit, // post-visit node Alt_Post_Visit // alternative post-visit path }; class MStack: public Node_Stack { public: MStack(int size) : Node_Stack(size) { } void push(Node *n, Node_State ns) { Node_Stack::push(n, (uint)ns); } void push(Node *n, Node_State ns, Node *parent, int indx) { ++_inode_top; if ((_inode_top + 1) >= _inode_max) grow(); _inode_top->node = parent; _inode_top->indx = (uint)indx; ++_inode_top; _inode_top->node = n; _inode_top->indx = (uint)ns; } Node *parent() { pop(); return node(); } Node_State state() const { return (Node_State)index(); } void set_state(Node_State ns) { set_index((uint)ns); } }; //------------------------------xform------------------------------------------ // Given a Node in old-space, Match him (Label/Reduce) to produce a machine // Node in new-space. Given a new-space Node, recursively walk his children. Node *Matcher::transform( Node *n ) { ShouldNotCallThis(); return n; } Node *Matcher::xform( Node *n, int max_stack ) { // Use one stack to keep both: child's node/state and parent's node/index MStack mstack(max_stack * 2 * 2); // usually: C->live_nodes() * 2 * 2 mstack.push(n, Visit, NULL, -1); // set NULL as parent to indicate root while (mstack.is_nonempty()) { C->check_node_count(NodeLimitFudgeFactor, "too many nodes matching instructions"); if (C->failing()) return NULL; n = mstack.node(); // Leave node on stack Node_State nstate = mstack.state(); if (nstate == Visit) { mstack.set_state(Post_Visit); Node *oldn = n; // Old-space or new-space check if (!C->node_arena()->contains(n)) { // Old space! Node* m; if (has_new_node(n)) { // Not yet Label/Reduced m = new_node(n); } else { if (!is_dontcare(n)) { // Matcher can match this guy // Calls match special. They match alone with no children. // Their children, the incoming arguments, match normally. m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n); if (C->failing()) return NULL; if (m == NULL) { Matcher::soft_match_failure(); return NULL; } } else { // Nothing the matcher cares about if (n->is_Proj() && n->in(0) != NULL && n->in(0)->is_Multi()) { // Projections? // Convert to machine-dependent projection m = n->in(0)->as_Multi()->match( n->as_Proj(), this ); #ifdef ASSERT _new2old_map.map(m->_idx, n); #endif if (m->in(0) != NULL) // m might be top collect_null_checks(m, n); } else { // Else just a regular 'ol guy m = n->clone(); // So just clone into new-space #ifdef ASSERT _new2old_map.map(m->_idx, n); #endif // Def-Use edges will be added incrementally as Uses // of this node are matched. assert(m->outcnt() == 0, "no Uses of this clone yet"); } } set_new_node(n, m); // Map old to new if (_old_node_note_array != NULL) { Node_Notes* nn = C->locate_node_notes(_old_node_note_array, n->_idx); C->set_node_notes_at(m->_idx, nn); } debug_only(match_alias_type(C, n, m)); } n = m; // n is now a new-space node mstack.set_node(n); } // New space! if (_visited.test_set(n->_idx)) continue; // while(mstack.is_nonempty()) int i; // Put precedence edges on stack first (match them last). for (i = oldn->req(); (uint)i < oldn->len(); i++) { Node *m = oldn->in(i); if (m == NULL) break; // set -1 to call add_prec() instead of set_req() during Step1 mstack.push(m, Visit, n, -1); } // For constant debug info, I'd rather have unmatched constants. int cnt = n->req(); JVMState* jvms = n->jvms(); int debug_cnt = jvms ? jvms->debug_start() : cnt; // Now do only debug info. Clone constants rather than matching. // Constants are represented directly in the debug info without // the need for executable machine instructions. // Monitor boxes are also represented directly. for (i = cnt - 1; i >= debug_cnt; --i) { // For all debug inputs do Node *m = n->in(i); // Get input int op = m->Opcode(); assert((op == Op_BoxLock) == jvms->is_monitor_use(i), "boxes only at monitor sites"); if( op == Op_ConI || op == Op_ConP || op == Op_ConN || op == Op_ConNKlass || op == Op_ConF || op == Op_ConD || op == Op_ConL // || op == Op_BoxLock // %%%% enable this and remove (+++) in chaitin.cpp ) { m = m->clone(); #ifdef ASSERT _new2old_map.map(m->_idx, n); #endif mstack.push(m, Post_Visit, n, i); // Don't need to visit mstack.push(m->in(0), Visit, m, 0); } else { mstack.push(m, Visit, n, i); } } // And now walk his children, and convert his inputs to new-space. for( ; i >= 0; --i ) { // For all normal inputs do Node *m = n->in(i); // Get input if(m != NULL) mstack.push(m, Visit, n, i); } } else if (nstate == Post_Visit) { // Set xformed input Node *p = mstack.parent(); if (p != NULL) { // root doesn't have parent int i = (int)mstack.index(); if (i >= 0) p->set_req(i, n); // required input else if (i == -1) p->add_prec(n); // precedence input else ShouldNotReachHere(); } mstack.pop(); // remove processed node from stack } else { ShouldNotReachHere(); } } // while (mstack.is_nonempty()) return n; // Return new-space Node } //------------------------------warp_outgoing_stk_arg------------------------ OptoReg::Name Matcher::warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ) { // Convert outgoing argument location to a pre-biased stack offset if (reg->is_stack()) { OptoReg::Name warped = reg->reg2stack(); // Adjust the stack slot offset to be the register number used // by the allocator. warped = OptoReg::add(begin_out_arg_area, warped); // Keep track of the largest numbered stack slot used for an arg. // Largest used slot per call-site indicates the amount of stack // that is killed by the call. if( warped >= out_arg_limit_per_call ) out_arg_limit_per_call = OptoReg::add(warped,1); if (!RegMask::can_represent_arg(warped)) { C->record_method_not_compilable_all_tiers("unsupported calling sequence"); return OptoReg::Bad; } return warped; } return OptoReg::as_OptoReg(reg); } //------------------------------match_sfpt------------------------------------- // Helper function to match call instructions. Calls match special. // They match alone with no children. Their children, the incoming // arguments, match normally. MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) { MachSafePointNode *msfpt = NULL; MachCallNode *mcall = NULL; uint cnt; // Split out case for SafePoint vs Call CallNode *call; const TypeTuple *domain; ciMethod* method = NULL; bool is_method_handle_invoke = false; // for special kill effects if( sfpt->is_Call() ) { call = sfpt->as_Call(); domain = call->tf()->domain(); cnt = domain->cnt(); // Match just the call, nothing else MachNode *m = match_tree(call); if (C->failing()) return NULL; if( m == NULL ) { Matcher::soft_match_failure(); return NULL; } // Copy data from the Ideal SafePoint to the machine version mcall = m->as_MachCall(); mcall->set_tf( call->tf()); mcall->set_entry_point(call->entry_point()); mcall->set_cnt( call->cnt()); if( mcall->is_MachCallJava() ) { MachCallJavaNode *mcall_java = mcall->as_MachCallJava(); const CallJavaNode *call_java = call->as_CallJava(); method = call_java->method(); mcall_java->_method = method; mcall_java->_bci = call_java->_bci; mcall_java->_optimized_virtual = call_java->is_optimized_virtual(); is_method_handle_invoke = call_java->is_method_handle_invoke(); mcall_java->_method_handle_invoke = is_method_handle_invoke; if (is_method_handle_invoke) { C->set_has_method_handle_invokes(true); } if( mcall_java->is_MachCallStaticJava() ) mcall_java->as_MachCallStaticJava()->_name = call_java->as_CallStaticJava()->_name; if( mcall_java->is_MachCallDynamicJava() ) mcall_java->as_MachCallDynamicJava()->_vtable_index = call_java->as_CallDynamicJava()->_vtable_index; } else if( mcall->is_MachCallRuntime() ) { mcall->as_MachCallRuntime()->_name = call->as_CallRuntime()->_name; } msfpt = mcall; } // This is a non-call safepoint else { call = NULL; domain = NULL; MachNode *mn = match_tree(sfpt); if (C->failing()) return NULL; msfpt = mn->as_MachSafePoint(); cnt = TypeFunc::Parms; } // Advertise the correct memory effects (for anti-dependence computation). msfpt->set_adr_type(sfpt->adr_type()); // Allocate a private array of RegMasks. These RegMasks are not shared. msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt ); // Empty them all. memset( msfpt->_in_rms, 0, sizeof(RegMask)*cnt ); // Do all the pre-defined non-Empty register masks msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask; msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask; // Place first outgoing argument can possibly be put. OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots()); assert( is_even(begin_out_arg_area), "" ); // Compute max outgoing register number per call site. OptoReg::Name out_arg_limit_per_call = begin_out_arg_area; // Calls to C may hammer extra stack slots above and beyond any arguments. // These are usually backing store for register arguments for varargs. if( call != NULL && call->is_CallRuntime() ) out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed()); // Do the normal argument list (parameters) register masks int argcnt = cnt - TypeFunc::Parms; if( argcnt > 0 ) { // Skip it all if we have no args BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, argcnt ); VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt ); int i; for( i = 0; i < argcnt; i++ ) { sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type(); } // V-call to pick proper calling convention call->calling_convention( sig_bt, parm_regs, argcnt ); #ifdef ASSERT // Sanity check users' calling convention. Really handy during // the initial porting effort. Fairly expensive otherwise. { for (int i = 0; iis_valid() && !parm_regs[i].second()->is_valid() ) continue; VMReg reg1 = parm_regs[i].first(); VMReg reg2 = parm_regs[i].second(); for (int j = 0; j < i; j++) { if( !parm_regs[j].first()->is_valid() && !parm_regs[j].second()->is_valid() ) continue; VMReg reg3 = parm_regs[j].first(); VMReg reg4 = parm_regs[j].second(); if( !reg1->is_valid() ) { assert( !reg2->is_valid(), "valid halvsies" ); } else if( !reg3->is_valid() ) { assert( !reg4->is_valid(), "valid halvsies" ); } else { assert( reg1 != reg2, "calling conv. must produce distinct regs"); assert( reg1 != reg3, "calling conv. must produce distinct regs"); assert( reg1 != reg4, "calling conv. must produce distinct regs"); assert( reg2 != reg3, "calling conv. must produce distinct regs"); assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs"); assert( reg3 != reg4, "calling conv. must produce distinct regs"); } } } } #endif // Visit each argument. Compute its outgoing register mask. // Return results now can have 2 bits returned. // Compute max over all outgoing arguments both per call-site // and over the entire method. for( i = 0; i < argcnt; i++ ) { // Address of incoming argument mask to fill in RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms]; if( !parm_regs[i].first()->is_valid() && !parm_regs[i].second()->is_valid() ) { continue; // Avoid Halves } // Grab first register, adjust stack slots and insert in mask. OptoReg::Name reg1 = warp_outgoing_stk_arg(parm_regs[i].first(), begin_out_arg_area, out_arg_limit_per_call ); if (OptoReg::is_valid(reg1)) rm->Insert( reg1 ); // Grab second register (if any), adjust stack slots and insert in mask. OptoReg::Name reg2 = warp_outgoing_stk_arg(parm_regs[i].second(), begin_out_arg_area, out_arg_limit_per_call ); if (OptoReg::is_valid(reg2)) rm->Insert( reg2 ); } // End of for all arguments // Compute number of stack slots needed to restore stack in case of // Pascal-style argument popping. mcall->_argsize = out_arg_limit_per_call - begin_out_arg_area; } // Compute the max stack slot killed by any call. These will not be // available for debug info, and will be used to adjust FIRST_STACK_mask // after all call sites have been visited. if( _out_arg_limit < out_arg_limit_per_call) _out_arg_limit = out_arg_limit_per_call; if (mcall) { // Kill the outgoing argument area, including any non-argument holes and // any legacy C-killed slots. Use Fat-Projections to do the killing. // Since the max-per-method covers the max-per-call-site and debug info // is excluded on the max-per-method basis, debug info cannot land in // this killed area. uint r_cnt = mcall->tf()->range()->cnt(); MachProjNode *proj = new (C) MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj ); if (!RegMask::can_represent_arg(OptoReg::Name(out_arg_limit_per_call-1))) { C->record_method_not_compilable_all_tiers("unsupported outgoing calling sequence"); } else { for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++) proj->_rout.Insert(OptoReg::Name(i)); } if (proj->_rout.is_NotEmpty()) { push_projection(proj); } } // Transfer the safepoint information from the call to the mcall // Move the JVMState list msfpt->set_jvms(sfpt->jvms()); for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) { jvms->set_map(sfpt); } // Debug inputs begin just after the last incoming parameter assert((mcall == NULL) || (mcall->jvms() == NULL) || (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt()), ""); // Move the OopMap msfpt->_oop_map = sfpt->_oop_map; // Add additional edges. if (msfpt->mach_constant_base_node_input() != (uint)-1 && !msfpt->is_MachCallLeaf()) { // For these calls we can not add MachConstantBase in expand(), as the // ins are not complete then. msfpt->ins_req(msfpt->mach_constant_base_node_input(), C->mach_constant_base_node()); if (msfpt->jvms() && msfpt->mach_constant_base_node_input() <= msfpt->jvms()->debug_start() + msfpt->_jvmadj) { // We added an edge before jvms, so we must adapt the position of the ins. msfpt->jvms()->adapt_position(+1); } } // Registers killed by the call are set in the local scheduling pass // of Global Code Motion. return msfpt; } //---------------------------match_tree---------------------------------------- // Match a Ideal Node DAG - turn it into a tree; Label & Reduce. Used as part // of the whole-sale conversion from Ideal to Mach