/* * Copyright (c) 1998, 2012, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ // output_c.cpp - Class CPP file output routines for architecture definition #include "adlc.hpp" // Utilities to characterize effect statements static bool is_def(int usedef) { switch(usedef) { case Component::DEF: case Component::USE_DEF: return true; break; } return false; } static bool is_use(int usedef) { switch(usedef) { case Component::USE: case Component::USE_DEF: case Component::USE_KILL: return true; break; } return false; } static bool is_kill(int usedef) { switch(usedef) { case Component::KILL: case Component::USE_KILL: return true; break; } return false; } // Define an array containing the machine register names, strings. static void defineRegNames(FILE *fp, RegisterForm *registers) { if (registers) { fprintf(fp,"\n"); fprintf(fp,"// An array of character pointers to machine register names.\n"); fprintf(fp,"const char *Matcher::regName[REG_COUNT] = {\n"); // Output the register name for each register in the allocation classes RegDef *reg_def = NULL; RegDef *next = NULL; registers->reset_RegDefs(); for( reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next ) { next = registers->iter_RegDefs(); const char *comma = (next != NULL) ? "," : " // no trailing comma"; fprintf(fp," \"%s\"%s\n", reg_def->_regname, comma ); } // Finish defining enumeration fprintf(fp,"};\n"); fprintf(fp,"\n"); fprintf(fp,"// An array of character pointers to machine register names.\n"); fprintf(fp,"const VMReg OptoReg::opto2vm[REG_COUNT] = {\n"); reg_def = NULL; next = NULL; registers->reset_RegDefs(); for( reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next ) { next = registers->iter_RegDefs(); const char *comma = (next != NULL) ? "," : " // no trailing comma"; fprintf(fp,"\t%s%s\n", reg_def->_concrete, comma ); } // Finish defining array fprintf(fp,"\t};\n"); fprintf(fp,"\n"); fprintf(fp," OptoReg::Name OptoReg::vm2opto[ConcreteRegisterImpl::number_of_registers];\n"); } } // Define an array containing the machine register encoding values static void defineRegEncodes(FILE *fp, RegisterForm *registers) { if (registers) { fprintf(fp,"\n"); fprintf(fp,"// An array of the machine register encode values\n"); fprintf(fp,"const unsigned char Matcher::_regEncode[REG_COUNT] = {\n"); // Output the register encoding for each register in the allocation classes RegDef *reg_def = NULL; RegDef *next = NULL; registers->reset_RegDefs(); for( reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next ) { next = registers->iter_RegDefs(); const char* register_encode = reg_def->register_encode(); const char *comma = (next != NULL) ? "," : " // no trailing comma"; int encval; if (!ADLParser::is_int_token(register_encode, encval)) { fprintf(fp," %s%s // %s\n", register_encode, comma, reg_def->_regname ); } else { // Output known constants in hex char format (backward compatibility). assert(encval < 256, "Exceeded supported width for register encoding"); fprintf(fp," (unsigned char)'\\x%X'%s // %s\n", encval, comma, reg_def->_regname ); } } // Finish defining enumeration fprintf(fp,"};\n"); } // Done defining array } // Output an enumeration of register class names static void defineRegClassEnum(FILE *fp, RegisterForm *registers) { if (registers) { // Output an enumeration of register class names fprintf(fp,"\n"); fprintf(fp,"// Enumeration of register class names\n"); fprintf(fp, "enum machRegisterClass {\n"); registers->_rclasses.reset(); for( const char *class_name = NULL; (class_name = registers->_rclasses.iter()) != NULL; ) { fprintf(fp," %s,\n", toUpper( class_name )); } // Finish defining enumeration fprintf(fp, " _last_Mach_Reg_Class\n"); fprintf(fp, "};\n"); } } // Declare an enumeration of user-defined register classes // and a list of register masks, one for each class. void ArchDesc::declare_register_masks(FILE *fp_hpp) { const char *rc_name; if( _register ) { // Build enumeration of user-defined register classes. defineRegClassEnum(fp_hpp, _register); // Generate a list of register masks, one for each class. fprintf(fp_hpp,"\n"); fprintf(fp_hpp,"// Register masks, one for each register class.\n"); _register->_rclasses.reset(); for( rc_name = NULL; (rc_name = _register->_rclasses.iter()) != NULL; ) { const char *prefix = ""; RegClass *reg_class = _register->getRegClass(rc_name); assert( reg_class, "Using an undefined register class"); if (reg_class->_user_defined == NULL) { fprintf(fp_hpp, "extern const RegMask _%s%s_mask;\n", prefix, toUpper( rc_name ) ); fprintf(fp_hpp, "inline const RegMask &%s%s_mask() { return _%s%s_mask; }\n", prefix, toUpper( rc_name ), prefix, toUpper( rc_name )); } else { fprintf(fp_hpp, "inline const RegMask &%s%s_mask() { %s }\n", prefix, toUpper( rc_name ), reg_class->_user_defined); } if( reg_class->_stack_or_reg ) { assert(reg_class->_user_defined == NULL, "no user defined reg class here"); fprintf(fp_hpp, "extern const RegMask _%sSTACK_OR_%s_mask;\n", prefix, toUpper( rc_name ) ); fprintf(fp_hpp, "inline const RegMask &%sSTACK_OR_%s_mask() { return _%sSTACK_OR_%s_mask; }\n", prefix, toUpper( rc_name ), prefix, toUpper( rc_name ) ); } } } } // Generate an enumeration of user-defined register classes // and a list of register masks, one for each class. void ArchDesc::build_register_masks(FILE *fp_cpp) { const char *rc_name; if( _register ) { // Generate a list of register masks, one for each class. fprintf(fp_cpp,"\n"); fprintf(fp_cpp,"// Register masks, one for each register class.