/* * Copyright (c) 2008, 2011, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "interpreter/interpreter.hpp" #include "memory/allocation.inline.hpp" #include "prims/methodHandles.hpp" #define __ _masm-> #ifdef PRODUCT #define BLOCK_COMMENT(str) /* nothing */ #else #define BLOCK_COMMENT(str) __ block_comment(str) #endif #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") address MethodHandleEntry::start_compiled_entry(MacroAssembler* _masm, address interpreted_entry) { // Just before the actual machine code entry point, allocate space // for a MethodHandleEntry::Data record, so that we can manage everything // from one base pointer. __ align(wordSize); address target = __ pc() + sizeof(Data); while (__ pc() < target) { __ nop(); __ align(wordSize); } MethodHandleEntry* me = (MethodHandleEntry*) __ pc(); me->set_end_address(__ pc()); // set a temporary end_address me->set_from_interpreted_entry(interpreted_entry); me->set_type_checking_entry(NULL); return (address) me; } MethodHandleEntry* MethodHandleEntry::finish_compiled_entry(MacroAssembler* _masm, address start_addr) { MethodHandleEntry* me = (MethodHandleEntry*) start_addr; assert(me->end_address() == start_addr, "valid ME"); // Fill in the real end_address: __ align(wordSize); me->set_end_address(__ pc()); return me; } // stack walking support frame MethodHandles::ricochet_frame_sender(const frame& fr, RegisterMap *map) { //RicochetFrame* f = RicochetFrame::from_frame(fr); // Cf. is_interpreted_frame path of frame::sender intptr_t* younger_sp = fr.sp(); intptr_t* sp = fr.sender_sp(); map->make_integer_regs_unsaved(); map->shift_window(sp, younger_sp); bool this_frame_adjusted_stack = true; // I5_savedSP is live in this RF return frame(sp, younger_sp, this_frame_adjusted_stack); } void MethodHandles::ricochet_frame_oops_do(const frame& fr, OopClosure* blk, const RegisterMap* reg_map) { ResourceMark rm; RicochetFrame* f = RicochetFrame::from_frame(fr); // pick up the argument type descriptor: Thread* thread = Thread::current(); Handle cookie(thread, f->compute_saved_args_layout(true, true)); // process fixed part blk->do_oop((oop*)f->saved_target_addr()); blk->do_oop((oop*)f->saved_args_layout_addr()); // process variable arguments: if (cookie.is_null()) return; // no arguments to describe // the cookie is actually the invokeExact method for my target // his argument signature is what I'm interested in assert(cookie->is_method(), ""); methodHandle invoker(thread, methodOop(cookie())); assert(invoker->name() == vmSymbols::invokeExact_name(), "must be this kind of method"); assert(!invoker->is_static(), "must have MH argument"); int slot_count = invoker->size_of_parameters(); assert(slot_count >= 1, "must include 'this'"); intptr_t* base = f->saved_args_base(); intptr_t* retval = NULL; if (f->has_return_value_slot()) retval = f->return_value_slot_addr(); int slot_num = slot_count - 1; intptr_t* loc = &base[slot_num]; //blk->do_oop((oop*) loc); // original target, which is irrelevant int arg_num = 0; for (SignatureStream ss(invoker->signature()); !ss.is_done(); ss.next()) { if (ss.at_return_type()) continue; BasicType ptype = ss.type(); if (ptype == T_ARRAY) ptype = T_OBJECT; // fold all refs to T_OBJECT assert(ptype >= T_BOOLEAN && ptype <= T_OBJECT, "not array or void"); slot_num -= type2size[ptype]; loc = &base[slot_num]; bool is_oop = (ptype == T_OBJECT && loc != retval); if (is_oop) blk->do_oop((oop*)loc); arg_num += 1; } assert(slot_num == 0, "must have processed all the arguments"); } // Ricochet Frames const Register MethodHandles::RicochetFrame::L1_continuation = L1; const Register MethodHandles::RicochetFrame::L2_saved_target = L2; const Register MethodHandles::RicochetFrame::L3_saved_args_layout = L3; const Register MethodHandles::RicochetFrame::L4_saved_args_base = L4; // cf. Gargs = G4 const Register MethodHandles::RicochetFrame::L5_conversion = L5; #ifdef ASSERT const Register MethodHandles::RicochetFrame::L0_magic_number_1 = L0; #endif //ASSERT oop MethodHandles::RicochetFrame::compute_saved_args_layout(bool read_cache, bool write_cache) { if (read_cache) { oop cookie = saved_args_layout(); if (cookie != NULL) return cookie; } oop target = saved_target(); oop mtype = java_lang_invoke_MethodHandle::type(target); oop mtform = java_lang_invoke_MethodType::form(mtype); oop cookie = java_lang_invoke_MethodTypeForm::vmlayout(mtform); if (write_cache) { (*saved_args_layout_addr()) = cookie; } return cookie; } void MethodHandles::RicochetFrame::generate_ricochet_blob(MacroAssembler* _masm, // output params: int* bounce_offset, int* exception_offset, int* frame_size_in_words) { (*frame_size_in_words) = RicochetFrame::frame_size_in_bytes() / wordSize; address start = __ pc(); #ifdef ASSERT __ illtrap(0); __ illtrap(0); __ illtrap(0); // here's a hint of something special: __ set(MAGIC_NUMBER_1, G0); __ set(MAGIC_NUMBER_2, G0); #endif //ASSERT __ illtrap(0); // not reached // Return values are in registers. // L1_continuation contains a cleanup continuation we must return // to. (*bounce_offset) = __ pc() - start; BLOCK_COMMENT("ricochet_blob.bounce"); if (VerifyMethodHandles) RicochetFrame::verify_clean(_masm); trace_method_handle(_masm, "ricochet_blob.bounce"); __ JMP(L1_continuation, 0); __ delayed()->nop(); __ illtrap(0); DEBUG_ONLY(__ set(MAGIC_NUMBER_2, G0)); (*exception_offset) = __ pc() - start; BLOCK_COMMENT("ricochet_blob.exception"); // compare this to Interpreter::rethrow_exception_entry, which is parallel code // for example, see TemplateInterpreterGenerator::generate_throw_exception // Live registers in: // Oexception (O0): exception // Oissuing_pc (O1): return address/pc that threw exception (ignored, always equal to bounce addr) __ verify_oop(Oexception); // Take down the frame. // Cf. InterpreterMacroAssembler::remove_activation. leave_ricochet_frame(_masm, /*recv_reg=*/ noreg, I5_savedSP, I7); // We are done with this activation frame; find out where to go next. // The continuation point will be an exception handler, which expects // the following registers set up: // // Oexception: exception // Oissuing_pc: the local call that threw exception // Other On: garbage // In/Ln: the contents of the caller's register window // // We do the required restore at the last possible moment, because we // need to preserve some state across a runtime call. // (Remember that the caller activation is unknown--it might not be // interpreted, so things like Lscratch are useless in the caller.) __ mov(Oexception, Oexception ->after_save()); // get exception in I0 so it will be on O0 after restore __ add(I7, frame::pc_return_offset, Oissuing_pc->after_save()); // likewise set I1 to a value local to the caller __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), G2_thread, Oissuing_pc->after_save()); // The caller's SP was adjusted upon method entry to accomodate // the callee's non-argument locals. Undo that adjustment. __ JMP(O0, 0); // return exception handler in caller __ delayed()->restore(I5_savedSP, G0, SP); // (same old exception object is already in Oexception; see above) // Note that an "issuing PC" is actually the next PC after the call } void MethodHandles::RicochetFrame::enter_ricochet_frame(MacroAssembler* _masm, Register recv_reg, Register argv_reg, address return_handler) { // does not include the __ save() assert(argv_reg == Gargs, ""); Address G3_mh_vmtarget( recv_reg, java_lang_invoke_MethodHandle::vmtarget_offset_in_bytes()); Address G3_amh_conversion(recv_reg, java_lang_invoke_AdapterMethodHandle::conversion_offset_in_bytes()); // Create the RicochetFrame. // Unlike on x86 we can store all required information in local // registers. BLOCK_COMMENT("push RicochetFrame {"); __ set(ExternalAddress(return_handler), L1_continuation); __ load_heap_oop(G3_mh_vmtarget, L2_saved_target); __ mov(G0, L3_saved_args_layout); __ mov(Gargs, L4_saved_args_base); __ lduw(G3_amh_conversion, L5_conversion); // 32-bit field // I5, I6, I7 are already set up DEBUG_ONLY(__ set((int32_t) MAGIC_NUMBER_1, L0_magic_number_1)); BLOCK_COMMENT("} RicochetFrame"); } void MethodHandles::RicochetFrame::leave_ricochet_frame(MacroAssembler* _masm, Register recv_reg, Register new_sp_reg, Register sender_pc_reg) { assert(new_sp_reg == I5_savedSP, "exact_sender_sp already in place"); assert(sender_pc_reg == I7, "in a fixed place"); // does not include the __ ret() & __ restore() assert_different_registers(recv_reg, new_sp_reg, sender_pc_reg); // Take down the frame. // Cf. InterpreterMacroAssembler::remove_activation. BLOCK_COMMENT("end_ricochet_frame {"); if (recv_reg->is_valid()) __ mov(L2_saved_target, recv_reg); BLOCK_COMMENT("} end_ricochet_frame"); } // Emit code to verify that FP is pointing at a valid ricochet frame. #ifdef ASSERT enum { ARG_LIMIT = 255, SLOP = 45, // use this parameter for checking for garbage stack movements: UNREASONABLE_STACK_MOVE = (ARG_LIMIT + SLOP) // the slop defends against false alarms due to fencepost errors }; void MethodHandles::RicochetFrame::verify_clean(MacroAssembler* _masm) { // The stack should look like this: // ... keep1 | dest=42 | keep2 | magic | handler | magic | recursive args | [RF] // Check various invariants. Register O7_temp = O7, O5_temp = O5; Label L_ok_1, L_ok_2, L_ok_3, L_ok_4; BLOCK_COMMENT("verify_clean {"); // Magic numbers must check out: __ set((int32_t) MAGIC_NUMBER_1, O7_temp); __ cmp_and_br_short(O7_temp, L0_magic_number_1, Assembler::equal, Assembler::pt, L_ok_1); __ stop("damaged ricochet frame: MAGIC_NUMBER_1 not found"); __ BIND(L_ok_1); // Arguments pointer must look reasonable: #ifdef _LP64 Register FP_temp = O5_temp; __ add(FP, STACK_BIAS, FP_temp); #else Register FP_temp = FP; #endif __ cmp_and_brx_short(L4_saved_args_base, FP_temp, Assembler::greaterEqualUnsigned, Assembler::pt, L_ok_2); __ stop("damaged ricochet frame: L4 < FP"); __ BIND(L_ok_2); // Disable until we decide on it's fate // __ sub(L4_saved_args_base, UNREASONABLE_STACK_MOVE * Interpreter::stackElementSize, O7_temp); // __ cmp(O7_temp, FP_temp); // __ br(Assembler::lessEqualUnsigned, false, Assembler::pt, L_ok_3); // __ delayed()->nop(); // __ stop("damaged ricochet frame: (L4 - UNREASONABLE_STACK_MOVE) > FP"); __ BIND(L_ok_3); extract_conversion_dest_type(_masm, L5_conversion, O7_temp); __ cmp_and_br_short(O7_temp, T_VOID, Assembler::equal, Assembler::pt, L_ok_4); extract_conversion_vminfo(_masm, L5_conversion, O5_temp); __ ld_ptr(L4_saved_args_base, __ argument_offset(O5_temp, O5_temp), O7_temp); assert(__ is_simm13(RETURN_VALUE_PLACEHOLDER), "must be simm13"); __ cmp_and_brx_short(O7_temp, (int32_t) RETURN_VALUE_PLACEHOLDER, Assembler::equal, Assembler::pt, L_ok_4); __ stop("damaged ricochet frame: RETURN_VALUE_PLACEHOLDER not found"); __ BIND(L_ok_4); BLOCK_COMMENT("} verify_clean"); } #endif //ASSERT void MethodHandles::load_klass_from_Class(MacroAssembler* _masm, Register klass_reg, Register temp_reg, Register temp2_reg) { if (VerifyMethodHandles) verify_klass(_masm, klass_reg, SystemDictionaryHandles::Class_klass(), temp_reg, temp2_reg, "AMH argument is a Class"); __ load_heap_oop(Address(klass_reg, java_lang_Class::klass_offset_in_bytes()), klass_reg); } void MethodHandles::load_conversion_vminfo(MacroAssembler* _masm, Address conversion_field_addr, Register reg) { assert(CONV_VMINFO_SHIFT == 0, "preshifted"); assert(CONV_VMINFO_MASK == right_n_bits(BitsPerByte), "else change type of following load"); __ ldub(conversion_field_addr.plus_disp(BytesPerInt - 1), reg); } void MethodHandles::extract_conversion_vminfo(MacroAssembler* _masm, Register conversion_field_reg, Register reg) { assert(CONV_VMINFO_SHIFT == 0, "preshifted"); __ and3(conversion_field_reg, CONV_VMINFO_MASK, reg); } void MethodHandles::extract_conversion_dest_type(MacroAssembler* _masm, Register conversion_field_reg, Register reg) { __ srl(conversion_field_reg, CONV_DEST_TYPE_SHIFT, reg); __ and3(reg, 0x0F, reg); } void MethodHandles::load_stack_move(MacroAssembler* _masm, Address G3_amh_conversion, Register stack_move_reg) { BLOCK_COMMENT("load_stack_move {"); __ ldsw(G3_amh_conversion, stack_move_reg); __ sra(stack_move_reg, CONV_STACK_MOVE_SHIFT, stack_move_reg); #ifdef ASSERT if (VerifyMethodHandles) { Label L_ok, L_bad; int32_t stack_move_limit = 0x0800; // extra-large __ cmp_and_br_short(stack_move_reg, stack_move_limit, Assembler::greaterEqual, Assembler::pn, L_bad); __ cmp(stack_move_reg, -stack_move_limit); __ br(Assembler::greater, false, Assembler::pt, L_ok); __ delayed()->nop(); __ BIND(L_bad); __ stop("load_stack_move of garbage value"); __ BIND(L_ok); } #endif BLOCK_COMMENT("} load_stack_move"); } #ifdef ASSERT void MethodHandles::RicochetFrame::verify() const { assert(magic_number_1() == MAGIC_NUMBER_1, ""); if (!Universe::heap()->is_gc_active()) { if (saved_args_layout() != NULL) { assert(saved_args_layout()->is_method(), "must be valid oop"); } if (saved_target() != NULL) { assert(java_lang_invoke_MethodHandle::is_instance(saved_target()), "checking frame value"); } } int conv_op = adapter_conversion_op(conversion()); assert(conv_op == java_lang_invoke_AdapterMethodHandle::OP_COLLECT_ARGS || conv_op == java_lang_invoke_AdapterMethodHandle::OP_FOLD_ARGS || conv_op == java_lang_invoke_AdapterMethodHandle::OP_PRIM_TO_REF, "must be a sane conversion"); if (has_return_value_slot()) { assert(*return_value_slot_addr() == RETURN_VALUE_PLACEHOLDER, ""); } } void MethodHandles::verify_argslot(MacroAssembler* _masm, Register argslot_reg, Register temp_reg, const char* error_message) { // Verify that argslot lies within (Gargs, FP]. Label L_ok, L_bad; BLOCK_COMMENT("verify_argslot {"); __ cmp_and_brx_short(Gargs, argslot_reg, Assembler::greaterUnsigned, Assembler::pn, L_bad); __ add(FP, STACK_BIAS, temp_reg); // STACK_BIAS is zero on !_LP64 __ cmp_and_brx_short(argslot_reg, temp_reg, Assembler::lessEqualUnsigned, Assembler::pt, L_ok); __ BIND(L_bad); __ stop(error_message); __ BIND(L_ok); BLOCK_COMMENT("} verify_argslot"); } void MethodHandles::verify_argslots(MacroAssembler* _masm, RegisterOrConstant arg_slots, Register arg_slot_base_reg, Register temp_reg, Register temp2_reg, bool negate_argslots, const char* error_message) { // Verify that [argslot..argslot+size) lies within (Gargs, FP). Label L_ok, L_bad; BLOCK_COMMENT("verify_argslots {"); if (negate_argslots) { if (arg_slots.is_constant()) { arg_slots = -1 * arg_slots.as_constant(); } else { __ neg(arg_slots.as_register(), temp_reg); arg_slots = temp_reg; } } __ add(arg_slot_base_reg, __ argument_offset(arg_slots, temp_reg), temp_reg); __ add(FP, STACK_BIAS, temp2_reg); // STACK_BIAS is zero on !_LP64 __ cmp_and_brx_short(temp_reg, temp2_reg, Assembler::greaterUnsigned, Assembler::pn, L_bad); // Gargs points to the first word so adjust by BytesPerWord __ add(arg_slot_base_reg, BytesPerWord, temp_reg); __ cmp_and_brx_short(Gargs, temp_reg, Assembler::lessEqualUnsigned, Assembler::pt, L_ok); __ BIND(L_bad); __ stop(error_message); __ BIND(L_ok); BLOCK_COMMENT("} verify_argslots"); } // Make sure that arg_slots has the same sign as the given direction. // If (and only if) arg_slots is a assembly-time constant, also allow it to be zero. void MethodHandles::verify_stack_move(MacroAssembler* _masm, RegisterOrConstant arg_slots, int direction) { enum { UNREASONABLE_STACK_MOVE = 256 * 4 }; // limit of 255 arguments bool allow_zero = arg_slots.is_constant(); if (direction == 0) { direction = +1; allow_zero = true; } assert(stack_move_unit() == -1, "else add extra checks here"); if (arg_slots.is_register()) { Label L_ok, L_bad; BLOCK_COMMENT("verify_stack_move {"); // __ btst(-stack_move_unit() - 1, arg_slots.as_register()); // no need // __ br(Assembler::notZero, false, Assembler::pn, L_bad); // __ delayed()->nop(); __ cmp(arg_slots.as_register(), (int32_t) NULL_WORD); if (direction > 0) { __ br(allow_zero ? Assembler::less : Assembler::lessEqual, false, Assembler::pn, L_bad); __ delayed()->nop(); __ cmp(arg_slots.as_register(), (int32_t) UNREASONABLE_STACK_MOVE); __ br(Assembler::less, false, Assembler::pn, L_ok); __ delayed()->nop(); } else { __ br(allow_zero ? Assembler::greater : Assembler::greaterEqual, false, Assembler::pn, L_bad); __ delayed()->nop(); __ cmp(arg_slots.as_register(), (int32_t) -UNREASONABLE_STACK_MOVE); __ br(Assembler::greater, false, Assembler::pn, L_ok); __ delayed()->nop(); } __ BIND(L_bad); if (direction > 0) __ stop("assert arg_slots > 0"); else __ stop("assert arg_slots < 0"); __ BIND(L_ok); BLOCK_COMMENT("} verify_stack_move"); } else { intptr_t size = arg_slots.as_constant(); if (direction < 0) size = -size; assert(size >= 0, "correct direction of constant move"); assert(size < UNREASONABLE_STACK_MOVE, "reasonable size of constant move"); } } void MethodHandles::verify_klass(MacroAssembler* _masm, Register obj_reg, KlassHandle klass, Register temp_reg, Register temp2_reg, const char* error_message) { oop* klass_addr = klass.raw_value(); assert(klass_addr >= SystemDictionaryHandles::Object_klass().raw_value() && klass_addr <= SystemDictionaryHandles::Long_klass().raw_value(), "must be one of the SystemDictionaryHandles"); Label L_ok, L_bad; BLOCK_COMMENT("verify_klass {"); __ verify_oop(obj_reg); __ br_null_short(obj_reg, Assembler::pn, L_bad); __ load_klass(obj_reg, temp_reg); __ set(ExternalAddress(klass_addr), temp2_reg); __ ld_ptr(Address(temp2_reg, 0), temp2_reg); __ cmp_and_brx_short(temp_reg, temp2_reg, Assembler::equal, Assembler::pt, L_ok); intptr_t super_check_offset = klass->super_check_offset(); __ ld_ptr(Address(temp_reg, super_check_offset), temp_reg); __ set(ExternalAddress(klass_addr), temp2_reg); __ ld_ptr(Address(temp2_reg, 0), temp2_reg); __ cmp_and_brx_short(temp_reg, temp2_reg, Assembler::equal, Assembler::pt, L_ok); __ BIND(L_bad); __ stop(error_message); __ BIND(L_ok); BLOCK_COMMENT("} verify_klass"); } #endif // ASSERT void MethodHandles::jump_from_method_handle(MacroAssembler* _masm, Register method, Register target, Register temp) { assert(method == G5_method, "interpreter calling convention"); __ verify_oop(method); __ ld_ptr(G5_method, in_bytes(methodOopDesc::from_interpreted_offset()), target); if (JvmtiExport::can_post_interpreter_events()) { // JVMTI events, such as single-stepping, are implemented partly by avoiding running // compiled code in threads for which the event is enabled. Check here for // interp_only_mode if these events CAN be enabled. __ verify_thread(); Label skip_compiled_code; const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset()); __ ld(interp_only, temp); __ tst(temp); __ br(Assembler::notZero, true, Assembler::pn, skip_compiled_code); __ delayed()->ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), target); __ bind(skip_compiled_code); } __ jmp(target, 0); __ delayed()->nop(); } // Code generation address MethodHandles::generate_method_handle_interpreter_entry(MacroAssembler* _masm) { // I5_savedSP/O5_savedSP: sender SP (must preserve) // G4 (Gargs): incoming argument list (must preserve) // G5_method: invoke methodOop // G3_method_handle: receiver method handle (must load from sp[MethodTypeForm.vmslots]) // O0, O1, O2, O3, O4: garbage temps, blown away Register O0_mtype = O0; Register O1_scratch = O1; Register O2_scratch = O2; Register O3_scratch = O3; Register O4_argslot = O4; Register O4_argbase = O4; // emit WrongMethodType path first, to enable back-branch from main path Label wrong_method_type; __ bind(wrong_method_type); Label invoke_generic_slow_path; assert(methodOopDesc::intrinsic_id_size_in_bytes() == sizeof(u1), "");; __ ldub(Address(G5_method, methodOopDesc::intrinsic_id_offset_in_bytes()), O1_scratch); __ cmp(O1_scratch, (int) vmIntrinsics::_invokeExact); __ brx(Assembler::notEqual, false, Assembler::pt, invoke_generic_slow_path); __ delayed()->nop(); __ mov(O0_mtype, G5_method_type); // required by throw_WrongMethodType __ mov(G3_method_handle, G3_method_handle); // already in this register // O0 will be filled in with JavaThread in stub __ jump_to(AddressLiteral(StubRoutines::throw_WrongMethodTypeException_entry()), O3_scratch); __ delayed()->nop(); // here's where control starts out: __ align(CodeEntryAlignment); address entry_point = __ pc(); // fetch the MethodType from the method handle // FIXME: Interpreter