Nodes. Also used for // making GotoNodes while building the CFG and in init_spill_mask() to identify // a Load's result RegMask for memoization in idealreg2regmask[] MachNode *Matcher::match_tree( const Node *n ) { assert( n->Opcode() != Op_Phi, "cannot match" ); assert( !n->is_block_start(), "cannot match" ); // Set the mark for all locally allocated State objects. // When this call returns, the _states_arena arena will be reset // freeing all State objects. ResourceMark rm( &_states_arena ); LabelRootDepth = 0; // StoreNodes require their Memory input to match any LoadNodes Node *mem = n->is_Store() ? n->in(MemNode::Memory) : (Node*)1 ; #ifdef ASSERT Node* save_mem_node = _mem_node; _mem_node = n->is_Store() ? (Node*)n : NULL; #endif // State object for root node of match tree // Allocate it on _states_arena - stack allocation can cause stack overflow. State *s = new (&_states_arena) State; s->_kids[0] = NULL; s->_kids[1] = NULL; s->_leaf = (Node*)n; // Label the input tree, allocating labels from top-level arena Label_Root( n, s, n->in(0), mem ); if (C->failing()) return NULL; // The minimum cost match for the whole tree is found at the root State uint mincost = max_juint; uint cost = max_juint; uint i; for( i = 0; i < NUM_OPERANDS; i++ ) { if( s->valid(i) && // valid entry and s->_cost[i] < cost && // low cost and s->_rule[i] >= NUM_OPERANDS ) // not an operand cost = s->_cost[mincost=i]; } if (mincost == max_juint) { #ifndef PRODUCT tty->print("No matching rule for:"); s->dump(); #endif Matcher::soft_match_failure(); return NULL; } // Reduce input tree based upon the state labels to machine Nodes MachNode *m = ReduceInst( s, s->_rule[mincost], mem ); #ifdef ASSERT _old2new_map.map(n->_idx, m); _new2old_map.map(m->_idx, (Node*)n); #endif // Add any Matcher-ignored edges uint cnt = n->req(); uint start = 1; if( mem != (Node*)1 ) start = MemNode::Memory+1; if( n->is_AddP() ) { assert( mem == (Node*)1, "" ); start = AddPNode::Base+1; } for( i = start; i < cnt; i++ ) { if( !n->match_edge(i) ) { if( i < m->req() ) m->ins_req( i, n->in(i) ); else m->add_req( n->in(i) ); } } debug_only( _mem_node = save_mem_node; ) return m; } //------------------------------match_into_reg--------------------------------- // Choose to either match this Node in a register or part of the current // match tree. Return true for requiring a register and false for matching // as part of the current match tree. static bool match_into_reg( const Node *n, Node *m, Node *control, int i, bool shared ) { const Type *t = m->bottom_type(); if (t->singleton()) { // Never force constants into registers. Allow them to match as // constants or registers. Copies of the same value will share // the same register. See find_shared_node. return false; } else { // Not a constant // Stop recursion if they have different Controls. Node* m_control = m->in(0); // Control of load's memory can post-dominates load's control. // So use it since load can't float above its memory. Node* mem_control = (m->is_Load()) ? m->in(MemNode::Memory)->in(0) : NULL; if (control && m_control && control != m_control && control != mem_control) { // Actually, we can live with the most conservative control we // find, if it post-dominates the others. This allows us to // pick up load/op/store trees where the load can float a little // above the store. Node *x = control; const uint max_scan = 6; // Arbitrary scan cutoff uint j; for (j=0; jis_Region()) // Bail out at merge points return true; x = x->in(0); if (x == m_control) // Does 'control' post-dominate break; // m->in(0)? If so, we can use it if (x == mem_control) // Does 'control' post-dominate break; // mem_control? If so, we can use it } if (j == max_scan) // No post-domination before scan end? return true; // Then break the match tree up } if ((m->is_DecodeN() && Matcher::narrow_oop_use_complex_address()) || (m->is_DecodeNKlass() && Matcher::narrow_klass_use_complex_address())) { // These are commonly used in address expressions and can // efficiently fold into them on X64 in some cases. return false; } } // Not forceable cloning. If shared, put it into a register. return shared; } //------------------------------Instruction Selection-------------------------- // Label method walks a "tree" of nodes, using the ADLC generated DFA to match // ideal nodes to machine instructions. Trees are delimited by shared Nodes, // things the Matcher does not match (e.g., Memory), and things with different // Controls (hence forced into different blocks). We pass in the Control // selected for this entire State tree. // The Matcher works on Trees, but an Intel add-to-memory requires a DAG: the // Store and the Load must have identical Memories (as well as identical // pointers). Since the Matcher does not have anything for Memory (and // does not handle DAGs), I have to match the Memory input myself. If the // Tree root is a Store, I require all Loads to have the identical memory. Node *Matcher::Label_Root( const Node *n, State *svec, Node *control, const Node *mem){ // Since Label_Root is a recursive function, its possible that we might run // out of stack space. See bugs 6272980 & 6227033 for more info. LabelRootDepth++; if (LabelRootDepth > MaxLabelRootDepth) { C->record_method_not_compilable_all_tiers("Out of stack space, increase MaxLabelRootDepth"); return NULL; } uint care = 0; // Edges matcher cares about uint cnt = n->req(); uint i = 0; // Examine children for memory state // Can only subsume a child into your match-tree if that child's memory state // is not modified along the path to another input. // It is unsafe even if the other inputs are separate roots. Node *input_mem = NULL; for( i = 1; i < cnt; i++ ) { if( !n->match_edge(i) ) continue; Node *m = n->in(i); // Get ith input assert( m, "expect non-null children" ); if( m->is_Load() ) { if( input_mem == NULL ) { input_mem = m->in(MemNode::Memory); } else if( input_mem != m->in(MemNode::Memory) ) { input_mem = NodeSentinel; } } } for( i = 1; i < cnt; i++ ){// For my children if( !n->match_edge(i) ) continue; Node *m = n->in(i); // Get ith input // Allocate states out of a private arena State *s = new (&_states_arena) State; svec->_kids[care++] = s; assert( care <= 2, "binary only for now" ); // Recursively label the State tree. s->_kids[0] = NULL; s->_kids[1] = NULL; s->_leaf = m; // Check for leaves of the State Tree; things that cannot be a part of // the current tree. If it finds any, that value is matched as a // register operand. If not, then the normal matching is used. if( match_into_reg(n, m, control, i, is_shared(m)) || // // Stop recursion if this is LoadNode and the root of this tree is a // StoreNode and the load & store have different memories. ((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) || // Can NOT include the match of a subtree when its memory state // is used by any of the other subtrees (input_mem == NodeSentinel) ) { #ifndef PRODUCT // Print when we exclude matching due to different memory states at input-loads if( PrintOpto && (Verbose && WizardMode) && (input_mem == NodeSentinel) && !