\n"); _register->_rclasses.reset(); for( rc_name = NULL; (rc_name = _register->_rclasses.iter()) != NULL; ) { const char *prefix = ""; RegClass *reg_class = _register->getRegClass(rc_name); assert( reg_class, "Using an undefined register class"); if (reg_class->_user_defined != NULL) continue; int len = RegisterForm::RegMask_Size(); fprintf(fp_cpp, "const RegMask _%s%s_mask(", prefix, toUpper( rc_name ) ); { int i; for( i = 0; i < len-1; i++ ) fprintf(fp_cpp," 0x%x,",reg_class->regs_in_word(i,false)); fprintf(fp_cpp," 0x%x );\n",reg_class->regs_in_word(i,false)); } if( reg_class->_stack_or_reg ) { int i; fprintf(fp_cpp, "const RegMask _%sSTACK_OR_%s_mask(", prefix, toUpper( rc_name ) ); for( i = 0; i < len-1; i++ ) fprintf(fp_cpp," 0x%x,",reg_class->regs_in_word(i,true)); fprintf(fp_cpp," 0x%x );\n",reg_class->regs_in_word(i,true)); } } } } // Compute an index for an array in the pipeline_reads_NNN arrays static int pipeline_reads_initializer(FILE *fp_cpp, NameList &pipeline_reads, PipeClassForm *pipeclass) { int templen = 1; int paramcount = 0; const char *paramname; if (pipeclass->_parameters.count() == 0) return -1; pipeclass->_parameters.reset(); paramname = pipeclass->_parameters.iter(); const PipeClassOperandForm *pipeopnd = (const PipeClassOperandForm *)pipeclass->_localUsage[paramname]; if (pipeopnd && !pipeopnd->isWrite() && strcmp(pipeopnd->_stage, "Universal")) pipeclass->_parameters.reset(); while ( (paramname = pipeclass->_parameters.iter()) != NULL ) { const PipeClassOperandForm *tmppipeopnd = (const PipeClassOperandForm *)pipeclass->_localUsage[paramname]; if (tmppipeopnd) templen += 10 + (int)strlen(tmppipeopnd->_stage); else templen += 19; paramcount++; } // See if the count is zero if (paramcount == 0) { return -1; } char *operand_stages = new char [templen]; operand_stages[0] = 0; int i = 0; templen = 0; pipeclass->_parameters.reset(); paramname = pipeclass->_parameters.iter(); pipeopnd = (const PipeClassOperandForm *)pipeclass->_localUsage[paramname]; if (pipeopnd && !pipeopnd->isWrite() && strcmp(pipeopnd->_stage, "Universal")) pipeclass->_parameters.reset(); while ( (paramname = pipeclass->_parameters.iter()) != NULL ) { const PipeClassOperandForm *tmppipeopnd = (const PipeClassOperandForm *)pipeclass->_localUsage[paramname]; templen += sprintf(&operand_stages[templen], " stage_%s%c\n", tmppipeopnd ? tmppipeopnd->_stage : "undefined", (++i < paramcount ? ',' : ' ') ); } // See if the same string is in the table int ndx = pipeline_reads.index(operand_stages); // No, add it to the table if (ndx < 0) { pipeline_reads.addName(operand_stages); ndx = pipeline_reads.index(operand_stages); fprintf(fp_cpp, "static const enum machPipelineStages pipeline_reads_%03d[%d] = {\n%s};\n\n", ndx+1, paramcount, operand_stages); } else delete [] operand_stages; return (ndx); } // Compute an index for an array in the pipeline_res_stages_NNN arrays static int pipeline_res_stages_initializer( FILE *fp_cpp, PipelineForm *pipeline, NameList &pipeline_res_stages, PipeClassForm *pipeclass) { const PipeClassResourceForm *piperesource; int * res_stages = new int [pipeline->_rescount]; int i; for (i = 0; i < pipeline->_rescount; i++) res_stages[i] = 0; for (pipeclass->_resUsage.reset(); (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) { int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask(); for (i = 0; i < pipeline->_rescount; i++) if ((1 << i) & used_mask) { int stage = pipeline->_stages.index(piperesource->_stage); if (res_stages[i] < stage+1) res_stages[i] = stage+1; } } // Compute the length needed for the resource list int commentlen = 0; int max_stage = 0; for (i = 0; i < pipeline->_rescount; i++) { if (res_stages[i] == 0) { if (max_stage < 9) max_stage = 9; } else { int stagelen = (int)strlen(pipeline->_stages.name(res_stages[i]-1)); if (max_stage < stagelen) max_stage = stagelen; } commentlen += (int)strlen(pipeline->_reslist.name(i)); } int templen = 1 + commentlen + pipeline->_rescount * (max_stage + 14); // Allocate space for the resource list char * resource_stages = new char [templen]; templen = 0; for (i = 0; i < pipeline->_rescount; i++) { const char * const resname = res_stages[i] == 0 ? "undefined" : pipeline->_stages.name(res_stages[i]-1); templen += sprintf(&resource_stages[templen], " stage_%s%-*s // %s\n", resname, max_stage - (int)strlen(resname) + 1, (i < pipeline->_rescount-1) ? "," : "", pipeline->_reslist.name(i)); } // See if the same string is in the table int ndx = pipeline_res_stages.index(resource_stages); // No, add it to the table if (ndx < 0) { pipeline_res_stages.addName(resource_stages); ndx = pipeline_res_stages.index(resource_stages); fprintf(fp_cpp, "static const enum machPipelineStages pipeline_res_stages_%03d[%d] = {\n%s};\n\n", ndx+1, pipeline->_rescount, resource_stages); } else delete [] resource_stages; delete [] res_stages; return (ndx); } // Compute an index for an array in the pipeline_res_cycles_NNN arrays static int pipeline_res_cycles_initializer( FILE *fp_cpp, PipelineForm *pipeline, NameList &pipeline_res_cycles, PipeClassForm *pipeclass) { const PipeClassResourceForm *piperesource; int * res_cycles = new int [pipeline->_rescount]; int i; for (i = 0; i < pipeline->_rescount; i++) res_cycles[i] = 0; for (pipeclass->_resUsage.reset(); (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) { int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask(); for (i = 0; i < pipeline->_rescount; i++) if ((1 << i) & used_mask) { int cycles = piperesource->_cycles; if (res_cycles[i] < cycles) res_cycles[i] = cycles; } } // Pre-compute the string