should transmit pre-popped stack pointer, to locate base of arg list. // This would simplify several touchy bits of code. // See 6984712: JSR 292 method handle calls need a clean argument base pointer { Register tem = G5_method; for (jint* pchase = methodOopDesc::method_type_offsets_chain(); (*pchase) != -1; pchase++) { __ ld_ptr(Address(tem, *pchase), O0_mtype); tem = O0_mtype; // in case there is another indirection } } // given the MethodType, find out where the MH argument is buried __ load_heap_oop(Address(O0_mtype, __ delayed_value(java_lang_invoke_MethodType::form_offset_in_bytes, O1_scratch)), O4_argslot); __ ldsw( Address(O4_argslot, __ delayed_value(java_lang_invoke_MethodTypeForm::vmslots_offset_in_bytes, O1_scratch)), O4_argslot); __ add(__ argument_address(O4_argslot, O4_argslot, 1), O4_argbase); // Note: argument_address uses its input as a scratch register! Address mh_receiver_slot_addr(O4_argbase, -Interpreter::stackElementSize); __ ld_ptr(mh_receiver_slot_addr, G3_method_handle); trace_method_handle(_masm, "invokeExact"); __ check_method_handle_type(O0_mtype, G3_method_handle, O1_scratch, wrong_method_type); // Nobody uses the MH receiver slot after this. Make sure. DEBUG_ONLY(__ set((int32_t) 0x999999, O1_scratch); __ st_ptr(O1_scratch, mh_receiver_slot_addr)); __ jump_to_method_handle_entry(G3_method_handle, O1_scratch); // for invokeGeneric (only), apply argument and result conversions on the fly __ bind(invoke_generic_slow_path); #ifdef ASSERT if (VerifyMethodHandles) { Label L; __ ldub(Address(G5_method, methodOopDesc::intrinsic_id_offset_in_bytes()), O1_scratch); __ cmp(O1_scratch, (int) vmIntrinsics::_invokeGeneric); __ brx(Assembler::equal, false, Assembler::pt, L); __ delayed()->nop(); __ stop("bad methodOop::intrinsic_id"); __ bind(L); } #endif //ASSERT // make room on the stack for another pointer: insert_arg_slots(_masm, 2 * stack_move_unit(), O4_argbase, O1_scratch, O2_scratch, O3_scratch); // load up an adapter from the calling type (Java weaves this) Register O2_form = O2_scratch; Register O3_adapter = O3_scratch; __ load_heap_oop(Address(O0_mtype, __ delayed_value(java_lang_invoke_MethodType::form_offset_in_bytes, O1_scratch)), O2_form); __ load_heap_oop(Address(O2_form, __ delayed_value(java_lang_invoke_MethodTypeForm::genericInvoker_offset_in_bytes, O1_scratch)), O3_adapter); __ verify_oop(O3_adapter); __ st_ptr(O3_adapter, Address(O4_argbase, 1 * Interpreter::stackElementSize)); // As a trusted first argument, pass the type being called, so the adapter knows // the actual types of the arguments and return values. // (Generic invokers are shared among form-families of method-type.) __ st_ptr(O0_mtype, Address(O4_argbase, 0 * Interpreter::stackElementSize)); // FIXME: assert that O3_adapter is of the right method-type. __ mov(O3_adapter, G3_method_handle); trace_method_handle(_masm, "invokeGeneric"); __ jump_to_method_handle_entry(G3_method_handle, O1_scratch); return entry_point; } // Workaround for C++ overloading nastiness on '0' for RegisterOrConstant. static RegisterOrConstant constant(int value) { return RegisterOrConstant(value); } static void load_vmargslot(MacroAssembler* _masm, Address vmargslot_addr, Register result) { __ ldsw(vmargslot_addr, result); } static RegisterOrConstant adjust_SP_and_Gargs_down_by_slots(MacroAssembler* _masm, RegisterOrConstant arg_slots, Register temp_reg, Register temp2_reg) { // Keep the stack pointer 2*wordSize aligned. const int TwoWordAlignmentMask = right_n_bits(LogBytesPerWord + 1); if (arg_slots.is_constant()) { const int offset = arg_slots.as_constant() << LogBytesPerWord; const int masked_offset = round_to(offset, 2 * BytesPerWord); const int masked_offset2 = (offset + 1*BytesPerWord) & ~TwoWordAlignmentMask; assert(masked_offset == masked_offset2, "must agree"); __ sub(Gargs, offset, Gargs); __ sub(SP, masked_offset, SP ); return offset; } else { #ifdef ASSERT { Label L_ok; __ cmp_and_br_short(arg_slots.as_register(), 0, Assembler::greaterEqual, Assembler::pt, L_ok); __ stop("negative arg_slots"); __ bind(L_ok); } #endif __ sll_ptr(arg_slots.as_register(), LogBytesPerWord, temp_reg); __ add( temp_reg, 1*BytesPerWord, temp2_reg); __ andn(temp2_reg, TwoWordAlignmentMask, temp2_reg); __ sub(Gargs, temp_reg, Gargs); __ sub(SP, temp2_reg, SP ); return temp_reg; } } static RegisterOrConstant adjust_SP_and_Gargs_up_by_slots(MacroAssembler* _masm, RegisterOrConstant arg_slots, Register temp_reg, Register temp2_reg) { // Keep the stack pointer 2*wordSize aligned. const int TwoWordAlignmentMask = right_n_bits(LogBytesPerWord + 1); if (arg_slots.is_constant()) { const int offset = arg_slots.as_constant() << LogBytesPerWord; const int masked_offset = offset & ~TwoWordAlignmentMask; __ add(Gargs, offset, Gargs); __ add(SP, masked_offset, SP ); return offset; } else { __ sll_ptr(arg_slots.as_register(), LogBytesPerWord, temp_reg); __ andn(temp_reg, TwoWordAlignmentMask, temp2_reg); __ add(Gargs, temp_reg, Gargs); __ add(SP, temp2_reg, SP ); return temp_reg; } } // Helper to insert argument slots into the stack. // arg_slots must be a multiple of stack_move_unit() and < 0 // argslot_reg is decremented to point to the new (shifted) location of the argslot // But, temp_reg ends up holding the original value of argslot_reg. void MethodHandles::insert_arg_slots(MacroAssembler* _masm, RegisterOrConstant arg_slots, Register argslot_reg, Register temp_reg, Register temp2_reg, Register temp3_reg) { // allow constant zero if (arg_slots.is_constant() && arg_slots.as_constant() == 0) return; assert_different_registers(argslot_reg, temp_reg, temp2_reg, temp3_reg, (!arg_slots.is_register() ? Gargs : arg_slots.as_register())); BLOCK_COMMENT("insert_arg_slots {"); if (VerifyMethodHandles) verify_argslot(_masm, argslot_reg, temp_reg, "insertion point must fall within current frame"); if (VerifyMethodHandles) verify_stack_move(_masm, arg_slots, -1); // Make space on the stack for the inserted argument(s). // Then pull down everything shallower than argslot_reg. // The stacked return address gets pulled down with everything else. // That is, copy [sp, argslot) downward by -size words. In pseudo-code: // sp -= size; // for (temp = sp + size; temp < argslot; temp++) // temp[-size] = temp[0] // argslot -= size; // offset is temp3_reg in case of arg_slots being a register. RegisterOrConstant offset = adjust_SP_and_Gargs_up_by_slots(_masm, arg_slots, temp3_reg, temp_reg); __ sub(Gargs, offset, temp_reg); // source pointer for copy { Label loop; __ BIND(loop); // pull one word down each time through the loop __ ld_ptr( Address(temp_reg, 0 ), temp2_reg); __ st_ptr(temp2_reg, Address(temp_reg, offset) ); __ add(temp_reg, wordSize, temp_reg); __ cmp_and_brx_short(temp_reg, argslot_reg, Assembler::lessUnsigned, Assembler::pt, loop); } // Now move the argslot down, to point to the opened-up space. __ add(argslot_reg, offset, argslot_reg); BLOCK_COMMENT("} insert_arg_slots"); } // Helper to remove argument slots from the stack. // arg_slots must be a multiple of stack_move_unit() and > 0 void MethodHandles::remove_arg_slots(MacroAssembler* _masm, RegisterOrConstant arg_slots, Register argslot_reg, Register temp_reg, Register temp2_reg, Register temp3_reg) { // allow constant zero if (arg_slots.is_constant() && arg_slots.as_constant() == 0) return; assert_different_registers(argslot_reg, temp_reg, temp2_reg, temp3_reg, (!arg_slots.is_register() ? Gargs : arg_slots.as_register())); BLOCK_COMMENT("remove_arg_slots {"); if (VerifyMethodHandles) verify_argslots(_masm, arg_slots, argslot_reg, temp_reg, temp2_reg, false, "deleted argument(s) must fall within current frame"); if (VerifyMethodHandles) verify_stack_move(_masm, arg_slots, +1); // Pull up everything shallower than argslot. // Then remove the excess space on the stack. // The stacked return address gets pulled up with everything else. // That is, copy [sp, argslot) upward by size words. In pseudo-code: // for (temp = argslot-1; temp >= sp; --temp) // temp[size] = temp[0] // argslot += size; // sp += size; RegisterOrConstant offset = __ regcon_sll_ptr(arg_slots, LogBytesPerWord, temp3_reg); __ sub(argslot_reg, wordSize, temp_reg); // source pointer for copy { Label L_loop; __ BIND(L_loop); // pull one word up each time through the loop __ ld_ptr( Address(temp_reg, 0 ), temp2_reg); __ st_ptr(temp2_reg, Address(temp_reg, offset) ); __ sub(temp_reg, wordSize, temp_reg); __ cmp_and_brx_short(temp_reg, Gargs, Assembler::greaterEqualUnsigned, Assembler::pt, L_loop); } // And adjust the argslot address to point at the deletion point. __ add(argslot_reg, offset, argslot_reg); // We don't need the offset at this point anymore, just adjust SP and Gargs. (void) adjust_SP_and_Gargs_up_by_slots(_masm, arg_slots, temp3_reg, temp_reg); BLOCK_COMMENT("} remove_arg_slots"); } // Helper to copy argument slots to the top of the stack. // The sequence starts with argslot_reg and is counted by slot_count // slot_count must be a multiple of stack_move_unit() and >= 0 // This function blows the temps but does not change argslot_reg. void MethodHandles::push_arg_slots(MacroAssembler* _masm, Register argslot_reg, RegisterOrConstant slot_count, Register temp_reg, Register temp2_reg) { // allow constant zero if (slot_count.is_constant() && slot_count.as_constant() == 0) return; assert_different_registers(argslot_reg, temp_reg, temp2_reg, (!slot_count.is_register() ? Gargs : slot_count.as_register()), SP); assert(Interpreter::stackElementSize == wordSize, "else change this code"); BLOCK_COMMENT("push_arg_slots {"); if (VerifyMethodHandles) verify_stack_move(_masm, slot_count, 0); RegisterOrConstant offset = adjust_SP_and_Gargs_down_by_slots(_masm, slot_count, temp2_reg, temp_reg); if (slot_count.is_constant()) { for (int i = slot_count.as_constant() - 1; i >= 0; i--) { __ ld_ptr( Address(argslot_reg, i * wordSize), temp_reg); __ st_ptr(temp_reg, Address(Gargs, i * wordSize)); } } else { Label L_plural, L_loop, L_break; // Emit code to dynamically check for the common cases, zero and one slot. __ cmp(slot_count.as_register(), (int32_t) 1); __ br(Assembler::greater, false, Assembler::pn, L_plural); __ delayed()->nop(); __ br(Assembler::less, false, Assembler::pn, L_break); __ delayed()->nop(); __ ld_ptr( Address(argslot_reg, 0), temp_reg); __ st_ptr(temp_reg, Address(Gargs, 0)); __ ba_short(L_break); __ BIND(L_plural); // Loop for 2 or more: // top = &argslot[slot_count] // while (top > argslot) *(--Gargs) = *(--top) Register top_reg = temp_reg; __ add(argslot_reg, offset, top_reg); __ add(Gargs, offset, Gargs ); // move back up again so we can go down __ BIND(L_loop); __ sub(top_reg, wordSize, top_reg); __ sub(Gargs, wordSize, Gargs ); __ ld_ptr( Address(top_reg, 0), temp2_reg); __ st_ptr(temp2_reg, Address(Gargs, 0)); __ cmp_and_brx_short(top_reg, argslot_reg, Assembler::greaterUnsigned, Assembler::pt, L_loop); __ BIND(L_break); } BLOCK_COMMENT("} push_arg_slots"); } // in-place movement; no change to Gargs // blows temp_reg, temp2_reg void MethodHandles::move_arg_slots_up(MacroAssembler* _masm, Register bottom_reg, // invariant Address top_addr, // can use temp_reg RegisterOrConstant positive_distance_in_slots, // destroyed if register Register temp_reg, Register temp2_reg) { assert_different_registers(bottom_reg, temp_reg, temp2_reg, positive_distance_in_slots.register_or_noreg()); BLOCK_COMMENT("move_arg_slots_up {"); Label L_loop, L_break; Register top_reg = temp_reg; if (!top_addr.is_same_address(Address(top_reg, 0))) { __ add(top_addr, top_reg); } // Detect empty (or broken) loop: #ifdef ASSERT if (VerifyMethodHandles) { // Verify that &bottom < &top (non-empty interval) Label L_ok, L_bad; if (positive_distance_in_slots.is_register()) { __ cmp(positive_distance_in_slots.as_register(), (int32_t) 0); __ br(Assembler::lessEqual, false, Assembler::pn, L_bad); __ delayed()->nop(); } __ cmp_and_brx_short(bottom_reg, top_reg, Assembler::lessUnsigned, Assembler::pt, L_ok); __ BIND(L_bad); __ stop("valid bounds (copy up)"); __ BIND(L_ok); } #endif __ cmp_and_brx_short(bottom_reg, top_reg, Assembler::greaterEqualUnsigned, Assembler::pn, L_break); // work top down to bottom, copying contiguous data upwards // In pseudo-code: // while (--top >= bottom) *(top + distance) = *(top + 0); RegisterOrConstant offset = __ argument_offset(positive_distance_in_slots, positive_distance_in_slots.register_or_noreg()); __ BIND(L_loop); __ sub(top_reg, wordSize, top_reg); __ ld_ptr( Address(top_reg, 0 ), temp2_reg); __ st_ptr(temp2_reg, Address(top_reg, offset) ); __ cmp_and_brx_short(top_reg, bottom_reg, Assembler::greaterUnsigned, Assembler::pt, L_loop); assert(Interpreter::stackElementSize == wordSize, "else change loop"); __ BIND(L_break); BLOCK_COMMENT("} move_arg_slots_up"); } // in-place movement; no change to rsp // blows temp_reg, temp2_reg void MethodHandles::move_arg_slots_down(MacroAssembler* _masm, Address bottom_addr, // can use temp_reg Register top_reg, // invariant RegisterOrConstant negative_distance_in_slots, // destroyed if register Register temp_reg, Register temp2_reg) { assert_different_registers(top_reg, negative_distance_in_slots.register_or_noreg(), temp_reg, temp2_reg); BLOCK_COMMENT("move_arg_slots_down {"); Label L_loop, L_break; Register bottom_reg = temp_reg; if (!bottom_addr.is_same_address(Address(bottom_reg, 0))) { __ add(bottom_addr, bottom_reg); } // Detect empty (or broken) loop: #ifdef ASSERT assert(!negative_distance_in_slots.is_constant() || negative_distance_in_slots.as_constant() < 0, ""); if (VerifyMethodHandles) { // Verify that &bottom < &top (non-empty interval) Label L_ok, L_bad; if (negative_distance_in_slots.is_register()) { __ cmp(negative_distance_in_slots.as_register(), (int32_t) 0); __ br(Assembler::greaterEqual, false, Assembler::pn, L_bad); __ delayed()->nop(); } __ cmp_and_brx_short(bottom_reg, top_reg, Assembler::lessUnsigned, Assembler::pt, L_ok); __ BIND(L_bad); __ stop("valid bounds (copy down)"); __ BIND(L_ok); } #endif __ cmp_and_brx_short(bottom_reg, top_reg, Assembler::greaterEqualUnsigned, Assembler::pn, L_break); // work bottom up to top, copying contiguous data downwards // In pseudo-code: // while (bottom < top) *(bottom - distance) = *(bottom + 0), bottom++; RegisterOrConstant offset = __ argument_offset(negative_distance_in_slots, negative_distance_in_slots.register_or_noreg()); __ BIND(L_loop); __ ld_ptr( Address(bottom_reg, 0 ), temp2_reg); __ st_ptr(temp2_reg, Address(bottom_reg, offset) ); __ add(bottom_reg, wordSize, bottom_reg); __ cmp_and_brx_short(bottom_reg, top_reg, Assembler::lessUnsigned, Assembler::pt, L_loop); assert(Interpreter::stackElementSize == wordSize, "else change loop"); __ BIND(L_break); BLOCK_COMMENT("} move_arg_slots_down"); } // Copy from a field or array element to a stacked argument slot. // is_element (ignored) says whether caller is loading an array element instead of an instance field. void MethodHandles::move_typed_arg(MacroAssembler* _masm, BasicType type, bool is_element, Address value_src, Address slot_dest, Register temp_reg) { assert(!slot_dest.uses(temp_reg), "must be different register"); BLOCK_COMMENT(!is_element ? "move_typed_arg {" : "move_typed_arg { (array element)"); if (type == T_OBJECT || type == T_ARRAY) { __ load_heap_oop(value_src, temp_reg); __ verify_oop(temp_reg); __ st_ptr(temp_reg, slot_dest); } else if (type != T_VOID) { int arg_size = type2aelembytes(type); bool arg_is_signed = is_signed_subword_type(type); int slot_size = is_subword_type(type) ? type2aelembytes(T_INT) : arg_size; // store int sub-words as int __ load_sized_value( value_src, temp_reg, arg_size, arg_is_signed); __ store_sized_value(temp_reg, slot_dest, slot_size ); } BLOCK_COMMENT("} move_typed_arg"); } // Cf. TemplateInterpreterGenerator::generate_return_entry_for and // InterpreterMacroAssembler::save_return_value void MethodHandles::move_return_value(MacroAssembler* _masm, BasicType type, Address return_slot) { BLOCK_COMMENT("move_return_value {"); // Look at the type and pull the value out of the corresponding register. if (type == T_VOID) { // nothing to do } else if (type == T_OBJECT) { __ verify_oop(O0); __ st_ptr(O0, return_slot); } else if (type == T_INT || is_subword_type(type)) { int type_size = type2aelembytes(T_INT); __ store_sized_value(O0, return_slot, type_size); } else if (type == T_LONG) { // store the value by parts // Note: We assume longs are continguous (if misaligned) on the interpreter stack. #if !defined(_LP64) && defined(COMPILER2) __ stx(G1, return_slot); #else #ifdef _LP64 __ stx(O0, return_slot); #else if (return_slot.has_disp()) { // The displacement is a constant __ st(O0, return_slot); __ st(O1, return_slot.plus_disp(Interpreter::stackElementSize)); } else { __ std(O0, return_slot); } #endif #endif } else if (type == T_FLOAT) { __ stf(FloatRegisterImpl::S, Ftos_f, return_slot); } else if (type == T_DOUBLE) { __ stf(FloatRegisterImpl::D, Ftos_f, return_slot); } else { ShouldNotReachHere(); } BLOCK_COMMENT("} move_return_value"); } #ifndef PRODUCT extern "C" void print_method_handle(oop mh); void trace_method_handle_stub(const char* adaptername, oopDesc* mh, intptr_t* saved_sp) { bool has_mh = (strstr(adaptername, "return/") == NULL); // return adapters don't have mh tty->print_cr("MH %s mh="INTPTR_FORMAT " saved_sp=" INTPTR_FORMAT, adaptername, (intptr_t) mh, saved_sp); if (has_mh) print_method_handle(mh); } void MethodHandles::trace_method_handle(MacroAssembler* _masm, const char* adaptername) { if (!TraceMethodHandles) return; BLOCK_COMMENT("trace_method_handle {"); // save: Gargs, O5_savedSP __ save_frame(16); __ set((intptr_t) adaptername, O0); __ mov(G3_method_handle, O1); __ mov(I5_savedSP, O2); __ mov(G3_method_handle, L3); __ mov(Gargs, L4); __ mov(G5_method_type, L5); __ call_VM_leaf(L7, CAST_FROM_FN_PTR(address, trace_method_handle_stub)); __ mov(L3, G3_method_handle); __ mov(L4, Gargs); __ mov(L5, G5_method_type); __ restore(); BLOCK_COMMENT("} trace_method_handle"); } #endif // PRODUCT // which conversion op types are implemented here? int MethodHandles::adapter_conversion_ops_supported_mask() { return ((1<from_compiled_entry(), "method must be linked"); __ set(AddressLiteral((address) &_raise_exception_method), G5_method); __ ld_ptr(Address(G5_method, 0), G5_method); const int jobject_oop_offset = 0; __ ld_ptr(Address(G5_method, jobject_oop_offset), G5_method); adjust_SP_and_Gargs_down_by_slots(_masm, 3, noreg, noreg); __ st (O0_code, __ argument_address(constant(2), noreg, 0)); __ st_ptr(O1_actual, __ argument_address(constant(1), noreg, 0)); __ st_ptr(O2_required, __ argument_address(constant(0), noreg, 0)); jump_from_method_handle(_masm, G5_method, O1_scratch, O2_scratch); } break; case _invokestatic_mh: case _invokespecial_mh: { __ load_heap_oop(G3_mh_vmtarget, G5_method); // target is a methodOop // Same as TemplateTable::invokestatic or invokespecial, // minus the CP setup and profiling: if (ek == _invokespecial_mh) { // Must load & check the first argument before entering the target method. __ load_method_handle_vmslots(O0_argslot, G3_method_handle, O1_scratch); __ ld_ptr(__ argument_address(O0_argslot, O0_argslot, -1), G3_method_handle); __ null_check(G3_method_handle); __ verify_oop(G3_method_handle); } jump_from_method_handle(_masm, G5_method, O1_scratch, O2_scratch); } break; case _invokevirtual_mh: { // Same as TemplateTable::invokevirtual, // minus the CP setup and profiling: // Pick out the vtable index and receiver offset from the MH, // and then we can discard it: Register O2_index = O2_scratch; __ load_method_handle_vmslots(O0_argslot, G3_method_handle, O1_scratch); __ ldsw(G3_dmh_vmindex, O2_index); // Note: The verifier allows us to ignore G3_mh_vmtarget. __ ld_ptr(__ argument_address(O0_argslot, O0_argslot, -1), G3_method_handle); __ null_check(G3_method_handle, oopDesc::klass_offset_in_bytes()); // Get receiver klass: Register O0_klass = O0_argslot; __ load_klass(G3_method_handle, O0_klass); __ verify_oop(O0_klass); // Get target methodOop & entry point: const int base = instanceKlass::vtable_start_offset() * wordSize; assert(vtableEntry::size() * wordSize == wordSize, "adjust the scaling in the code below"); __ sll_ptr(O2_index, LogBytesPerWord, O2_index); __ add(O0_klass, O2_index, O0_klass); Address vtable_entry_addr(O0_klass, base + vtableEntry::method_offset_in_bytes()); __ ld_ptr(vtable_entry_addr, G5_method); jump_from_method_handle(_masm, G5_method, O1_scratch, O2_scratch); } break; case _invokeinterface_mh: { // Same as TemplateTable::invokeinterface, // minus the CP setup and profiling: __ load_method_handle_vmslots(O0_argslot, G3_method_handle, O1_scratch); Register O1_intf = O1_scratch; Register G5_index = G5_scratch; __ load_heap_oop(G3_mh_vmtarget, O1_intf); __ ldsw(G3_dmh_vmindex, G5_index); __ ld_ptr(__ argument_address(O0_argslot, O0_argslot, -1), G3_method_handle); __ null_check(G3_method_handle, oopDesc::klass_offset_in_bytes()); // Get receiver klass: Register O0_klass = O0_argslot; __ load_klass(G3_method_handle, O0_klass); __ verify_oop(O0_klass); // Get interface: Label no_such_interface; __ verify_oop(O1_intf); __ lookup_interface_method(O0_klass, O1_intf, // Note: next two args must be the same: G5_index, G5_method, O2_scratch, O3_scratch, no_such_interface); jump_from_method_handle(_masm, G5_method, O1_scratch, O2_scratch); __ bind(no_such_interface); // Throw an exception. // For historical reasons, it will be IncompatibleClassChangeError. __ unimplemented("not tested yet"); __ ld_ptr(Address(O1_intf, java_mirror_offset), O2_required); // required interface __ mov( O0_klass, O1_actual); // bad receiver __ jump_to(AddressLiteral(from_interpreted_entry(_raise_exception)), O3_scratch); __ delayed()->mov(Bytecodes::_invokeinterface, O0_code); // who is complaining? } break; case _bound_ref_mh: case _bound_int_mh: case _bound_long_mh: case _bound_ref_direct_mh: case _bound_int_direct_mh: case _bound_long_direct_mh: { const bool direct_to_method = (ek >= _bound_ref_direct_mh); BasicType arg_type = ek_bound_mh_arg_type(ek); int arg_slots = type2size[arg_type]; // Make room for the new argument: load_vmargslot(_masm, G3_bmh_vmargslot, O0_argslot); __ add(__ argument_address(O0_argslot, O0_argslot), O0_argslot); insert_arg_slots(_masm, arg_slots * stack_move_unit(), O0_argslot, O1_scratch, O2_scratch, O3_scratch); // Store bound argument into the new stack slot: __ load_heap_oop(G3_bmh_argument, O1_scratch); if (arg_type == T_OBJECT) { __ st_ptr(O1_scratch, Address(O0_argslot, 0)); } else { Address prim_value_addr(O1_scratch, java_lang_boxing_object::value_offset_in_bytes(arg_type)); move_typed_arg(_masm, arg_type, false, prim_value_addr, Address(O0_argslot, 0), O2_scratch); // must be an even register for !_LP64 long moves (uses O2/O3) } if (direct_to_method) { __ load_heap_oop(G3_mh_vmtarget, G5_method); // target is a methodOop jump_from_method_handle(_masm, G5_method, O1_scratch, O2_scratch); } else { __ load_heap_oop(G3_mh_vmtarget, G3_method_handle); // target is a methodOop __ verify_oop(G3_method_handle); __ jump_to_method_handle_entry(G3_method_handle, O1_scratch); } } break; case _adapter_opt_profiling: if (java_lang_invoke_CountingMethodHandle::vmcount_offset_in_bytes() != 0) { Address G3_mh_vmcount(G3_method_handle, java_lang_invoke_CountingMethodHandle::vmcount_offset_in_bytes()); __ ld(G3_mh_vmcount, O1_scratch); __ add(O1_scratch, 1, O1_scratch); __ st(O1_scratch, G3_mh_vmcount); } // fall through case _adapter_retype_only: case _adapter_retype_raw: // Immediately jump to the next MH layer: __ load_heap_oop(G3_mh_vmtarget, G3_method_handle); __ verify_oop(G3_method_handle); __ jump_to_method_handle_entry(G3_method_handle, O1_scratch); // This is OK when all parameter types widen. // It is also OK when a return type narrows. break; case _adapter_check_cast: { // Check a reference argument before jumping to the next layer of MH: load_vmargslot(_masm, G3_amh_vmargslot, O0_argslot); Address vmarg = __ argument_address(O0_argslot, O0_argslot); // What class are we casting to? Register O1_klass = O1_scratch; // Interesting AMH data. __ load_heap_oop(G3_amh_argument, O1_klass); // This is a Class object! load_klass_from_Class(_masm, O1_klass, O2_scratch, O3_scratch); Label L_done; __ ld_ptr(vmarg, O2_scratch); __ br_null_short(O2_scratch, Assembler::pn, L_done); // No cast if null. __ load_klass(O2_scratch, O2_scratch); // Live at this point: // - O0_argslot : argslot index in vmarg; may be required in the failing path // - O1_klass : klass required by the target method // - O2_scratch : argument klass to test // - G3_method_handle: adapter method handle __ check_klass_subtype(O2_scratch, O1_klass, O3_scratch, O4_scratch, L_done); // If we get here, the type check failed! __ load_heap_oop(G3_amh_argument, O2_required); // required class __ ld_ptr( vmarg, O1_actual); // bad object __ jump_to(AddressLiteral(from_interpreted_entry(_raise_exception)), O3_scratch); __ delayed()->mov(Bytecodes::_checkcast, O0_code); // who is complaining? __ BIND(L_done); // Get the new MH: __ load_heap_oop(G3_mh_vmtarget, G3_method_handle); __ jump_to_method_handle_entry(G3_method_handle, O1_scratch); } break; case _adapter_prim_to_prim: case _adapter_ref_to_prim: // Handled completely by optimized cases. __ stop("init_AdapterMethodHandle should not issue this"); break; case _adapter_opt_i2i: // optimized subcase of adapt_prim_to_prim //case _adapter_opt_f2i: // optimized subcase of adapt_prim_to_prim case _adapter_opt_l2i: // optimized subcase of adapt_prim_to_prim case _adapter_opt_unboxi: // optimized subcase of adapt_ref_to_prim { // Perform an in-place conversion to int or an int subword. load_vmargslot(_masm, G3_amh_vmargslot, O0_argslot); Address value; Address vmarg; bool value_left_justified = false; switch (ek) { case _adapter_opt_i2i: value = vmarg = __ argument_address(O0_argslot, O0_argslot); break; case _adapter_opt_l2i: { // just delete the extra slot #ifdef _LP64 // In V9, longs are given 2 64-bit slots in the interpreter, but the // data is passed in only 1 slot. // Keep the second slot. __ add(__ argument_address(O0_argslot, O0_argslot, -1), O0_argslot); remove_arg_slots(_masm, -stack_move_unit(), O0_argslot, O1_scratch, O2_scratch, O3_scratch); value = Address(O0_argslot, 4); // Get least-significant 32-bit of 64-bit value. vmarg = Address(O0_argslot, Interpreter::stackElementSize); #else // Keep the first slot. __ add(__ argument_address(O0_argslot, O0_argslot), O0_argslot); remove_arg_slots(_masm, -stack_move_unit(), O0_argslot, O1_scratch, O2_scratch, O3_scratch); value = Address(O0_argslot, 0); vmarg = value; #endif } break; case _adapter_opt_unboxi: { vmarg = __ argument_address(O0_argslot, O0_argslot); // Load the value up from the heap. __ ld_ptr(vmarg, O1_scratch); int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_INT); #ifdef ASSERT for (int bt = T_BOOLEAN; bt < T_INT; bt++) { if (is_subword_type(BasicType(bt))) assert(value_offset == java_lang_boxing_object::value_offset_in_bytes(BasicType(bt)), ""); } #endif __ null_check(O1_scratch, value_offset); value = Address(O1_scratch, value_offset); #ifdef _BIG_ENDIAN // Values stored in objects are packed. value_left_justified = true; #endif } break; default: ShouldNotReachHere(); } // This check is required on _BIG_ENDIAN Register G5_vminfo = G5_scratch; __ ldsw(G3_amh_conversion, G5_vminfo); assert(CONV_VMINFO_SHIFT == 0, "preshifted"); // Original 32-bit vmdata word must be of this form: // | MBZ:6 | signBitCount:8 | srcDstTypes:8 | conversionOp:8 | __ lduw(value, O1_scratch); if (!value_left_justified) __ sll(O1_scratch, G5_vminfo, O1_scratch); Label zero_extend, done; __ btst(CONV_VMINFO_SIGN_FLAG, G5_vminfo); __ br(Assembler::zero, false, Assembler::pn, zero_extend); __ delayed()->nop(); // this path is taken for int->byte, int->short __ sra(O1_scratch, G5_vminfo, O1_scratch); __ ba_short(done); __ bind(zero_extend); // this is taken for int->char __ srl(O1_scratch, G5_vminfo, O1_scratch); __ bind(done); __ st(O1_scratch, vmarg); // Get the new MH: __ load_heap_oop(G3_mh_vmtarget, G3_method_handle); __ jump_to_method_handle_entry(G3_method_handle, O1_scratch); } break; case _adapter_opt_i2l: // optimized subcase of adapt_prim_to_prim case _adapter_opt_unboxl: // optimized subcase of adapt_ref_to_prim { // Perform an in-place int-to-long or ref-to-long conversion. load_vmargslot(_masm, G3_amh_vmargslot, O0_argslot); // On big-endian machine we duplicate the slot and store the MSW // in the first slot. __ add(__ argument_address(O0_argslot, O0_argslot, 1), O0_argslot); insert_arg_slots(_masm, stack_move_unit(), O0_argslot, O1_scratch, O2_scratch, O3_scratch); Address arg_lsw(O0_argslot, 0); Address arg_msw(O0_argslot, -Interpreter::stackElementSize); switch (ek) { case _adapter_opt_i2l: { #ifdef _LP64 __ ldsw(arg_lsw, O2_scratch); // Load LSW sign-extended #else __ ldsw(arg_lsw, O3_scratch); // Load LSW sign-extended __ srlx(O3_scratch, BitsPerInt, O2_scratch); // Move MSW value to lower 32-bits for std #endif __ st_long(O2_scratch, arg_msw); // Uses O2/O3 on !_LP64 } break; case _adapter_opt_unboxl: { // Load the value up from the heap. __ ld_ptr(arg_lsw, O1_scratch); int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_LONG); assert(value_offset == java_lang_boxing_object::value_offset_in_bytes(T_DOUBLE), ""); __ null_check(O1_scratch, value_offset); __ ld_long(Address(O1_scratch, value_offset), O2_scratch); // Uses O2/O3 on !