((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ) { tty->print_cr("invalid input_mem"); } #endif // Switch to a register-only opcode; this value must be in a register // and cannot be subsumed as part of a larger instruction. s->DFA( m->ideal_reg(), m ); } else { // If match tree has no control and we do, adopt it for entire tree if( control == NULL && m->in(0) != NULL && m->req() > 1 ) control = m->in(0); // Pick up control // Else match as a normal part of the match tree. control = Label_Root(m,s,control,mem); if (C->failing()) return NULL; } } // Call DFA to match this node, and return svec->DFA( n->Opcode(), n ); #ifdef ASSERT uint x; for( x = 0; x < _LAST_MACH_OPER; x++ ) if( svec->valid(x) ) break; if (x >= _LAST_MACH_OPER) { n->dump(); svec->dump(); assert( false, "bad AD file" ); } #endif return control; } // Con nodes reduced using the same rule can share their MachNode // which reduces the number of copies of a constant in the final // program. The register allocator is free to split uses later to // split live ranges. MachNode* Matcher::find_shared_node(Node* leaf, uint rule) { if (!leaf->is_Con() && !leaf->is_DecodeNarrowPtr()) return NULL; // See if this Con has already been reduced using this rule. if (_shared_nodes.Size() <= leaf->_idx) return NULL; MachNode* last = (MachNode*)_shared_nodes.at(leaf->_idx); if (last != NULL && rule == last->rule()) { // Don't expect control change for DecodeN if (leaf->is_DecodeNarrowPtr()) return last; // Get the new space root. Node* xroot = new_node(C->root()); if (xroot == NULL) { // This shouldn't happen give the order of matching. return NULL; } // Shared constants need to have their control be root so they // can be scheduled properly. Node* control = last->in(0); if (control != xroot) { if (control == NULL || control == C->root()) { last->set_req(0, xroot); } else { assert(false, "unexpected control"); return NULL; } } return last; } return NULL; } //------------------------------ReduceInst------------------------------------- // Reduce a State tree (with given Control) into a tree of MachNodes. // This routine (and it's cohort ReduceOper) convert Ideal Nodes into // complicated machine Nodes. Each MachNode covers some tree of Ideal Nodes. // Each MachNode has a number of complicated MachOper operands; each // MachOper also covers a further tree of Ideal Nodes. // The root of the Ideal match tree is always an instruction, so we enter // the recursion here. After building the MachNode, we need to recurse // the tree checking for these cases: // (1) Child is an instruction - // Build the instruction (recursively), add it as an edge. // Build a simple operand (register) to hold the result of the instruction. // (2) Child is an interior part of an instruction - // Skip over it (do nothing) // (3) Child is the start of a operand - // Build the operand, place it inside the instruction // Call ReduceOper. MachNode *Matcher::ReduceInst( State *s, int rule, Node *&mem ) { assert( rule >= NUM_OPERANDS, "called with operand rule" ); MachNode* shared_node = find_shared_node(s->_leaf, rule); if (shared_node != NULL) { return shared_node; } // Build the object to represent this state & prepare for recursive calls MachNode *mach = s->MachNodeGenerator( rule, C ); guarantee(mach != NULL, "Missing MachNode"); mach->_opnds[0] = s->MachOperGenerator( _reduceOp[rule], C ); assert( mach->_opnds[0] != NULL, "Missing result operand" ); Node *leaf = s->_leaf; // Check for instruction or instruction chain rule if( rule >= _END_INST_CHAIN_RULE || rule < _BEGIN_INST_CHAIN_RULE ) { assert(C->node_arena()->contains(s->_leaf) || !has_new_node(s->_leaf), "duplicating node that's already been matched"); // Instruction mach->add_req( leaf->in(0) ); // Set initial control // Reduce interior of complex instruction ReduceInst_Interior( s, rule, mem, mach, 1 ); } else { // Instruction chain rules are data-dependent on their inputs mach->add_req(0); // Set initial control to none ReduceInst_Chain_Rule( s, rule, mem, mach ); } // If a Memory was used, insert a Memory edge if( mem != (Node*)1 ) { mach->ins_req(MemNode::Memory,mem); #ifdef ASSERT // Verify adr type after matching memory operation const MachOper* oper = mach->memory_operand(); if (oper != NULL && oper != (MachOper*)-1) { // It has a unique memory operand. Find corresponding ideal mem node. Node* m = NULL; if (leaf->is_Mem()) { m = leaf; } else { m = _mem_node; assert(m != NULL && m->is_Mem(), "expecting memory node"); } const Type* mach_at = mach->adr_type(); // DecodeN node consumed by an address may have different type // then its input. Don't compare types for such case. if (m->adr_type() != mach_at && (m->in(MemNode::Address)->is_DecodeNarrowPtr() || m->in(MemNode::Address)->is_AddP() && m->in(MemNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr() || m->in(MemNode::Address)->is_AddP() && m->in(MemNode::Address)->in(AddPNode::Address)->is_AddP() && m->in(MemNode::Address)->in(AddPNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr())) { mach_at = m->adr_type(); } if (m->adr_type() != mach_at) { m->dump(); tty->print_cr("mach:"); mach->dump(1); } assert(m->adr_type() == mach_at, "matcher should not change adr type"); } #endif } // If the _leaf is an AddP, insert the base edge if (leaf->is_AddP()) { mach->ins_req(AddPNode::Base,leaf->in(AddPNode::Base)); } uint number_of_projections_prior = number_of_projections(); // Perform any 1-to-many expansions required MachNode *ex = mach->Expand(s, _projection_list, mem); if (ex != mach) { assert(ex->ideal_reg() == mach->ideal_reg(), "ideal types should match"); if( ex->in(1)->is_Con() ) ex->in(1)->set_req(0, C->root()); // Remove old node from the graph for( uint i=0; ireq(); i++ ) { mach->set_req(i,NULL); } #ifdef ASSERT _new2old_map.map(ex->_idx, s->_leaf); #endif } // PhaseChaitin::fixup_spills will sometimes generate spill code // via the matcher. By the time, nodes have been wired into the CFG, // and any further nodes generated by expand rules will be left hanging // in space, and will not get emitted as output code. Catch this. // Also, catch any new register allocation constraints ("projections") // generated belatedly during spill code generation. if (_allocation_started) { guarantee(ex == mach, "no expand rules during spill generation"); guarantee(number_of_projections_prior == number_of_projections(), "no allocation during spill generation"); } if (leaf->is_Con() || leaf->is_DecodeNarrowPtr()) { // Record the con for sharing _shared_nodes.map(leaf->_idx, ex); } return ex; } void Matcher::ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach ) { // 'op' is what I am expecting to receive int op = _leftOp[rule]; // Operand