length int templen; int cyclelen = 0, commentlen = 0; int max_cycles = 0; char temp[32]; for (i = 0; i < pipeline->_rescount; i++) { if (max_cycles < res_cycles[i]) max_cycles = res_cycles[i]; templen = sprintf(temp, "%d", res_cycles[i]); if (cyclelen < templen) cyclelen = templen; commentlen += (int)strlen(pipeline->_reslist.name(i)); } templen = 1 + commentlen + (cyclelen + 8) * pipeline->_rescount; // Allocate space for the resource list char * resource_cycles = new char [templen]; templen = 0; for (i = 0; i < pipeline->_rescount; i++) { templen += sprintf(&resource_cycles[templen], " %*d%c // %s\n", cyclelen, res_cycles[i], (i < pipeline->_rescount-1) ? ',' : ' ', pipeline->_reslist.name(i)); } // See if the same string is in the table int ndx = pipeline_res_cycles.index(resource_cycles); // No, add it to the table if (ndx < 0) { pipeline_res_cycles.addName(resource_cycles); ndx = pipeline_res_cycles.index(resource_cycles); fprintf(fp_cpp, "static const uint pipeline_res_cycles_%03d[%d] = {\n%s};\n\n", ndx+1, pipeline->_rescount, resource_cycles); } else delete [] resource_cycles; delete [] res_cycles; return (ndx); } //typedef unsigned long long uint64_t; // Compute an index for an array in the pipeline_res_mask_NNN arrays static int pipeline_res_mask_initializer( FILE *fp_cpp, PipelineForm *pipeline, NameList &pipeline_res_mask, NameList &pipeline_res_args, PipeClassForm *pipeclass) { const PipeClassResourceForm *piperesource; const uint rescount = pipeline->_rescount; const uint maxcycleused = pipeline->_maxcycleused; const uint cyclemasksize = (maxcycleused + 31) >> 5; int i, j; int element_count = 0; uint *res_mask = new uint [cyclemasksize]; uint resources_used = 0; uint resources_used_exclusively = 0; for (pipeclass->_resUsage.reset(); (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) element_count++; // Pre-compute the string length int templen; int commentlen = 0; int max_cycles = 0; int cyclelen = ((maxcycleused + 3) >> 2); int masklen = (rescount + 3) >> 2; int cycledigit = 0; for (i = maxcycleused; i > 0; i /= 10) cycledigit++; int maskdigit = 0; for (i = rescount; i > 0; i /= 10) maskdigit++; static const char * pipeline_use_cycle_mask = "Pipeline_Use_Cycle_Mask"; static const char * pipeline_use_element = "Pipeline_Use_Element"; templen = 1 + (int)(strlen(pipeline_use_cycle_mask) + (int)strlen(pipeline_use_element) + (cyclemasksize * 12) + masklen + (cycledigit * 2) + 30) * element_count; // Allocate space for the resource list char * resource_mask = new char [templen]; char * last_comma = NULL; templen = 0; for (pipeclass->_resUsage.reset(); (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) { int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask(); if (!used_mask) fprintf(stderr, "*** used_mask is 0 ***\n"); resources_used |= used_mask; uint lb, ub; for (lb = 0; (used_mask & (1 << lb)) == 0; lb++); for (ub = 31; (used_mask & (1 << ub)) == 0; ub--); if (lb == ub) resources_used_exclusively |= used_mask; int formatlen = sprintf(&resource_mask[templen], " %s(0x%0*x, %*d, %*d, %s %s(", pipeline_use_element, masklen, used_mask, cycledigit, lb, cycledigit, ub, ((used_mask & (used_mask-1)) != 0) ? "true, " : "false,", pipeline_use_cycle_mask); templen += formatlen; memset(res_mask, 0, cyclemasksize * sizeof(uint)); int cycles = piperesource->_cycles; uint stage = pipeline->_stages.index(piperesource->_stage); uint upper_limit = stage+cycles-1; uint lower_limit = stage-1; uint upper_idx = upper_limit >> 5; uint lower_idx = lower_limit >> 5; uint upper_position = upper_limit & 0x1f; uint lower_position = lower_limit & 0x1f; uint mask = (((uint)1) << upper_position) - 1; while ( upper_idx > lower_idx ) { res_mask[upper_idx--] |= mask; mask = (uint)-1; } mask -= (((uint)1) << lower_position) - 1; res_mask[upper_idx] |= mask; for (j = cyclemasksize-1; j >= 0; j--) { formatlen = sprintf(&resource_mask[templen], "0x%08x%s", res_mask[j], j > 0 ? ", " : ""); templen += formatlen; } resource_mask[templen++] = ')'; resource_mask[templen++] = ')'; last_comma = &resource_mask[templen]; resource_mask[templen++] = ','; resource_mask[templen++] = '\n'; } resource_mask[templen] = 0; if (last_comma) last_comma[0] = ' '; // See if the same string is in the table int ndx = pipeline_res_mask.index(resource_mask); // No, add it to the table if (ndx < 0) { pipeline_res_mask.addName(resource_mask); ndx = pipeline_res_mask.index(resource_mask); if (strlen(resource_mask) > 0) fprintf(fp_cpp, "static const Pipeline_Use_Element pipeline_res_mask_%03d[%d] = {\n%s};\n\n", ndx+1, element_count, resource_mask); char * args = new char [9 + 2*masklen + maskdigit]; sprintf(args, "0x%0*x, 0x%0*x, %*d", masklen, resources_used, masklen, resources_used_exclusively, maskdigit, element_count); pipeline_res_args.addName(args); } else delete [] resource_mask; delete [] res_mask; //delete [] res_masks; return (ndx); } void ArchDesc::build_pipe_classes(FILE *fp_cpp) { const char *classname; const char *resourcename; int resourcenamelen = 0; NameList pipeline_reads; NameList pipeline_res_stages; NameList pipeline_res_cycles; NameList pipeline_res_masks; NameList pipeline_res_args; const int default_latency = 1; const int non_operand_latency = 0; const int node_latency = 0; if (!