_LP64 __ st_long(O2_scratch, arg_msw); } break; default: ShouldNotReachHere(); } __ load_heap_oop(G3_mh_vmtarget, G3_method_handle); __ jump_to_method_handle_entry(G3_method_handle, O1_scratch); } break; case _adapter_opt_f2d: // optimized subcase of adapt_prim_to_prim case _adapter_opt_d2f: // optimized subcase of adapt_prim_to_prim { // perform an in-place floating primitive conversion __ unimplemented(entry_name(ek)); } break; case _adapter_prim_to_ref: __ unimplemented(entry_name(ek)); // %%% FIXME: NYI break; case _adapter_swap_args: case _adapter_rot_args: // handled completely by optimized cases __ stop("init_AdapterMethodHandle should not issue this"); break; case _adapter_opt_swap_1: case _adapter_opt_swap_2: case _adapter_opt_rot_1_up: case _adapter_opt_rot_1_down: case _adapter_opt_rot_2_up: case _adapter_opt_rot_2_down: { int swap_slots = ek_adapter_opt_swap_slots(ek); int rotate = ek_adapter_opt_swap_mode(ek); // 'argslot' is the position of the first argument to swap. load_vmargslot(_masm, G3_amh_vmargslot, O0_argslot); __ add(__ argument_address(O0_argslot, O0_argslot), O0_argslot); if (VerifyMethodHandles) verify_argslot(_masm, O0_argslot, O2_scratch, "swap point must fall within current frame"); // 'vminfo' is the second. Register O1_destslot = O1_scratch; load_conversion_vminfo(_masm, G3_amh_conversion, O1_destslot); __ add(__ argument_address(O1_destslot, O1_destslot), O1_destslot); if (VerifyMethodHandles) verify_argslot(_masm, O1_destslot, O2_scratch, "swap point must fall within current frame"); assert(Interpreter::stackElementSize == wordSize, "else rethink use of wordSize here"); if (!rotate) { // simple swap for (int i = 0; i < swap_slots; i++) { __ ld_ptr( Address(O0_argslot, i * wordSize), O2_scratch); __ ld_ptr( Address(O1_destslot, i * wordSize), O3_scratch); __ st_ptr(O3_scratch, Address(O0_argslot, i * wordSize)); __ st_ptr(O2_scratch, Address(O1_destslot, i * wordSize)); } } else { // A rotate is actually pair of moves, with an "odd slot" (or pair) // changing place with a series of other slots. // First, push the "odd slot", which is going to get overwritten switch (swap_slots) { case 2 : __ ld_ptr(Address(O0_argslot, 1 * wordSize), O4_scratch); // fall-thru case 1 : __ ld_ptr(Address(O0_argslot, 0 * wordSize), O3_scratch); break; default: ShouldNotReachHere(); } if (rotate > 0) { // Here is rotate > 0: // (low mem) (high mem) // | dest: more_slots... | arg: odd_slot :arg+1 | // => // | dest: odd_slot | dest+1: more_slots... :arg+1 | // work argslot down to destslot, copying contiguous data upwards // pseudo-code: // argslot = src_addr - swap_bytes // destslot = dest_addr // while (argslot >= destslot) *(argslot + swap_bytes) = *(argslot + 0), argslot--; move_arg_slots_up(_masm, O1_destslot, Address(O0_argslot, 0), swap_slots, O0_argslot, O2_scratch); } else { // Here is the other direction, rotate < 0: // (low mem) (high mem) // | arg: odd_slot | arg+1: more_slots... :dest+1 | // => // | arg: more_slots... | dest: odd_slot :dest+1 | // work argslot up to destslot, copying contiguous data downwards // pseudo-code: // argslot = src_addr + swap_bytes // destslot = dest_addr // while (argslot <= destslot) *(argslot - swap_bytes) = *(argslot + 0), argslot++; // dest_slot denotes an exclusive upper limit int limit_bias = OP_ROT_ARGS_DOWN_LIMIT_BIAS; if (limit_bias != 0) __ add(O1_destslot, - limit_bias * wordSize, O1_destslot); move_arg_slots_down(_masm, Address(O0_argslot, swap_slots * wordSize), O1_destslot, -swap_slots, O0_argslot, O2_scratch); __ sub(O1_destslot, swap_slots * wordSize, O1_destslot); } // pop the original first chunk into the destination slot, now free switch (swap_slots) { case 2 : __ st_ptr(O4_scratch, Address(O1_destslot, 1 * wordSize)); // fall-thru case 1 : __ st_ptr(O3_scratch, Address(O1_destslot, 0 * wordSize)); break; default: ShouldNotReachHere(); } } __ load_heap_oop(G3_mh_vmtarget, G3_method_handle); __ jump_to_method_handle_entry(G3_method_handle, O1_scratch); } break; case _adapter_dup_args: { // 'argslot' is the position of the first argument to duplicate. load_vmargslot(_masm, G3_amh_vmargslot, O0_argslot); __ add(__ argument_address(O0_argslot, O0_argslot), O0_argslot); // 'stack_move' is negative number of words to duplicate. Register O1_stack_move = O1_scratch; load_stack_move(_masm, G3_amh_conversion, O1_stack_move); if (VerifyMethodHandles) { verify_argslots(_masm, O1_stack_move, O0_argslot, O2_scratch, O3_scratch, true, "copied argument(s) must fall within current frame"); } // insert location is always the bottom of the argument list: __ neg(O1_stack_move); push_arg_slots(_masm, O0_argslot, O1_stack_move, O2_scratch, O3_scratch); __ load_heap_oop(G3_mh_vmtarget, G3_method_handle); __ jump_to_method_handle_entry(G3_method_handle, O1_scratch); } break; case _adapter_drop_args: { // 'argslot' is the position of the first argument to nuke. load_vmargslot(_masm, G3_amh_vmargslot, O0_argslot); __ add(__ argument_address(O0_argslot, O0_argslot), O0_argslot); // 'stack_move' is number of words to drop. Register O1_stack_move = O1_scratch; load_stack_move(_masm, G3_amh_conversion, O1_stack_move); remove_arg_slots(_masm, O1_stack_move, O0_argslot, O2_scratch, O3_scratch, O4_scratch); __ load_heap_oop(G3_mh_vmtarget, G3_method_handle); __ jump_to_method_handle_entry(G3_method_handle, O1_scratch); } break; case _adapter_collect_args: case _adapter_fold_args: case _adapter_spread_args: // Handled completely by optimized cases. __ stop("init_AdapterMethodHandle should not issue this"); break; case _adapter_opt_collect_ref: case _adapter_opt_collect_int: case _adapter_opt_collect_long: case _adapter_opt_collect_float: case _adapter_opt_collect_double: case _adapter_opt_collect_void: case _adapter_opt_collect_0_ref: case _adapter_opt_collect_1_ref: case _adapter_opt_collect_2_ref: case _adapter_opt_collect_3_ref: case _adapter_opt_collect_4_ref: case _adapter_opt_collect_5_ref: case _adapter_opt_filter_S0_ref: case _adapter_opt_filter_S1_ref: case _adapter_opt_filter_S2_ref: case _adapter_opt_filter_S3_ref: case _adapter_opt_filter_S4_ref: case _adapter_opt_filter_S5_ref: case _adapter_opt_collect_2_S0_ref: case _adapter_opt_collect_2_S1_ref: case _adapter_opt_collect_2_S2_ref: case _adapter_opt_collect_2_S3_ref: case _adapter_opt_collect_2_S4_ref: case _adapter_opt_collect_2_S5_ref: case _adapter_opt_fold_ref: case _adapter_opt_fold_int: case _adapter_opt_fold_long: case _adapter_opt_fold_float: case _adapter_opt_fold_double: case _adapter_opt_fold_void: case _adapter_opt_fold_1_ref: case _adapter_opt_fold_2_ref: case _adapter_opt_fold_3_ref: case _adapter_opt_fold_4_ref: case _adapter_opt_fold_5_ref: { // Given a fresh incoming stack frame, build a new ricochet frame. // On entry, TOS points at a return PC, and FP is the callers frame ptr. // RSI/R13 has the caller's exact stack pointer, which we must also preserve. // RCX contains an AdapterMethodHandle of the indicated kind. // Relevant AMH fields: // amh.vmargslot: // points to the trailing edge of the arguments // to filter, collect, or fold. For a boxing operation, // it points just after the single primitive value. // amh.argument: // recursively called MH, on |collect| arguments // amh.vmtarget: // final destination MH, on return value, etc. // amh.conversion.dest: // tells what is the type of the return value // (not needed here, since dest is also derived from ek) // amh.conversion.vminfo: // points to the trailing edge of the return value // when the vmtarget is to be called; this is // equal to vmargslot + (retained ? |collect| : 0) // Pass 0 or more argument slots to the recursive target. int collect_count_constant = ek_adapter_opt_collect_count(ek); // The collected arguments are copied from the saved argument list: int collect_slot_constant = ek_adapter_opt_collect_slot(ek); assert(ek_orig == _adapter_collect_args || ek_orig == _adapter_fold_args, ""); bool retain_original_args = (ek_orig == _adapter_fold_args); // The return value is replaced (or inserted) at the 'vminfo' argslot. // Sometimes we can compute this statically. int dest_slot_constant = -1; if (!retain_original_args) dest_slot_constant = collect_slot_constant; else if (collect_slot_constant >= 0 && collect_count_constant >= 0) // We are preserving all the arguments, and the return value is prepended, // so the return slot is to the left (above) the |collect| sequence. dest_slot_constant = collect_slot_constant + collect_count_constant; // Replace all those slots by the result of the recursive call. // The result type can be one of ref, int, long, float, double, void. // In the case of void, nothing is pushed on the stack after return. BasicType dest = ek_adapter_opt_collect_type(ek); assert(dest == type2wfield[dest], "dest is a stack slot type"); int dest_count = type2size[dest]; assert(dest_count == 1 || dest_count == 2 || (dest_count == 0 && dest == T_VOID), "dest has a size"); // Choose a return continuation. EntryKind ek_ret = _adapter_opt_return_any; if (dest != T_CONFLICT && OptimizeMethodHandles) { switch (dest) { case T_INT : ek_ret = _adapter_opt_return_int; break; case T_LONG : ek_ret = _adapter_opt_return_long; break; case T_FLOAT : ek_ret = _adapter_opt_return_float; break; case T_DOUBLE : ek_ret = _adapter_opt_return_double; break; case T_OBJECT : ek_ret = _adapter_opt_return_ref; break; case T_VOID : ek_ret = _adapter_opt_return_void; break; default : ShouldNotReachHere(); } if (dest == T_OBJECT && dest_slot_constant >= 0) { EntryKind ek_try = EntryKind(_adapter_opt_return_S0_ref + dest_slot_constant); if (ek_try <= _adapter_opt_return_LAST && ek_adapter_opt_return_slot(ek_try) == dest_slot_constant) { ek_ret = ek_try; } } assert(ek_adapter_opt_return_type(ek_ret) == dest, ""); } // Already pushed: ... keep1 | collect | keep2 | // Push a few extra argument words, if we need them to store the return value. { int extra_slots = 0; if (retain_original_args) { extra_slots = dest_count; } else if (collect_count_constant == -1) { extra_slots = dest_count; // collect_count might be zero; be generous } else if (dest_count > collect_count_constant) { extra_slots = (dest_count - collect_count_constant); } else { // else we know we have enough dead space in |collect| to repurpose for return values } if (extra_slots != 0) { __ sub(SP, round_to(extra_slots, 2) * Interpreter::stackElementSize, SP); } } // Set up Ricochet Frame. __ mov(SP, O5_savedSP); // record SP for the callee // One extra (empty) slot for outgoing target MH (see Gargs computation below). __ save_frame(2); // Note: we need to add 2 slots since frame::memory_parameter_word_sp_offset is 23. // Note: Gargs is live throughout the following, until we make our recursive call. // And the RF saves a copy in L4_saved_args_base. RicochetFrame::enter_ricochet_frame(_masm, G3_method_handle, Gargs, entry(ek_ret)->from_interpreted_entry()); // Compute argument base: // Set up Gargs for current frame, extra (empty) slot is for outgoing target MH (space reserved by save_frame above). __ add(FP, STACK_BIAS - (1 * Interpreter::stackElementSize), Gargs); // Now pushed: ... keep1 | collect | keep2 | extra | [RF] #ifdef ASSERT if (VerifyMethodHandles && dest != T_CONFLICT) { BLOCK_COMMENT("verify AMH.conv.dest {"); extract_conversion_dest_type(_masm, RicochetFrame::L5_conversion, O1_scratch); Label L_dest_ok; __ cmp(O1_scratch, (int) dest); __ br(Assembler::equal, false, Assembler::pt, L_dest_ok); __ delayed()->nop(); if (dest == T_INT) { for (int bt = T_BOOLEAN; bt < T_INT; bt++) { if (is_subword_type(BasicType(bt))) { __ cmp(O1_scratch, (int) bt); __ br(Assembler::equal, false, Assembler::pt, L_dest_ok); __ delayed()->nop(); } } } __ stop("bad dest in AMH.conv"); __ BIND(L_dest_ok); BLOCK_COMMENT("} verify AMH.conv.dest"); } #endif //ASSERT // Find out where the original copy of the recursive argument sequence begins. Register O0_coll = O0_scratch; { RegisterOrConstant collect_slot = collect_slot_constant; if (collect_slot_constant == -1) { load_vmargslot(_masm, G3_amh_vmargslot, O1_scratch); collect_slot = O1_scratch; } // collect_slot might be 0, but we need the move anyway. __ add(RicochetFrame::L4_saved_args_base, __ argument_offset(collect_slot, collect_slot.register_or_noreg()), O0_coll); // O0_coll now points at the trailing edge of |collect| and leading edge of |keep2| } // Replace the old AMH with the recursive MH. (No going back now.) // In the case of a boxing call, the recursive call is to a 'boxer' method, // such as Integer.valueOf or Long.valueOf. In the case of a filter // or collect call, it will take one or more arguments, transform them, // and return some result, to store back into argument_base[vminfo]. __ load_heap_oop(G3_amh_argument, G3_method_handle); if (VerifyMethodHandles) verify_method_handle(_masm, G3_method_handle, O1_scratch, O2_scratch); // Calculate |collect|, the number of arguments we are collecting. Register O1_collect_count = O1_scratch; RegisterOrConstant collect_count; if (collect_count_constant < 0) { __ load_method_handle_vmslots(O1_collect_count, G3_method_handle, O2_scratch); collect_count = O1_collect_count; } else { collect_count = collect_count_constant; #ifdef ASSERT if (VerifyMethodHandles) { BLOCK_COMMENT("verify collect_count_constant {"); __ load_method_handle_vmslots(O3_scratch, G3_method_handle, O2_scratch); Label L_count_ok; __ cmp_and_br_short(O3_scratch, collect_count_constant, Assembler::equal, Assembler::pt, L_count_ok); __ stop("bad vminfo in AMH.conv"); __ BIND(L_count_ok); BLOCK_COMMENT("} verify collect_count_constant"); } #endif //ASSERT } // copy |collect| slots directly to TOS: push_arg_slots(_masm, O0_coll, collect_count, O2_scratch, O3_scratch); // Now pushed: ... keep1 | collect | keep2 | RF... | collect | // O0_coll still points at the trailing edge of |collect| and leading edge of |keep2| // If necessary, adjust the saved arguments to make room for the eventual return value. // Normal adjustment: ... keep1 | +dest+ | -collect- | keep2 | RF... | collect | // If retaining args: ... keep1 | +dest+ | collect | keep2 | RF... | collect | // In the non-retaining case, this might move keep2 either up or down. // We don't have to copy the whole | RF... collect | complex, // but we must adjust RF.saved_args_base. // Also, from now on, we will forget about the original copy of |collect|. // If we are retaining it, we will treat it as part of |keep2|. // For clarity we will define |keep3| = |collect|keep2| or |keep2|. BLOCK_COMMENT("adjust trailing arguments {"); // Compare the sizes of |+dest+| and |-collect-|, which are opposed opening and closing movements. int open_count = dest_count; RegisterOrConstant close_count = collect_count_constant; Register O1_close_count = O1_collect_count; if (retain_original_args) { close_count = constant(0); } else if (collect_count_constant == -1) { close_count = O1_collect_count; } // How many slots need moving? This is simply dest_slot (0 => no |keep3|). RegisterOrConstant keep3_count; Register O2_keep3_count = O2_scratch; if (dest_slot_constant < 0) { extract_conversion_vminfo(_masm, RicochetFrame::L5_conversion, O2_keep3_count); keep3_count = O2_keep3_count; } else { keep3_count = dest_slot_constant; #ifdef ASSERT if (VerifyMethodHandles && dest_slot_constant < 0) { BLOCK_COMMENT("verify dest_slot_constant {"); extract_conversion_vminfo(_masm, RicochetFrame::L5_conversion, O3_scratch); Label L_vminfo_ok; __ cmp_and_br_short(O3_scratch, dest_slot_constant, Assembler::equal, Assembler::pt, L_vminfo_ok); __ stop("bad vminfo in AMH.conv"); __ BIND(L_vminfo_ok); BLOCK_COMMENT("} verify dest_slot_constant"); } #endif //ASSERT } // tasks remaining: bool move_keep3 = (!keep3_count.is_constant() || keep3_count.as_constant() != 0); bool stomp_dest = (NOT_DEBUG(dest == T_OBJECT) DEBUG_ONLY(dest_count != 0)); bool fix_arg_base = (!close_count.is_constant() || open_count != close_count.as_constant()); // Old and new argument locations (based at slot 0). // Net shift (&new_argv - &old_argv) is (close_count - open_count). bool zero_open_count = (open_count == 0); // remember this bit of info if (move_keep3 && fix_arg_base) { // It will be easier to have everything in one register: if (close_count.is_register()) { // Deduct open_count from close_count register to get a clean +/- value. __ sub(close_count.as_register(), open_count, close_count.as_register()); } else { close_count = close_count.as_constant() - open_count; } open_count = 0; } Register L4_old_argv = RicochetFrame::L4_saved_args_base; Register O3_new_argv = O3_scratch; if (fix_arg_base) { __ add(L4_old_argv, __ argument_offset(close_count, O4_scratch), O3_new_argv, -(open_count * Interpreter::stackElementSize)); } // First decide if any actual data are to be moved. // We can skip if (a) |keep3| is empty, or (b) the argument list size didn't change. // (As it happens, all movements involve an argument list size change.) // If there are variable parameters, use dynamic checks to skip around the whole mess. Label L_done; if (keep3_count.is_register()) { __ cmp_and_br_short(keep3_count.as_register(), 0, Assembler::equal, Assembler::pn, L_done); } if (close_count.is_register()) { __ cmp_and_br_short(close_count.as_register(), open_count, Assembler::equal, Assembler::pn, L_done); } if (move_keep3 && fix_arg_base) { bool emit_move_down = false, emit_move_up = false, emit_guard = false; if (!close_count.is_constant()) { emit_move_down = emit_guard = !zero_open_count; emit_move_up = true; } else if (open_count != close_count.as_constant()) { emit_move_down = (open_count > close_count.as_constant()); emit_move_up = !emit_move_down; } Label L_move_up; if (emit_guard) { __ cmp(close_count.as_register(), open_count); __ br(Assembler::greater, false, Assembler::pn, L_move_up); __ delayed()->nop(); } if (emit_move_down) { // Move arguments down if |+dest+| > |-collect-| // (This is rare, except when arguments are retained.) // This opens space for the return value. if (keep3_count.is_constant()) { for (int i = 0; i < keep3_count.as_constant(); i++) { __ ld_ptr( Address(L4_old_argv, i * Interpreter::stackElementSize), O4_scratch); __ st_ptr(O4_scratch, Address(O3_new_argv, i * Interpreter::stackElementSize) ); } } else { // Live: O1_close_count, O2_keep3_count, O3_new_argv Register argv_top = O0_scratch; __ add(L4_old_argv, __ argument_offset(keep3_count, O4_scratch), argv_top); move_arg_slots_down(_masm, Address(L4_old_argv, 0), // beginning of old argv argv_top, // end of old argv close_count, // distance to move down (must be negative) O4_scratch, G5_scratch); } } if (emit_guard) { __ ba_short(L_done); // assumes emit_move_up is true also __ BIND(L_move_up); } if (emit_move_up) { // Move arguments up if |+dest+| < |-collect-| // (This is usual, except when |keep3| is empty.) // This closes up the space occupied by the now-deleted collect values. if (keep3_count.is_constant()) { for (int i = keep3_count.as_constant() - 1; i >= 0; i--) { __ ld_ptr( Address(L4_old_argv, i * Interpreter::stackElementSize), O4_scratch); __ st_ptr(O4_scratch, Address(O3_new_argv, i * Interpreter::stackElementSize) ); } } else { Address argv_top(L4_old_argv, __ argument_offset(keep3_count, O4_scratch)); // Live: O1_close_count, O2_keep3_count, O3_new_argv move_arg_slots_up(_masm, L4_old_argv, // beginning of old argv argv_top, // end of old argv close_count, // distance to move up (must be positive) O4_scratch, G5_scratch); } } } __ BIND(L_done); if (fix_arg_base) { // adjust RF.saved_args_base __ mov(O3_new_argv, RicochetFrame::L4_saved_args_base); } if (stomp_dest) { // Stomp the return slot, so it doesn't hold garbage. // This isn't strictly necessary, but it may help detect bugs. __ set(RicochetFrame::RETURN_VALUE_PLACEHOLDER, O4_scratch); __ st_ptr(O4_scratch, Address(RicochetFrame::L4_saved_args_base, __ argument_offset(keep3_count, keep3_count.register_or_noreg()))); // uses O2_keep3_count } BLOCK_COMMENT("} adjust trailing arguments"); BLOCK_COMMENT("do_recursive_call"); __ mov(SP, O5_savedSP); // record SP for the callee __ set(ExternalAddress(SharedRuntime::ricochet_blob()->bounce_addr() - frame::pc_return_offset), O7); // The globally unique bounce address has two purposes: // 1. It helps the JVM recognize this frame (frame::is_ricochet_frame). // 2. When returned to, it cuts back the stack and redirects control flow // to the return handler. // The return handler will further cut back the stack when it takes // down the RF. Perhaps there is a way to streamline this further. // State during recursive call: // ... keep1 | dest | dest=42 | keep3 | RF... | collect | bounce_pc | __ jump_to_method_handle_entry(G3_method_handle, O1_scratch); } break; case _adapter_opt_return_ref: case _adapter_opt_return_int: case _adapter_opt_return_long: case _adapter_opt_return_float: case _adapter_opt_return_double: case _adapter_opt_return_void: case _adapter_opt_return_S0_ref: case _adapter_opt_return_S1_ref: case _adapter_opt_return_S2_ref: case _adapter_opt_return_S3_ref: case _adapter_opt_return_S4_ref: case _adapter_opt_return_S5_ref: { BasicType dest_type_constant = ek_adapter_opt_return_type(ek); int dest_slot_constant = ek_adapter_opt_return_slot(ek); if (VerifyMethodHandles) RicochetFrame::verify_clean(_masm); if (dest_slot_constant == -1) { // The current stub is a general handler for this dest_type. // It can be called from _adapter_opt_return_any below. // Stash the address in a little table. assert((dest_type_constant & CONV_TYPE_MASK) == dest_type_constant, "oob"); address return_handler = __ pc(); _adapter_return_handlers[dest_type_constant] = return_handler; if (dest_type_constant == T_INT) { // do the subword types too for (int bt = T_BOOLEAN; bt < T_INT; bt++) { if (is_subword_type(BasicType(bt)) && _adapter_return_handlers[bt] == NULL) { _adapter_return_handlers[bt] = return_handler; } } } } // On entry to this continuation handler, make Gargs live again. __ mov(RicochetFrame::L4_saved_args_base, Gargs); Register O7_temp = O7; Register O5_vminfo = O5; RegisterOrConstant dest_slot = dest_slot_constant; if (dest_slot_constant == -1) { extract_conversion_vminfo(_masm, RicochetFrame::L5_conversion, O5_vminfo); dest_slot = O5_vminfo; } // Store the result back into the argslot. // This code uses the interpreter calling sequence, in which the return value // is usually left in the TOS register, as defined by InterpreterMacroAssembler::pop. // There are certain irregularities with floating point values, which can be seen // in TemplateInterpreterGenerator::generate_return_entry_for. move_return_value(_masm, dest_type_constant, __ argument_address(dest_slot, O7_temp)); RicochetFrame::leave_ricochet_frame(_masm, G3_method_handle, I5_savedSP, I7); // Load the final target and go. if (VerifyMethodHandles) verify_method_handle(_masm, G3_method_handle, O0_scratch, O1_scratch); __ restore(I5_savedSP, G0, SP); __ jump_to_method_handle_entry(G3_method_handle, O0_scratch); __ illtrap(0); } break; case _adapter_opt_return_any: { Register O7_temp = O7; Register O5_dest_type = O5; if (VerifyMethodHandles) RicochetFrame::verify_clean(_masm); extract_conversion_dest_type(_masm, RicochetFrame::L5_conversion, O5_dest_type); __ set(ExternalAddress((address) &_adapter_return_handlers[0]), O7_temp); __ sll_ptr(O5_dest_type, LogBytesPerWord, O5_dest_type); __ ld_ptr(O7_temp, O5_dest_type, O7_temp); #ifdef ASSERT { Label L_ok; __ br_notnull_short(O7_temp, Assembler::pt, L_ok); __ stop("bad method handle return"); __ BIND(L_ok); } #endif //ASSERT __ JMP(O7_temp, 0); __ delayed()->nop(); } break; case _adapter_opt_spread_0: case _adapter_opt_spread_1_ref: case _adapter_opt_spread_2_ref: case _adapter_opt_spread_3_ref: case _adapter_opt_spread_4_ref: case _adapter_opt_spread_5_ref: case _adapter_opt_spread_ref: case _adapter_opt_spread_byte: case _adapter_opt_spread_char: case _adapter_opt_spread_short: case _adapter_opt_spread_int: case _adapter_opt_spread_long: case _adapter_opt_spread_float: case _adapter_opt_spread_double: { // spread an array out into a group of arguments int length_constant = ek_adapter_opt_spread_count(ek); bool length_can_be_zero = (length_constant == 0); if (length_constant < 0) { // some adapters with variable length must handle the zero case if (!OptimizeMethodHandles || ek_adapter_opt_spread_type(ek) != T_OBJECT) length_can_be_zero = true; } // find the address of the array argument load_vmargslot(_masm, G3_amh_vmargslot, O0_argslot); __ add(__ argument_address(O0_argslot, O0_argslot), O0_argslot); // O0_argslot points both to the array and to the first output arg Address vmarg = Address(O0_argslot, 0); // Get the array value. Register O1_array = O1_scratch; Register O2_array_klass = O2_scratch; BasicType elem_type = ek_adapter_opt_spread_type(ek); int elem_slots = type2size[elem_type]; // 1 or 2 int array_slots = 1; // array is always a T_OBJECT int length_offset = arrayOopDesc::length_offset_in_bytes(); int elem0_offset = arrayOopDesc::base_offset_in_bytes(elem_type); __ ld_ptr(vmarg, O1_array); Label L_array_is_empty, L_insert_arg_space, L_copy_args, L_args_done; if (length_can_be_zero) { // handle the null pointer case, if zero is allowed Label L_skip; if (length_constant < 0) { load_conversion_vminfo(_masm, G3_amh_conversion, O3_scratch); __ cmp_zero_and_br(Assembler::notZero, O3_scratch, L_skip); __ delayed()->nop(); // to avoid back-to-back cbcond instructions } __ br_null_short(O1_array, Assembler::pn, L_array_is_empty); __ BIND(L_skip); } __ null_check(O1_array, oopDesc::klass_offset_in_bytes()); __ load_klass(O1_array, O2_array_klass); // Check the array type. Register O3_klass = O3_scratch; __ load_heap_oop(G3_amh_argument, O3_klass); // this is a Class object! load_klass_from_Class(_masm, O3_klass, O4_scratch, G5_scratch); Label L_ok_array_klass, L_bad_array_klass, L_bad_array_length; __ check_klass_subtype(O2_array_klass, O3_klass, O4_scratch, G5_scratch, L_ok_array_klass); // If we get here, the type check failed! __ ba_short(L_bad_array_klass); __ BIND(L_ok_array_klass); // Check length. if (length_constant >= 0) { __ ldsw(Address(O1_array, length_offset), O4_scratch); __ cmp(O4_scratch, length_constant); } else { Register O3_vminfo = O3_scratch; load_conversion_vminfo(_masm, G3_amh_conversion, O3_vminfo); __ ldsw(Address(O1_array, length_offset), O4_scratch); __ cmp(O3_vminfo, O4_scratch); } __ br(Assembler::notEqual, false, Assembler::pn, L_bad_array_length); __ delayed()->nop(); Register O2_argslot_limit = O2_scratch; // Array length checks out. Now insert any required stack slots. if (length_constant == -1) { // Form a pointer to the end of the affected region. __ add(O0_argslot, Interpreter::stackElementSize, O2_argslot_limit); // 'stack_move' is negative number of words to insert // This number already accounts for elem_slots. Register O3_stack_move = O3_scratch; load_stack_move(_masm, G3_amh_conversion, O3_stack_move); __ cmp(O3_stack_move, 0); assert(stack_move_unit() < 0, "else change this comparison"); __ br(Assembler::less, false, Assembler::pn, L_insert_arg_space); __ delayed()->nop(); __ br(Assembler::equal, false, Assembler::pn, L_copy_args); __ delayed()->nop(); // single argument case, with no array movement __ BIND(L_array_is_empty); remove_arg_slots(_masm, -stack_move_unit() * array_slots, O0_argslot, O1_scratch, O2_scratch, O3_scratch); __ ba_short(L_args_done); // no spreading to do __ BIND(L_insert_arg_space); // come here in the usual case, stack_move < 0 (2 or more spread arguments) // Live: O1_array, O2_argslot_limit, O3_stack_move insert_arg_slots(_masm, O3_stack_move, O0_argslot, O4_scratch, G5_scratch, O1_scratch); // reload from rdx_argslot_limit since rax_argslot is now decremented __ ld_ptr(Address(O2_argslot_limit, -Interpreter::stackElementSize), O1_array); } else if (length_constant >= 1) { int new_slots = (length_constant * elem_slots) - array_slots; insert_arg_slots(_masm, new_slots * stack_move_unit(), O0_argslot, O2_scratch, O3_scratch, O4_scratch); } else if (length_constant == 0) { __ BIND(L_array_is_empty); remove_arg_slots(_masm, -stack_move_unit() * array_slots, O0_argslot, O1_scratch, O2_scratch, O3_scratch); } else { ShouldNotReachHere(); } // Copy from the array to the new slots. // Note: Stack change code preserves integrity of O0_argslot pointer. // So even after slot insertions, O0_argslot still points to first argument. // Beware: Arguments that are shallow on the stack are deep in the array, // and vice versa. So a downward-growing stack (the usual) has to be copied // elementwise in reverse order from the source array. __ BIND(L_copy_args); if (length_constant == -1) { // [O0_argslot, O2_argslot_limit) is the area we are inserting into. // Array element [0] goes at O0_argslot_limit[-wordSize]. Register O1_source = O1_array; __ add(Address(O1_array, elem0_offset), O1_source); Register O4_fill_ptr = O4_scratch; __ mov(O2_argslot_limit, O4_fill_ptr); Label L_loop; __ BIND(L_loop); __ add(O4_fill_ptr, -Interpreter::stackElementSize * elem_slots, O4_fill_ptr); move_typed_arg(_masm, elem_type, true, Address(O1_source, 0), Address(O4_fill_ptr, 0), O2_scratch); // must be an even register for !_LP64 long moves (uses O2/O3) __ add(O1_source, type2aelembytes(elem_type), O1_source); __ cmp_and_brx_short(O4_fill_ptr, O0_argslot, Assembler::greaterUnsigned, Assembler::pt, L_loop); } else if (length_constant == 0) { // nothing to copy } else { int elem_offset = elem0_offset; int slot_offset = length_constant * Interpreter::stackElementSize; for (int index = 0; index < length_constant; index++) { slot_offset -= Interpreter::stackElementSize * elem_slots; // fill backward move_typed_arg(_masm, elem_type, true, Address(O1_array, elem_offset), Address(O0_argslot, slot_offset), O2_scratch); // must be an even register for !_LP64 long moves (uses O2/O3) elem_offset += type2aelembytes(elem_type); } } __ BIND(L_args_done); // Arguments are spread. Move to next method handle. __ load_heap_oop(G3_mh_vmtarget, G3_method_handle); __ jump_to_method_handle_entry(G3_method_handle, O1_scratch); __ BIND(L_bad_array_klass); assert(!vmarg.uses(O2_required), "must be different registers"); __ load_heap_oop(Address(O2_array_klass, java_mirror_offset), O2_required); // required class __ ld_ptr( vmarg, O1_actual); // bad object __ jump_to(AddressLiteral(from_interpreted_entry(_raise_exception)), O3_scratch); __ delayed()->mov(Bytecodes::_aaload, O0_code); // who is complaining? __ bind(L_bad_array_length); assert(!vmarg.uses(O2_required), "must be different registers"); __ mov( G3_method_handle, O2_required); // required class __ ld_ptr(vmarg, O1_actual); // bad object __ jump_to(AddressLiteral(from_interpreted_entry(_raise_exception)), O3_scratch); __ delayed()->mov(Bytecodes::_arraylength, O0_code); // who is complaining? } break; default: DEBUG_ONLY(tty->print_cr("bad ek=%d (%s)", (int)ek, entry_name(ek))); ShouldNotReachHere(); } BLOCK_COMMENT(err_msg("} Entry %s", entry_name(ek))); address me_cookie = MethodHandleEntry::start_compiled_entry(_masm, interp_entry); __ unimplemented(entry_name(ek)); // %%% FIXME: NYI init_entry(ek, MethodHandleEntry::finish_compiled_entry(_masm, me_cookie)); }