type to catch childs result // This is what my child will give me. int opnd_class_instance = s->_rule[op]; // Choose between operand class or not. // This is what I will receive. int catch_op = (FIRST_OPERAND_CLASS <= op && op < NUM_OPERANDS) ? opnd_class_instance : op; // New rule for child. Chase operand classes to get the actual rule. int newrule = s->_rule[catch_op]; if( newrule < NUM_OPERANDS ) { // Chain from operand or operand class, may be output of shared node assert( 0 <= opnd_class_instance && opnd_class_instance < NUM_OPERANDS, "Bad AD file: Instruction chain rule must chain from operand"); // Insert operand into array of operands for this instruction mach->_opnds[1] = s->MachOperGenerator( opnd_class_instance, C ); ReduceOper( s, newrule, mem, mach ); } else { // Chain from the result of an instruction assert( newrule >= _LAST_MACH_OPER, "Do NOT chain from internal operand"); mach->_opnds[1] = s->MachOperGenerator( _reduceOp[catch_op], C ); Node *mem1 = (Node*)1; debug_only(Node *save_mem_node = _mem_node;) mach->add_req( ReduceInst(s, newrule, mem1) ); debug_only(_mem_node = save_mem_node;) } return; } uint Matcher::ReduceInst_Interior( State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds ) { if( s->_leaf->is_Load() ) { Node *mem2 = s->_leaf->in(MemNode::Memory); assert( mem == (Node*)1 || mem == mem2, "multiple Memories being matched at once?" ); debug_only( if( mem == (Node*)1 ) _mem_node = s->_leaf;) mem = mem2; } if( s->_leaf->in(0) != NULL && s->_leaf->req() > 1) { if( mach->in(0) == NULL ) mach->set_req(0, s->_leaf->in(0)); } // Now recursively walk the state tree & add operand list. for( uint i=0; i<2; i++ ) { // binary tree State *newstate = s->_kids[i]; if( newstate == NULL ) break; // Might only have 1 child // 'op' is what I am expecting to receive int op; if( i == 0 ) { op = _leftOp[rule]; } else { op = _rightOp[rule]; } // Operand type to catch childs result // This is what my child will give me. int opnd_class_instance = newstate->_rule[op]; // Choose between operand class or not. // This is what I will receive. int catch_op = (op >= FIRST_OPERAND_CLASS && op < NUM_OPERANDS) ? opnd_class_instance : op; // New rule for child. Chase operand classes to get the actual rule. int newrule = newstate->_rule[catch_op]; if( newrule < NUM_OPERANDS ) { // Operand/operandClass or internalOp/instruction? // Operand/operandClass // Insert operand into array of operands for this instruction mach->_opnds[num_opnds++] = newstate->MachOperGenerator( opnd_class_instance, C ); ReduceOper( newstate, newrule, mem, mach ); } else { // Child is internal operand or new instruction if( newrule < _LAST_MACH_OPER ) { // internal operand or instruction? // internal operand --> call ReduceInst_Interior // Interior of complex instruction. Do nothing but recurse. num_opnds = ReduceInst_Interior( newstate, newrule, mem, mach, num_opnds ); } else { // instruction --> call build operand( ) to catch result // --> ReduceInst( newrule ) mach->_opnds[num_opnds++] = s->MachOperGenerator( _reduceOp[catch_op], C ); Node *mem1 = (Node*)1; debug_only(Node *save_mem_node = _mem_node;) mach->add_req( ReduceInst( newstate, newrule, mem1 ) ); debug_only(_mem_node = save_mem_node;) } } assert( mach->_opnds[num_opnds-1], "" ); } return num_opnds; } // This routine walks the interior of possible complex operands. // At each point we check our children in the match tree: // (1) No children - // We are a leaf; add _leaf field as an input to the MachNode // (2) Child is an internal operand - // Skip over it ( do nothing ) // (3) Child is an instruction - // Call ReduceInst recursively and // and instruction as an input to the MachNode void Matcher::ReduceOper( State *s, int rule, Node *&mem, MachNode *mach ) { assert( rule < _LAST_MACH_OPER, "called with operand rule" ); State *kid = s->_kids[0]; assert( kid == NULL || s->_leaf->in(0) == NULL, "internal operands have no control" ); // Leaf? And not subsumed? if( kid == NULL && !_swallowed[rule] ) { mach->add_req( s->_leaf ); // Add leaf pointer return; // Bail out } if( s->_leaf->is_Load() ) { assert( mem == (Node*)1, "multiple Memories being matched at once?" ); mem = s->_leaf->in(MemNode::Memory); debug_only(_mem_node = s->_leaf;) } if( s->_leaf->in(0) && s->_leaf->req() > 1) { if( !mach->in(0) ) mach->set_req(0,s->_leaf->in(0)); else { assert( s->_leaf->in(0) == mach->in(0), "same instruction, differing controls?" ); } } for( uint i=0; kid != NULL && i<2; kid = s->_kids[1], i++ ) { // binary tree int newrule; if( i == 0) newrule = kid->_rule[_leftOp[rule]]; else newrule = kid->_rule[_rightOp[rule]]; if( newrule < _LAST_MACH_OPER ) { // Operand or instruction? // Internal operand; recurse but do nothing else ReduceOper( kid, newrule, mem, mach ); } else { // Child is a new instruction // Reduce the instruction, and add a direct pointer from this // machine instruction to the newly reduced one. Node *mem1 = (Node*)1; debug_only(Node *save_mem_node = _mem_node;) mach->add_req( ReduceInst( kid, newrule, mem1 ) ); debug_only(_mem_node = save_mem_node;) } } } // ------------------------------------------------------------------------- // Java-Java calling convention // (what you use when Java calls Java) //------------------------------find_receiver---------------------------------- // For a given signature, return the OptoReg for parameter 0. OptoReg::Name Matcher::find_receiver( bool is_outgoing ) { VMRegPair regs; BasicType sig_bt = T_OBJECT; calling_convention(&sig_bt, ®s, 1, is_outgoing); // Return argument 0 register. In the LP64 build pointers // take 2 registers, but the VM wants only the 'main' name. return OptoReg::as_OptoReg(regs.first()); } // This function identifies sub-graphs in which a 'load' node is // input to two different nodes, and such that it can be matched // with BMI instructions like blsi, blsr, etc. // Example : for b = -a[i] & a[i] can be matched to blsi r32, m32. // The graph is (AndL (SubL Con0 LoadL*) LoadL*), where LoadL* // refers to the same node. #ifdef X86 // Match the generic fused operations pattern (op1 (op2 Con{ConType} mop) mop) // This is a temporary solution until we make DAGs expressible in ADL. template class FusedPatternMatcher { Node* _op1_node; Node* _mop_node; int _con_op; static int match_next(Node* n, int next_op, int next_op_idx) { if (n->in(1) == NULL || n->in(2) == NULL) { return -1; } if (next_op_idx == -1) { // n is commutative, try rotations if (n->in(1)->Opcode() == next_op) { return 1; } else if (n->in(2)->Opcode() == next_op) { return 2; } } else { assert(next_op_idx > 0 && next_op_idx <= 2, "Bad argument index"); if (n->in(next_op_idx)->Opcode() == next_op) { return next_op_idx; } } return -1; } public: FusedPatternMatcher(Node* op1_node, Node *mop_node, int con_op) : _op1_node(op1_node), _mop_node(mop_node), _con_op(con_op) { } bool match(int op1, int op1_op2_idx, // op1 and