_pipeline) { fprintf(fp_cpp, "uint Node::latency(uint i) const {\n"); fprintf(fp_cpp, " // assert(false, \"pipeline functionality is not defined\");\n"); fprintf(fp_cpp, " return %d;\n", non_operand_latency); fprintf(fp_cpp, "}\n"); return; } fprintf(fp_cpp, "\n"); fprintf(fp_cpp, "//------------------Pipeline Methods-----------------------------------------\n"); fprintf(fp_cpp, "#ifndef PRODUCT\n"); fprintf(fp_cpp, "const char * Pipeline::stageName(uint s) {\n"); fprintf(fp_cpp, " static const char * const _stage_names[] = {\n"); fprintf(fp_cpp, " \"undefined\""); for (int s = 0; s < _pipeline->_stagecnt; s++) fprintf(fp_cpp, ", \"%s\"", _pipeline->_stages.name(s)); fprintf(fp_cpp, "\n };\n\n"); fprintf(fp_cpp, " return (s <= %d ? _stage_names[s] : \"???\");\n", _pipeline->_stagecnt); fprintf(fp_cpp, "}\n"); fprintf(fp_cpp, "#endif\n\n"); fprintf(fp_cpp, "uint Pipeline::functional_unit_latency(uint start, const Pipeline *pred) const {\n"); fprintf(fp_cpp, " // See if the functional units overlap\n"); #if 0 fprintf(fp_cpp, "\n#ifndef PRODUCT\n"); fprintf(fp_cpp, " if (TraceOptoOutput) {\n"); fprintf(fp_cpp, " tty->print(\"# functional_unit_latency: start == %%d, this->exclusively == 0x%%03x, pred->exclusively == 0x%%03x\\n\", start, resourcesUsedExclusively(), pred->resourcesUsedExclusively());\n"); fprintf(fp_cpp, " }\n"); fprintf(fp_cpp, "#endif\n\n"); #endif fprintf(fp_cpp, " uint mask = resourcesUsedExclusively() & pred->resourcesUsedExclusively();\n"); fprintf(fp_cpp, " if (mask == 0)\n return (start);\n\n"); #if 0 fprintf(fp_cpp, "\n#ifndef PRODUCT\n"); fprintf(fp_cpp, " if (TraceOptoOutput) {\n"); fprintf(fp_cpp, " tty->print(\"# functional_unit_latency: mask == 0x%%x\\n\", mask);\n"); fprintf(fp_cpp, " }\n"); fprintf(fp_cpp, "#endif\n\n"); #endif fprintf(fp_cpp, " for (uint i = 0; i < pred->resourceUseCount(); i++) {\n"); fprintf(fp_cpp, " const Pipeline_Use_Element *predUse = pred->resourceUseElement(i);\n"); fprintf(fp_cpp, " if (predUse->multiple())\n"); fprintf(fp_cpp, " continue;\n\n"); fprintf(fp_cpp, " for (uint j = 0; j < resourceUseCount(); j++) {\n"); fprintf(fp_cpp, " const Pipeline_Use_Element *currUse = resourceUseElement(j);\n"); fprintf(fp_cpp, " if (currUse->multiple())\n"); fprintf(fp_cpp, " continue;\n\n"); fprintf(fp_cpp, " if (predUse->used() & currUse->used()) {\n"); fprintf(fp_cpp, " Pipeline_Use_Cycle_Mask x = predUse->mask();\n"); fprintf(fp_cpp, " Pipeline_Use_Cycle_Mask y = currUse->mask();\n\n"); fprintf(fp_cpp, " for ( y <<= start; x.overlaps(y); start++ )\n"); fprintf(fp_cpp, " y <<= 1;\n"); fprintf(fp_cpp, " }\n"); fprintf(fp_cpp, " }\n"); fprintf(fp_cpp, " }\n\n"); fprintf(fp_cpp, " // There is the potential for overlap\n"); fprintf(fp_cpp, " return (start);\n"); fprintf(fp_cpp, "}\n\n"); fprintf(fp_cpp, "// The following two routines assume that the root Pipeline_Use entity\n"); fprintf(fp_cpp, "// consists of exactly 1 element for each functional unit\n"); fprintf(fp_cpp, "// start is relative to the current cycle; used for latency-based info\n"); fprintf(fp_cpp, "uint Pipeline_Use::full_latency(uint delay, const Pipeline_Use &pred) const {\n"); fprintf(fp_cpp, " for (uint i = 0; i < pred._count; i++) {\n"); fprintf(fp_cpp, " const Pipeline_Use_Element *predUse = pred.element(i);\n"); fprintf(fp_cpp, " if (predUse->_multiple) {\n"); fprintf(fp_cpp, " uint min_delay = %d;\n", _pipeline->_maxcycleused+1); fprintf(fp_cpp, " // Multiple possible functional units, choose first unused one\n"); fprintf(fp_cpp, " for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n"); fprintf(fp_cpp, " const Pipeline_Use_Element *currUse = element(j);\n"); fprintf(fp_cpp, " uint curr_delay = delay;\n"); fprintf(fp_cpp, " if (predUse->_used & currUse->_used) {\n"); fprintf(fp_cpp, " Pipeline_Use_Cycle_Mask x = predUse->_mask;\n"); fprintf(fp_cpp, " Pipeline_Use_Cycle_Mask y = currUse->_mask;\n\n"); fprintf(fp_cpp, " for ( y <<= curr_delay; x.overlaps(y); curr_delay++ )\n"); fprintf(fp_cpp, " y <<= 1;\n"); fprintf(fp_cpp, " }\n"); fprintf(fp_cpp, " if (min_delay > curr_delay)\n min_delay = curr_delay;\n"); fprintf(fp_cpp, " }\n"); fprintf(fp_cpp, " if (delay < min_delay)\n delay = min_delay;\n"); fprintf(fp_cpp, " }\n"); fprintf(fp_cpp, " else {\n"); fprintf(fp_cpp, " for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n"); fprintf(fp_cpp, " const Pipeline_Use_Element *currUse = element(j);\n"); fprintf(fp_cpp, " if (predUse->_used & currUse->_used) {\n"); fprintf(fp_cpp, " Pipeline_Use_Cycle_Mask x = predUse->_mask;\n"); fprintf(fp_cpp, " Pipeline_Use_Cycle_Mask y = currUse->_mask;\n\n"); fprintf(fp_cpp, " for ( y <<= delay; x.overlaps(y); delay++ )\n"); fprintf(fp_cpp, " y <<= 1;\n"); fprintf(fp_cpp, " }\n"); fprintf(fp_cpp, " }\n"); fprintf(fp_cpp, " }\n"); fprintf(fp_cpp, " }\n\n"); fprintf(fp_cpp, " return (delay);\n"); fprintf(fp_cpp, "}\n\n"); fprintf(fp_cpp, "void Pipeline_Use::add_usage(const Pipeline_Use &pred) {\n"); fprintf(fp_cpp, " for (uint i = 0; i < pred._count; i++) {\n"); fprintf(fp_cpp, " const Pipeline_Use_Element *predUse = pred.element(i);\n"); fprintf(fp_cpp, " if (predUse->_multiple) {\n"); fprintf(fp_cpp, " // Multiple possible functional units, choose first unused one\n"); fprintf(fp_cpp, " for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n"); fprintf(fp_cpp, " Pipeline_Use_Element *currUse = element(j);\n"); fprintf(fp_cpp, " if ( !predUse->_mask.overlaps(currUse->_mask) ) {\n"); fprintf(fp_cpp, " currUse->_used |= (1 << j);\n"); fprintf(fp_cpp, " _resources_used |= (1 << j);\n"); fprintf(fp_cpp, " currUse->_mask.Or(predUse->_mask);\n"); fprintf(fp_cpp, " break;\n"); fprintf(fp_cpp, " }\n"); fprintf(fp_cpp, " }\n"); fprintf(fp_cpp, " }\n"); fprintf(fp_cpp, " else {\n"); fprintf(fp_cpp, " for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n"); fprintf(fp_cpp, " Pipeline_Use_Element *currUse = element(j);\n"); fprintf(fp_cpp, " currUse->_used |= (1 << j);\n"); fprintf(fp_cpp, " _resources_used |= (1 << j);\n"); fprintf(fp_cpp, " currUse->_mask.Or(predUse->_mask);\n"); fprintf(fp_cpp, " }\n"); fprintf(fp_cpp, " }\n"); fprintf(fp_cpp, " }\n"); fprintf(fp_cpp, "}\n\n"); fprintf(fp_cpp, "uint Pipeline::operand_latency(uint opnd, const Pipeline *pred) const {\n"); fprintf(fp_cpp, " int const default_latency = 1;\n"); fprintf(fp_cpp, "\n"); #if 0 fprintf(fp_cpp, "#ifndef PRODUCT\n"); fprintf(fp_cpp, " if (TraceOptoOutput) {\n"); fprintf(fp_cpp, " tty->print(\"# operand_latency(%%d), _read_stage_count = %%d\\n\", opnd, _read_stage_count);\n"); fprintf(fp_cpp, " }\n"); fprintf(fp_cpp, "#endif\n\n"); #endif fprintf(fp_cpp, " assert(this, \"NULL pipeline info\");\n"); fprintf(fp_cpp, " assert(pred, \"NULL predecessor pipline info\");\n\n"); fprintf(fp_cpp, " if (pred->hasFixedLatency())\n return (pred->fixedLatency());\n\n"); fprintf(fp_cpp, " // If this is not an operand, then assume a dependence with 0 latency\n"); fprintf(fp_cpp, " if (opnd > _read_stage_count)\n return (0);\n\n"); fprintf(fp_cpp, " uint writeStage = pred->_write_stage;\n"); fprintf(fp_cpp, " uint readStage = _read_stages[opnd-1];\n"); #if 0 fprintf(fp_cpp, "\n#ifndef PRODUCT\n"); fprintf(fp_cpp, " if (TraceOptoOutput) {\n"); fprintf(fp_cpp, " tty->print(\"# operand_latency: writeStage=%%s readStage=%%s, opnd=%%d\\n\", stageName(writeStage), stageName(readStage), opnd);\n"); fprintf(fp_cpp, " }\n"); fprintf(fp_cpp, "#endif\n\n"); #endif fprintf(fp_cpp, "\n"); fprintf(fp_cpp, " if (writeStage == stage_undefined || readStage == stage_undefined)\n"); fprintf(fp_cpp, " return (default_latency);\n"); fprintf(fp_cpp, "\n"); fprintf(fp_cpp, " int delta = writeStage - readStage;\n"); fprintf(fp_cpp, " if (delta < 0) delta = 0;\n\n"); #if 0 fprintf(fp_cpp, "\n#ifndef PRODUCT\n"); fprintf(fp_cpp, " if (TraceOptoOutput) {\n"); fprintf(fp_cpp, " tty->print(\"# operand_latency: delta=%%d\\n\", delta);\n"); fprintf(fp_cpp, " }\n"); fprintf(fp_cpp, "#endif\n\n"); #endif fprintf(fp_cpp, " return (delta);\n"); fprintf(fp_cpp, "}\n\n"); if (!_pipeline) /* Do Nothing */; else if (_pipeline->_maxcycleused <= #ifdef SPARC 64 #else 32 #endif ) { fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n"); fprintf(fp_cpp, " return Pipeline_Use_Cycle_Mask(in1._mask & in2._mask);\n"); fprintf(fp_cpp, "}\n\n"); fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n"); fprintf(fp_cpp, " return Pipeline_Use_Cycle_Mask(in1._mask | in2._mask);\n"); fprintf(fp_cpp, "}\n\n"); } else { uint l; uint masklen = (_pipeline->_maxcycleused + 31) >> 5; fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n"); fprintf(fp_cpp, " return Pipeline_Use_Cycle_Mask("); for (l = 1; l <= masklen; l++) fprintf(fp_cpp, "in1._mask%d & in2._mask%d%s\n", l, l, l < masklen ? ", " : ""); fprintf(fp_cpp, ");\n"); fprintf(fp_cpp, "}\n\n"); fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n"); fprintf(fp_cpp, " return Pipeline_Use_Cycle_Mask("); for (l = 1; l <= masklen; l++) fprintf(fp_cpp, "in1._mask%d | in2._mask%d%s", l, l, l < masklen ? ", " : ""); fprintf(fp_cpp, ");\n"); fprintf(fp_cpp, "}\n\n"); fprintf(fp_cpp, "void Pipeline_Use_Cycle_Mask::Or(const Pipeline_Use_Cycle_Mask &in2) {\n "); for (l = 1; l <= masklen; l++) fprintf(fp_cpp, " _mask%d |= in2._mask%d;", l, l); fprintf(fp_cpp, "\n}\n\n"); } /* Get the length of all the resource names */ for (_pipeline->_reslist.reset(), resourcenamelen = 0; (resourcename = _pipeline->_reslist.iter()) != NULL; resourcenamelen += (int)strlen(resourcename)); // Create the pipeline class description fprintf(fp_cpp, "static const Pipeline pipeline_class_Zero_Instructions(0, 0, true, 0, 0, false, false, false, false, NULL, NULL, NULL, Pipeline_Use(0, 0, 0, NULL));\n\n"); fprintf(fp_cpp, "static const Pipeline pipeline_class_Unknown_Instructions(0, 0, true, 0, 0, false, true, true, false, NULL, NULL, NULL, Pipeline_Use(0, 0, 0, NULL));\n\n"); fprintf(fp_cpp, "const Pipeline_Use_Element Pipeline_Use::elaborated_elements[%d] = {\n", _pipeline->_rescount); for (int i1 = 0; i1 < _pipeline->_rescount; i1++) { fprintf(fp_cpp, " Pipeline_Use_Element(0, %d, %d, false, Pipeline_Use_Cycle_Mask(", i1, i1); uint masklen = (_pipeline->_maxcycleused + 31) >> 5; for (int i2 = masklen-1; i2 >= 0; i2--) fprintf(fp_cpp, "0%s", i2 > 0 ? ", " : ""); fprintf(fp_cpp, "))%s\n", i1 < (_pipeline->_rescount-1) ? "," : ""); } fprintf(fp_cpp, "};\n\n"); fprintf(fp_cpp, "const Pipeline_Use Pipeline_Use::elaborated_use(0, 0, %d, (Pipeline_Use_Element *)&elaborated_elements[0]);\n\n", _pipeline->_rescount); for (_pipeline->_classlist.reset(); (classname = _pipeline->_classlist.iter()) != NULL; ) { fprintf(fp_cpp, "\n"); fprintf(fp_cpp, "// Pipeline Class \"%s\"\n", classname); PipeClassForm *pipeclass = _pipeline->_classdict[classname]->is_pipeclass(); int maxWriteStage = -1; int maxMoreInstrs = 0; int paramcount = 0; int i = 0; const char *paramname; int resource_count = (_pipeline->_rescount + 3) >> 2; // Scan the operands, looking for last output stage and number of inputs for (pipeclass->_parameters.reset(); (paramname = pipeclass->_parameters.iter()) != NULL; ) { const PipeClassOperandForm *pipeopnd = (const PipeClassOperandForm *)pipeclass->_localUsage[paramname]; if (pipeopnd) { if (pipeopnd->_iswrite) { int stagenum = _pipeline->_stages.index(pipeopnd->_stage); int moreinsts = pipeopnd->_more_instrs; if ((maxWriteStage+maxMoreInstrs) < (stagenum+moreinsts)) { maxWriteStage = stagenum; maxMoreInstrs = moreinsts; } } } if (i++ > 0 || (pipeopnd && !pipeopnd->isWrite())) paramcount++; } // Create the list of stages for the operands that are read // Note that we will build a NameList to reduce the number of copies int pipeline_reads_index = pipeline_reads_initializer(fp_cpp, pipeline_reads, pipeclass); int pipeline_res_stages_index = pipeline_res_stages_initializer( fp_cpp, _pipeline, pipeline_res_stages, pipeclass); int pipeline_res_cycles_index = pipeline_res_cycles_initializer( fp_cpp, _pipeline, pipeline_res_cycles, pipeclass); int pipeline_res_mask_index = pipeline_res_mask_initializer( fp_cpp, _pipeline, pipeline_res_masks, pipeline_res_args, pipeclass); #if 0 // Process the Resources const PipeClassResourceForm *piperesource; unsigned resources_used = 0; unsigned exclusive_resources_used = 0; unsigned resource_groups = 0; for (pipeclass->_resUsage.reset(); (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) { int used_mask = _pipeline->_resdict[piperesource->_resource]->is_resource()->mask(); if (used_mask) resource_groups++; resources_used |= used_mask; if ((used_mask & (used_mask-1)) == 0) exclusive_resources_used |= used_mask; } if (resource_groups > 0) { fprintf(fp_cpp, "static const uint pipeline_res_or_masks_%03d[%d] = {", pipeclass->_num, resource_groups); for (pipeclass->_resUsage.reset(), i = 1; (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; i++ ) { int used_mask = _pipeline->_resdict[piperesource->_resource]->is_resource()->mask(); if (used_mask) { fprintf(fp_cpp, " 0x%0*x%c", resource_count, used_mask, i < (int)resource_groups ? ',' : ' '); } } fprintf(fp_cpp, "};\n\n"); } #endif // Create the pipeline class description fprintf(fp_cpp, "static const Pipeline pipeline_class_%03d(", pipeclass->_num); if (maxWriteStage < 0) fprintf(fp_cpp, "(uint)stage_undefined"); else if (maxMoreInstrs == 0) fprintf(fp_cpp, "(uint)stage_%s", _pipeline->_stages.name(maxWriteStage)); else fprintf(fp_cpp, "((uint)stage_%s)+%d", _pipeline->_stages.name(maxWriteStage), maxMoreInstrs); fprintf(fp_cpp, ", %d, %s, %d, %d, %s, %s, %s, %s,\n", paramcount, pipeclass->hasFixedLatency() ? "true" : "false", pipeclass->fixedLatency(), pipeclass->InstructionCount(), pipeclass->hasBranchDelay() ? "true" : "false", pipeclass->hasMultipleBundles() ? "true" : "false", pipeclass->forceSerialization() ? "true" : "false", pipeclass->mayHaveNoCode() ? "true" : "false" ); if (paramcount > 0) { fprintf(fp_cpp, "\n (enum machPipelineStages * const) pipeline_reads_%03d,\n ", pipeline_reads_index+1); } else fprintf(fp_cpp, " NULL,"); fprintf(fp_cpp, " (enum machPipelineStages * const) pipeline_res_stages_%03d,\n", pipeline_res_stages_index+1); fprintf(fp_cpp, " (uint * const) pipeline_res_cycles_%03d,\n", pipeline_res_cycles_index+1); fprintf(fp_cpp, " Pipeline_Use(%s, (Pipeline_Use_Element *)", pipeline_res_args.name(pipeline_res_mask_index)); if (strlen(pipeline_res_masks.name(pipeline_res_mask_index)) > 0) fprintf(fp_cpp, "&pipeline_res_mask_%03d[0]", pipeline_res_mask_index+1); else fprintf(fp_cpp, "NULL"); fprintf(fp_cpp, "));\n"); } // Generate the Node::latency method if _pipeline defined fprintf(fp_cpp, "\n"); fprintf(fp_cpp, "//------------------Inter-Instruction Latency--------------------------------\n"); fprintf(fp_cpp, "uint Node::latency(uint i) {\n"); if (_pipeline) { #if 0 fprintf(fp_cpp, "#ifndef PRODUCT\n"); fprintf(fp_cpp, " if (TraceOptoOutput) {\n"); fprintf(fp_cpp, " tty->print(\"# %%4d->latency(%%d)\\n\", _idx, i);\n"); fprintf(fp_cpp, " }\n"); fprintf(fp_cpp, "#endif\n"); #endif fprintf(fp_cpp, " uint j;\n"); fprintf(fp_cpp, " // verify in legal range for inputs\n"); fprintf(fp_cpp, " assert(i < len(), \"index not in range\");\n\n"); fprintf(fp_cpp, " // verify input is not null\n"); fprintf(fp_cpp, " Node *pred = in(i);\n"); fprintf(fp_cpp, " if (!pred)\n return %d;\n\n", non_operand_latency); fprintf(fp_cpp, " if (pred->is_Proj())\n pred = pred->in(0);\n\n"); fprintf(fp_cpp, " // if either node does not have pipeline info, use default\n"); fprintf(fp_cpp, " const Pipeline *predpipe = pred->pipeline();\n"); fprintf(fp_cpp, " assert(predpipe, \"no predecessor pipeline info\");\n\n"); fprintf(fp_cpp, " if (predpipe->hasFixedLatency())\n return predpipe->fixedLatency();\n\n"); fprintf(fp_cpp, " const Pipeline *currpipe = pipeline();\n"); fprintf(fp_cpp, " assert(currpipe, \"no pipeline info\");\n\n"); fprintf(fp_cpp, " if (!is_Mach())\n return %d;\n\n", node_latency); fprintf(fp_cpp, " const MachNode *m = as_Mach();\n"); fprintf(fp_cpp, " j = m->oper_input_base();\n"); fprintf(fp_cpp, " if (i < j)\n return currpipe->functional_unit_latency(%d, predpipe);\n\n", non_operand_latency); fprintf(fp_cpp, " // determine which operand this is in\n"); fprintf(fp_cpp, " uint n = m->num_opnds();\n"); fprintf(fp_cpp, " int delta = %d;\n\n", non_operand_latency); fprintf(fp_cpp, " uint k;\n"); fprintf(fp_cpp, " for (k = 1; k < n; k++) {\n"); fprintf(fp_cpp, " j += m->_opnds[k]->num_edges();\n"); fprintf(fp_cpp, " if (i < j)\n"); fprintf(fp_cpp, " break;\n"); fprintf(fp_cpp, " }\n"); fprintf(fp_cpp, " if (k < n)\n"); fprintf(fp_cpp, " delta = currpipe->operand_latency(k,predpipe);\n\n"); fprintf(fp_cpp, " return currpipe->functional_unit_latency(delta, predpipe);\n"); } else { fprintf(fp_cpp, " // assert(false, \"pipeline functionality is not defined\");\n"); fprintf(fp_cpp, " return %d;\n", non_operand_latency); } fprintf(fp_cpp, "}\n\n"); // Output the list of nop nodes fprintf(fp_cpp, "// Descriptions for