the index of the op1->op2 edge, -1 if op1 is commutative int op2, int op2_con_idx, // op2 and the index of the op2->con edge, -1 if op2 is commutative typename ConType::NativeType con_value) { if (_op1_node->Opcode() != op1) { return false; } if (_mop_node->outcnt() > 2) { return false; } op1_op2_idx = match_next(_op1_node, op2, op1_op2_idx); if (op1_op2_idx == -1) { return false; } // Memory operation must be the other edge int op1_mop_idx = (op1_op2_idx & 1) + 1; // Check that the mop node is really what we want if (_op1_node->in(op1_mop_idx) == _mop_node) { Node *op2_node = _op1_node->in(op1_op2_idx); if (op2_node->outcnt() > 1) { return false; } assert(op2_node->Opcode() == op2, "Should be"); op2_con_idx = match_next(op2_node, _con_op, op2_con_idx); if (op2_con_idx == -1) { return false; } // Memory operation must be the other edge int op2_mop_idx = (op2_con_idx & 1) + 1; // Check that the memory operation is the same node if (op2_node->in(op2_mop_idx) == _mop_node) { // Now check the constant const Type* con_type = op2_node->in(op2_con_idx)->bottom_type(); if (con_type != Type::TOP && ConType::as_self(con_type)->get_con() == con_value) { return true; } } } return false; } }; bool Matcher::is_bmi_pattern(Node *n, Node *m) { if (n != NULL && m != NULL) { if (m->Opcode() == Op_LoadI) { FusedPatternMatcher bmii(n, m, Op_ConI); return bmii.match(Op_AndI, -1, Op_SubI, 1, 0) || bmii.match(Op_AndI, -1, Op_AddI, -1, -1) || bmii.match(Op_XorI, -1, Op_AddI, -1, -1); } else if (m->Opcode() == Op_LoadL) { FusedPatternMatcher bmil(n, m, Op_ConL); return bmil.match(Op_AndL, -1, Op_SubL, 1, 0) || bmil.match(Op_AndL, -1, Op_AddL, -1, -1) || bmil.match(Op_XorL, -1, Op_AddL, -1, -1); } } return false; } #endif // X86 // A method-klass-holder may be passed in the inline_cache_reg // and then expanded into the inline_cache_reg and a method_oop register // defined in ad_.cpp //------------------------------find_shared------------------------------------ // Set bits if Node is shared or otherwise a root void Matcher::find_shared( Node *n ) { // Allocate stack of size C->live_nodes() * 2 to avoid frequent realloc MStack mstack(C->live_nodes() * 2); // Mark nodes as address_visited if they are inputs to an address expression VectorSet address_visited(Thread::current()->resource_area()); mstack.push(n, Visit); // Don't need to pre-visit root node while (mstack.is_nonempty()) { n = mstack.node(); // Leave node on stack Node_State nstate = mstack.state(); uint nop = n->Opcode(); if (nstate == Pre_Visit) { if (address_visited.test(n->_idx)) { // Visited in address already? // Flag as visited and shared now. set_visited(n); } if (is_visited(n)) { // Visited already? // Node is shared and has no reason to clone. Flag it as shared. // This causes it to match into a register for the sharing. set_shared(n); // Flag as shared and mstack.pop(); // remove node from stack continue; } nstate = Visit; // Not already visited; so visit now } if (nstate == Visit) { mstack.set_state(Post_Visit); set_visited(n); // Flag as visited now bool mem_op = false; switch( nop ) { // Handle some opcodes special case Op_Phi: // Treat Phis as shared roots case Op_Parm: case Op_Proj: // All handled specially during matching case Op_SafePointScalarObject: set_shared(n); set_dontcare(n); break; case Op_If: case Op_CountedLoopEnd: mstack.set_state(Alt_Post_Visit); // Alternative way // Convert (If (Bool (CmpX A B))) into (If (Bool) (CmpX A B)). Helps // with matching cmp/branch in 1 instruction. The Matcher needs the // Bool and CmpX side-by-side, because it can only get at constants // that are at the leaves of Match trees, and the Bool's condition acts // as a constant here. mstack.push(n->in(1), Visit); // Clone the Bool mstack.push(n->in(0), Pre_Visit); // Visit control input continue; // while (mstack.is_nonempty()) case Op_ConvI2D: // These forms efficiently match with a prior case Op_ConvI2F: // Load but not a following Store if( n->in(1)->is_Load() && // Prior load n->outcnt() == 1 && // Not already shared n->unique_out()->is_Store() ) // Following store set_shared(n); // Force it to be a root break; case Op_ReverseBytesI: case Op_ReverseBytesL: if( n->in(1)->is_Load() && // Prior load n->outcnt() == 1 ) // Not already shared set_shared(n); // Force it to be a root break; case Op_BoxLock: // Cant match until we get stack-regs in ADLC case Op_IfFalse: case Op_IfTrue: case Op_MachProj: case Op_MergeMem: case Op_Catch: case Op_CatchProj: case Op_CProj: case Op_JumpProj: case Op_JProj: case Op_NeverBranch: set_dontcare(n); break; case Op_Jump: mstack.push(n->in(1), Pre_Visit); // Switch Value (could be shared) mstack.push(n->in(0), Pre_Visit); // Visit Control input continue; // while (mstack.is_nonempty()) case Op_StrComp: case Op_StrEquals: case Op_StrIndexOf: case Op_AryEq: case Op_EncodeISOArray: set_shared(n); // Force result into register (it will be anyways) break; case Op_ConP: { // Convert pointers above the centerline to NUL TypeNode *tn = n->as_Type(); // Constants derive from type nodes const TypePtr* tp = tn->type()->is_ptr(); if (tp->_ptr == TypePtr::AnyNull) { tn->set_type(TypePtr::NULL_PTR); } break; } case Op_ConN: { // Convert narrow pointers above the centerline to NUL TypeNode *tn = n->as_Type(); // Constants derive from type nodes const TypePtr* tp = tn->type()->make_ptr(); if (tp && tp->_ptr == TypePtr::AnyNull) { tn->set_type(TypeNarrowOop::NULL_PTR); } break; } case Op_Binary: // These are introduced in the Post_Visit state. ShouldNotReachHere(); break; case Op_ClearArray: case Op_SafePoint: mem_op = true; break; default: if( n->is_Store() ) { // Do match stores, despite no ideal reg mem_op = true; break; } if( n->is_Mem() ) { // Loads and LoadStores mem_op = true; // Loads must be root of match tree due to prior load conflict if( C->subsume_loads() == false ) set_shared(n); } // Fall into default case if( !n->ideal_reg() ) set_dontcare(n); // Unmatchable Nodes } // end_switch for(int i = n->req() - 1; i >= 0; --i) { // For my children Node *m = n->in(i); // Get ith input if (m == NULL) continue; // Ignore NULLs uint mop = m->Opcode(); // Must clone all producers of flags, or we will not match correctly. // Suppose a compare setting int-flags is shared (e.g., a switch-tree) // then it will match into an ideal Op_RegFlags. Alas, the fp-flags // are also there, so we may match a float-branch to int-flags and // expect the allocator to haul the flags from the int-side to the // fp-side. No can do. if( _must_clone[mop] ) { mstack.push(m, Visit); continue; // for(int i = ...) } if( mop == Op_AddP && m->in(AddPNode::Base)->is_DecodeNarrowPtr()) { // Bases used in addresses must be shared but since // they are shared through a DecodeN they may appear // to have a single use so force sharing here. set_shared(m->in(AddPNode::Base)->in(1)); } // if 'n' and 'm' are part of a graph for BMI instruction, clone this node. #ifdef X86 if (UseBMI1Instructions && is_bmi_pattern(n, m)) { mstack.push(m, Visit); continue; } #endif // Clone addressing expressions as they are "free" in memory access instructions if( mem_op && i == MemNode::Address && mop == Op_AddP ) { // Some inputs for address expression are not put on stack // to avoid marking them as shared and forcing them into register // if they are used only in address expressions. // But they should be marked as shared if there are other uses // besides address expressions. Node *off = m->in(AddPNode::Offset); if( off->is_Con() && // When there are other uses besides address expressions // put it on stack and mark as shared. !is_visited(m) ) { address_visited.test_set(m->_idx); // Flag as address_visited Node *adr = m->in(AddPNode::Address); // Intel, ARM and friends can handle 2 adds in addressing mode if( clone_shift_expressions && adr->is_AddP() && // AtomicAdd is not an addressing expression. // Cheap to find it by looking for screwy base. !adr->in(AddPNode::Base)->is_top() && // Are there other uses besides address expressions? !is_visited(adr) ) { address_visited.set(adr->_idx); // Flag as address_visited Node *shift = adr->in(AddPNode::Offset); // Check for shift by small constant as well if( shift->Opcode() == Op_LShiftX && shift->in(2)->is_Con() && shift->in(2)->get_int() <= 3 && // Are there other uses besides address expressions? !is_visited(shift) ) { address_visited.set(shift->_idx); // Flag as address_visited mstack.push(shift->in(2), Visit); Node *conv = shift->in(1); #ifdef _LP64 // Allow Matcher to match the rule which bypass // ConvI2L operation for an array index on LP64 // if the index value is positive. if( conv->Opcode() == Op_ConvI2L && conv->as_Type()->type()->is_long()->_lo >= 0 && // Are there other uses besides address expressions? !is_visited(conv) ) { address_visited.set(conv->_idx); // Flag as address_visited mstack.push(conv->in(1), Pre_Visit); } else #endif mstack.push(conv, Pre_Visit); } else { mstack.push(shift, Pre_Visit); } mstack.push(adr->in(AddPNode::Address), Pre_Visit); mstack.push(adr->in(AddPNode::Base), Pre_Visit); } else { // Sparc, Alpha, PPC and friends mstack.push(adr, Pre_Visit); } // Clone X+offset as it also folds into most addressing expressions mstack.push(off, Visit); mstack.push(m->in(AddPNode::Base), Pre_Visit); continue; // for(int i = ...) } // if( off->is_Con() ) } // if( mem_op && mstack.push(m, Pre_Visit); } // for(int i = ...) } else if (nstate == Alt_Post_Visit) { mstack.pop(); // Remove node from stack // We cannot remove the Cmp input from the Bool here, as the Bool may be // shared and all users of the Bool need to move the Cmp in parallel. // This leaves both the Bool and the If pointing at the Cmp. To // prevent the Matcher from trying to Match the Cmp along both paths // BoolNode::match_edge always returns a zero. // We reorder the Op_If in a pre-order manner, so we can visit without // accidentally sharing the Cmp (the Bool and the If make 2 users). n->add_req( n->in(1)->in(1) ); // Add the Cmp next to the Bool } else if (nstate == Post_Visit) { mstack.pop(); // Remove node from stack // Now hack a few special opcodes switch( n->Opcode() ) { // Handle some opcodes special case Op_StorePConditional: case Op_StoreIConditional: case Op_StoreLConditional: case Op_CompareAndSwapI: case Op_CompareAndSwapL: case Op_CompareAndSwapP: case Op_CompareAndSwapN: { // Convert trinary to binary-tree Node *newval = n->in(MemNode::ValueIn ); Node *oldval = n->in(LoadStoreConditionalNode::ExpectedIn); Node *pair = new (C) BinaryNode( oldval, newval ); n->set_req(MemNode::ValueIn,pair); n->del_req(LoadStoreConditionalNode::ExpectedIn); break; } case Op_CMoveD: // Convert trinary to binary-tree case Op_CMoveF: case Op_CMoveI: case Op_CMoveL: case Op_CMoveN: case Op_CMoveP: { // Restructure into a binary tree for Matching. It's possible that // we could move this code up next to the graph reshaping for IfNodes // or vice-versa, but I do not want to debug this for Ladybird. // 10/2/2000 CNC. Node *pair1 = new (C) BinaryNode(n->in(1),n->in(1)->in(1)); n->set_req(1,pair1); Node *pair2 = new (C) BinaryNode(n->in(2),n->in(3)); n->set_req(2,pair2); n->del_req(3); break; } case Op_LoopLimit: { Node *pair1 = new (C) BinaryNode(n->in(1),n->in(2)); n->set_req(1,pair1); n->set_req(2,n->in(3)); n->del_req(3); break; } case Op_StrEquals: { Node *pair1 = new (C) BinaryNode(n->in(2),n->in(3)); n->set_req(2,pair1); n->set_req(3,n->in(4)); n->del_req(4); break; } case Op_StrComp: case Op_StrIndexOf: { Node *pair1 = new (C) BinaryNode(n->in(2),n->in(3)); n->set_req(2,pair1); Node *pair2 = new (C) BinaryNode(n->in(4),n->in(5)); n->set_req(3,pair2); n->del_req(5); n->del_req(4); break; } case Op_EncodeISOArray: { // Restructure into a binary tree for Matching. Node* pair = new (C) BinaryNode(n->in(3), n->in(4)); n->set_req(3, pair); n->del_req(4); break; } default: break; } } else { ShouldNotReachHere(); } } // end of while (mstack.is_nonempty()) } #ifdef ASSERT // machine-independent root to machine-dependent root void Matcher::dump_old2new_map() { _old2new_map.dump(); } #endif //---------------------------collect_null_checks------------------------------- // Find null checks in the ideal graph; write a machine-specific node for // it. Used by later implicit-null-check handling. Actually collects // either an IfTrue or IfFalse for the common NOT-null path, AND the ideal // value being tested. void Matcher::collect_null_checks( Node *proj, Node *orig_proj ) { Node *iff = proj->in(0); if( iff->Opcode() == Op_If ) { // During matching If's have Bool & Cmp side-by-side BoolNode *b = iff->in(1)->as_Bool(); Node *cmp = iff->in(2); int opc = cmp->Opcode(); if (opc != Op_CmpP && opc != Op_CmpN) return; const Type* ct = cmp->in(2)->bottom_type(); if (ct == TypePtr::NULL_PTR || (opc == Op_CmpN && ct == TypeNarrowOop::NULL_PTR)) { bool push_it = false; if( proj->Opcode() == Op_IfTrue ) { extern int all_null_checks_found; all_null_checks_found++; if( b->_test._test == BoolTest::ne ) { push_it = true; } } else { assert( proj->Opcode() == Op_IfFalse, "" ); if( b->_test._test == BoolTest::eq ) { push_it = true; } } if( push_it ) { _null_check_tests.push(proj); Node* val = cmp->in(1); #ifdef _LP64 if (val->bottom_type()->isa_narrowoop() && !Matcher::narrow_oop_use_complex_address()) { // // Look for DecodeN node which should be pinned to orig_proj. // On platforms (Sparc) which can not handle 2 adds // in addressing mode we have to keep a DecodeN node and // use it to do implicit NULL check in address. // // DecodeN node was pinned to non-null path (orig_proj) during // CastPP transformation in final_graph_reshaping_impl(). // uint cnt = orig_proj->outcnt(); for (uint i = 0; i < orig_proj->outcnt(); i++) { Node* d = orig_proj->raw_out(i); if (d->is_DecodeN() && d->in(1) == val) { val = d; val->set_req(0, NULL); // Unpin