emitting different functional unit nops\n"); const char *nop; int nopcnt = 0; for ( _pipeline->_noplist.reset(); (nop = _pipeline->_noplist.iter()) != NULL; nopcnt++ ); fprintf(fp_cpp, "void Bundle::initialize_nops(MachNode * nop_list[%d], Compile *C) {\n", nopcnt); int i = 0; for ( _pipeline->_noplist.reset(); (nop = _pipeline->_noplist.iter()) != NULL; i++ ) { fprintf(fp_cpp, " nop_list[%d] = (MachNode *) new (C) %sNode();\n", i, nop); } fprintf(fp_cpp, "};\n\n"); fprintf(fp_cpp, "#ifndef PRODUCT\n"); fprintf(fp_cpp, "void Bundle::dump() const {\n"); fprintf(fp_cpp, " static const char * bundle_flags[] = {\n"); fprintf(fp_cpp, " \"\",\n"); fprintf(fp_cpp, " \"use nop delay\",\n"); fprintf(fp_cpp, " \"use unconditional delay\",\n"); fprintf(fp_cpp, " \"use conditional delay\",\n"); fprintf(fp_cpp, " \"used in conditional delay\",\n"); fprintf(fp_cpp, " \"used in unconditional delay\",\n"); fprintf(fp_cpp, " \"used in all conditional delays\",\n"); fprintf(fp_cpp, " };\n\n"); fprintf(fp_cpp, " static const char *resource_names[%d] = {", _pipeline->_rescount); for (i = 0; i < _pipeline->_rescount; i++) fprintf(fp_cpp, " \"%s\"%c", _pipeline->_reslist.name(i), i < _pipeline->_rescount-1 ? ',' : ' '); fprintf(fp_cpp, "};\n\n"); // See if the same string is in the table fprintf(fp_cpp, " bool needs_comma = false;\n\n"); fprintf(fp_cpp, " if (_flags) {\n"); fprintf(fp_cpp, " tty->print(\"%%s\", bundle_flags[_flags]);\n"); fprintf(fp_cpp, " needs_comma = true;\n"); fprintf(fp_cpp, " };\n"); fprintf(fp_cpp, " if (instr_count()) {\n"); fprintf(fp_cpp, " tty->print(\"%%s%%d instr%%s\", needs_comma ? \", \" : \"\", instr_count(), instr_count() != 1 ? \"s\" : \"\");\n"); fprintf(fp_cpp, " needs_comma = true;\n"); fprintf(fp_cpp, " };\n"); fprintf(fp_cpp, " uint r = resources_used();\n"); fprintf(fp_cpp, " if (r) {\n"); fprintf(fp_cpp, " tty->print(\"%%sresource%%s:\", needs_comma ? \", \" : \"\", (r & (r-1)) != 0 ? \"s\" : \"\");\n"); fprintf(fp_cpp, " for (uint i = 0; i < %d; i++)\n", _pipeline->_rescount); fprintf(fp_cpp, " if ((r & (1 << i)) != 0)\n"); fprintf(fp_cpp, " tty->print(\" %%s\", resource_names[i]);\n"); fprintf(fp_cpp, " needs_comma = true;\n"); fprintf(fp_cpp, " };\n"); fprintf(fp_cpp, " tty->print(\"\\n\");\n"); fprintf(fp_cpp, "}\n"); fprintf(fp_cpp, "#endif\n"); } // --------------------------------------------------------------------------- //------------------------------Utilities to build Instruction Classes-------- // --------------------------------------------------------------------------- static void defineOut_RegMask(FILE *fp, const char *node, const char *regMask) { fprintf(fp,"const RegMask &%sNode::out_RegMask() const { return (%s); }\n", node, regMask); } // Scan the peepmatch and output a test for each instruction static void check_peepmatch_instruction_tree(FILE *fp, PeepMatch *pmatch, PeepConstraint *pconstraint) { int parent = -1; int inst_position = 0; const char* inst_name = NULL; int input = 0; fprintf(fp, " // Check instruction sub-tree\n"); pmatch->reset(); for( pmatch->next_instruction( parent, inst_position, inst_name, input ); inst_name != NULL; pmatch->next_instruction( parent, inst_position, inst_name, input ) ) { // If this is not a placeholder if( ! pmatch->is_placeholder() ) { // Define temporaries 'inst#', based on parent and parent's input index if( parent != -1 ) { // root was initialized fprintf(fp, " inst%d = inst%d->in(%d);\n", inst_position, parent, input); } // When not the root // Test we have the correct instruction by comparing the rule if( parent != -1 ) { fprintf(fp, " matches = matches && ( inst%d->rule() == %s_rule );", inst_position, inst_name); } } else { // Check that user did not try to constrain a placeholder assert( ! pconstraint->constrains_instruction(inst_position), "fatal(): Can not constrain a placeholder instruction"); } } } static void print_block_index(FILE *fp, int inst_position) { assert( inst_position >= 0, "Instruction number less than zero"); fprintf(fp, "block_index"); if( inst_position != 0 ) { fprintf(fp, " - %d", inst_position); } } // Scan the peepmatch and output a test for each instruction static void check_peepmatch_instruction_sequence(FILE *fp, PeepMatch *pmatch, PeepConstraint *pconstraint) { int parent = -1; int inst_position = 0; const char* inst_name = NULL; int input = 0; fprintf(fp, " // Check instruction sub-tree\n"); pmatch->reset(); for( pmatch->next_instruction( parent, inst_position, inst_name, input ); inst_name != NULL; pmatch->next_instruction( parent, inst_position, inst_name, input ) ) { // If this is not a placeholder if( ! pmatch->is_placeholder() ) { // Define temporaries 'inst#', based on parent and parent's input index if( parent != -1 ) { // root was initialized fprintf(fp, " // Identify previous instruction if inside this block\n"); fprintf(fp, " if( "); print_block_index(fp, inst_position); fprintf(fp, " > 0 ) {\n Node *n = block->_nodes.at("); print_block_index(fp, inst_position); fprintf(fp, ");\n inst%d = (n->is_Mach()) ? ", inst_position); fprintf(fp, "n->as_Mach() : NULL;\n }\n"); } // When not the root // Test we have the correct instruction by comparing the rule. if( parent != -1 ) { fprintf(fp, " matches = matches && (inst%d != NULL) && (inst%d->rule() == %s_rule);\n", inst_position, inst_position, inst_name); } } else { // Check that user did not try to constrain a placeholder assert( ! pconstraint->constrains_instruction(inst_position), "fatal(): Can not constrain a placeholder instruction"); } } } // Build mapping for register