now. // Mark this as special case to distinguish from // a regular case: CmpP(DecodeN, NULL). val = (Node*)(((intptr_t)val) | 1); break; } } } #endif _null_check_tests.push(val); } } } } //---------------------------validate_null_checks------------------------------ // Its possible that the value being NULL checked is not the root of a match // tree. If so, I cannot use the value in an implicit null check. void Matcher::validate_null_checks( ) { uint cnt = _null_check_tests.size(); for( uint i=0; i < cnt; i+=2 ) { Node *test = _null_check_tests[i]; Node *val = _null_check_tests[i+1]; bool is_decoden = ((intptr_t)val) & 1; val = (Node*)(((intptr_t)val) & ~1); if (has_new_node(val)) { Node* new_val = new_node(val); if (is_decoden) { assert(val->is_DecodeNarrowPtr() && val->in(0) == NULL, "sanity"); // Note: new_val may have a control edge if // the original ideal node DecodeN was matched before // it was unpinned in Matcher::collect_null_checks(). // Unpin the mach node and mark it. new_val->set_req(0, NULL); new_val = (Node*)(((intptr_t)new_val) | 1); } // Is a match-tree root, so replace with the matched value _null_check_tests.map(i+1, new_val); } else { // Yank from candidate list _null_check_tests.map(i+1,_null_check_tests[--cnt]); _null_check_tests.map(i,_null_check_tests[--cnt]); _null_check_tests.pop(); _null_check_tests.pop(); i-=2; } } } // Used by the DFA in dfa_xxx.cpp. Check for a following barrier or // atomic instruction acting as a store_load barrier without any // intervening volatile load, and thus we don't need a barrier here. // We retain the Node to act as a compiler ordering barrier. bool Matcher::post_store_load_barrier(const Node* vmb) { Compile* C = Compile::current(); assert(vmb->is_MemBar(), ""); assert(vmb->Opcode() != Op_MemBarAcquire && vmb->Opcode() != Op_LoadFence, ""); const MemBarNode* membar = vmb->as_MemBar(); // Get the Ideal Proj node, ctrl, that can be used to iterate forward Node* ctrl = NULL; for (DUIterator_Fast imax, i = membar->fast_outs(imax); i < imax; i++) { Node* p = membar->fast_out(i); assert(p->is_Proj(), "only projections here"); if ((p->as_Proj()->_con == TypeFunc::Control) && !C->node_arena()->contains(p)) { // Unmatched old-space only ctrl = p; break; } } assert((ctrl != NULL), "missing control projection"); for (DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++) { Node *x = ctrl->fast_out(j); int xop = x->Opcode(); // We don't need current barrier if we see another or a lock // before seeing volatile load. // // Op_Fastunlock previously appeared in the Op_* list below. // With the advent of 1-0 lock operations we're no longer guaranteed // that a monitor exit operation contains a serializing instruction. if (xop == Op_MemBarVolatile || xop == Op_CompareAndSwapL || xop == Op_CompareAndSwapP || xop == Op_CompareAndSwapN || xop == Op_CompareAndSwapI) { return true; } // Op_FastLock previously appeared in the Op_* list above. // With biased locking we're no longer guaranteed that a monitor // enter operation contains a serializing instruction. if ((xop == Op_FastLock) && !UseBiasedLocking) { return true; } if (x->is_MemBar()) { // We must retain this membar if there is an upcoming volatile // load, which will be followed by acquire membar. if (xop == Op_MemBarAcquire || xop == Op_LoadFence) { return false; } else { // For other kinds of barriers, check by pretending we // are them, and seeing if we can be removed. return post_store_load_barrier(x->as_MemBar()); } } // probably not necessary to check for these if (x->is_Call() || x->is_SafePoint() || x->is_block_proj()) { return false; } } return false; } // Check whether node n is a branch to an uncommon trap that we could // optimize as test with very high branch costs in case of going to // the uncommon trap. The code must be able to be recompiled to use // a cheaper test. bool Matcher::branches_to_uncommon_trap(const Node *n) { // Don't do it for natives, adapters, or runtime stubs Compile *C = Compile::current(); if (!C->is_method_compilation()) return false; assert(n->is_If(), "You should only call this on if nodes."); IfNode *ifn = n->as_If(); Node *ifFalse = NULL; for (DUIterator_Fast imax, i = ifn->fast_outs(imax); i < imax; i++) { if (ifn->fast_out(i)->is_IfFalse()) { ifFalse = ifn->fast_out(i); break; } } assert(ifFalse, "An If should have an ifFalse. Graph is broken."); Node *reg = ifFalse; int cnt = 4; // We must protect against cycles. Limit to 4 iterations. // Alternatively use visited set? Seems too expensive. while (reg != NULL && cnt > 0) { CallNode *call = NULL; RegionNode *nxt_reg = NULL; for (DUIterator_Fast imax, i = reg->fast_outs(imax); i < imax; i++) { Node *o = reg->fast_out(i); if (o->is_Call()) { call = o->as_Call(); } if (o->is_Region()) { nxt_reg = o->as_Region(); } } if (call && call->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point()) { const Type* trtype = call->in(TypeFunc::Parms)->bottom_type(); if (trtype->isa_int() && trtype->is_int()->is_con()) { jint tr_con = trtype->is_int()->get_con(); Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con); Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con); assert((int)reason < (int)BitsPerInt, "recode bit map"); if (is_set_nth_bit(C->allowed_deopt_reasons(), (int)reason) && action != Deoptimization::Action_none) { // This uncommon trap is sure to recompile, eventually. // When that happens, C->too_many_traps will prevent // this transformation from happening again. return true; } } } reg = nxt_reg; cnt--; } return false; } //============================================================================= //---------------------------State--------------------------------------------- State::State(void) { #ifdef ASSERT _id = 0; _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe); _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d); //memset(_cost, -1, sizeof(_cost)); //memset(_rule, -1, sizeof(_rule)); #endif memset(_valid, 0, sizeof(_valid)); } #ifdef ASSERT State::~State() { _id = 99; _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe); _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d); memset(_cost, -3, sizeof(_cost)); memset(_rule, -3, sizeof(_rule)); } #endif #ifndef PRODUCT //---------------------------dump---------------------------------------------- void State::dump() { tty->print("\n"); dump(0); } void State::dump(int depth) { for( int j = 0; j < depth; j++ ) tty->print(" "); tty->print("--N: "); _leaf->dump(); uint i; for( i = 0; i < _LAST_MACH_OPER; i++ ) // Check for valid entry if( valid(i) ) { for( int j = 0; j < depth; j++ ) tty->print(" "); assert(_cost[i] != max_juint, "cost must be a valid value"); assert(_rule[i] < _last_Mach_Node, "rule[i] must be valid rule"); tty->print_cr("%s %d %s", ruleName[i], _cost[i], ruleName[_rule[i]] ); } tty->cr(); for( i=0; i<2; i++ ) if( _kids[i] ) _kids[i]->dump(depth+1); } #endif