indices, num_edges to input static void build_instruction_index_mapping( FILE *fp, FormDict &globals, PeepMatch *pmatch ) { int parent = -1; int inst_position = 0; const char* inst_name = NULL; int input = 0; fprintf(fp, " // Build map to register info\n"); pmatch->reset(); for( pmatch->next_instruction( parent, inst_position, inst_name, input ); inst_name != NULL; pmatch->next_instruction( parent, inst_position, inst_name, input ) ) { // If this is not a placeholder if( ! pmatch->is_placeholder() ) { // Define temporaries 'inst#', based on self's inst_position InstructForm *inst = globals[inst_name]->is_instruction(); if( inst != NULL ) { char inst_prefix[] = "instXXXX_"; sprintf(inst_prefix, "inst%d_", inst_position); char receiver[] = "instXXXX->"; sprintf(receiver, "inst%d->", inst_position); inst->index_temps( fp, globals, inst_prefix, receiver ); } } } } // Generate tests for the constraints static void check_peepconstraints(FILE *fp, FormDict &globals, PeepMatch *pmatch, PeepConstraint *pconstraint) { fprintf(fp, "\n"); fprintf(fp, " // Check constraints on sub-tree-leaves\n"); // Build mapping from num_edges to local variables build_instruction_index_mapping( fp, globals, pmatch ); // Build constraint tests if( pconstraint != NULL ) { fprintf(fp, " matches = matches &&"); bool first_constraint = true; while( pconstraint != NULL ) { // indentation and connecting '&&' const char *indentation = " "; fprintf(fp, "\n%s%s", indentation, (!first_constraint ? "&& " : " ")); // Only have '==' relation implemented if( strcmp(pconstraint->_relation,"==") != 0 ) { assert( false, "Unimplemented()" ); } // LEFT int left_index = pconstraint->_left_inst; const char *left_op = pconstraint->_left_op; // Access info on the instructions whose operands are compared InstructForm *inst_left = globals[pmatch->instruction_name(left_index)]->is_instruction(); assert( inst_left, "Parser should guaranty this is an instruction"); int left_op_base = inst_left->oper_input_base(globals); // Access info on the operands being compared int left_op_index = inst_left->operand_position(left_op, Component::USE); if( left_op_index == -1 ) { left_op_index = inst_left->operand_position(left_op, Component::DEF); if( left_op_index == -1 ) { left_op_index = inst_left->operand_position(left_op, Component::USE_DEF); } } assert( left_op_index != NameList::Not_in_list, "Did not find operand in instruction"); ComponentList components_left = inst_left->_components; const char *left_comp_type = components_left.at(left_op_index)->_type; OpClassForm *left_opclass = globals[left_comp_type]->is_opclass(); Form::InterfaceType left_interface_type = left_opclass->interface_type(globals); // RIGHT int right_op_index = -1; int right_index = pconstraint->_right_inst; const char *right_op = pconstraint->_right_op; if( right_index != -1 ) { // Match operand // Access info on the instructions whose operands are compared InstructForm *inst_right = globals[pmatch->instruction_name(right_index)]->is_instruction(); assert( inst_right, "Parser should guaranty this is an instruction"); int right_op_base = inst_right->oper_input_base(globals); // Access info on the operands being compared right_op_index = inst_right->operand_position(right_op, Component::USE); if( right_op_index == -1 ) { right_op_index = inst_right->operand_position(right_op, Component::DEF); if( right_op_index == -1 ) { right_op_index = inst_right->operand_position(right_op, Component::USE_DEF); } } assert( right_op_index != NameList::Not_in_list, "Did not find operand in instruction"); ComponentList components_right = inst_right->_components; const char *right_comp_type = components_right.at(right_op_index)->_type; OpClassForm *right_opclass = globals[right_comp_type]->is_opclass(); Form::InterfaceType right_interface_type = right_opclass->interface_type(globals); assert( right_interface_type == left_interface_type, "Both must be same interface"); } else { // Else match register // assert( false, "should be a register" ); } // // Check for equivalence // // fprintf(fp, "phase->eqv( "); // fprintf(fp, "inst%d->in(%d+%d) /* %s */, inst%d->in(%d+%d) /* %s */", // left_index, left_op_base, left_op_index, left_op, // right_index, right_op_base, right_op_index, right_op ); // fprintf(fp, ")"); // switch( left_interface_type ) { case Form::register_interface: { // Check that they are allocated to the same register // Need parameter for index position if not result operand char left_reg_index[] = ",instXXXX_idxXXXX"; if( left_op_index != 0 ) { assert( (left_index <= 9999) && (left_op_index <= 9999), "exceed string size"); // Must have index into operands sprintf(left_reg_index,",inst%d_idx%d", left_index, left_op_index); } else { strcpy(left_reg_index, ""); } fprintf(fp, "(inst%d->_opnds[%d]->reg(ra_,inst%d%s) /* %d.%s */", left_index, left_op_index, left_index, left_reg_index, left_index, left_op ); fprintf(fp, " == "); if( right_index != -1 ) { char right_reg_index[18] = ",instXXXX_idxXXXX"; if( right_op_index != 0 ) { assert( (right_index <= 9999) && (right_op_index <= 9999), "exceed string size"); // Must have index into operands sprintf(right_reg_index,",inst%d_idx%d", right_index, right_op_index); } else { strcpy(right_reg_index, ""); } fprintf(fp, "/* %d.%s */ inst%d->_opnds[%d]->reg(ra_,inst%d%s)", right_index, right_op, right_index, right_op_index, right_index, right_reg_index ); } else { fprintf(fp, "%s_enc", right_op ); } fprintf(fp,")"); break; } case Form::constant_interface: { // Compare the '->constant()' values fprintf(fp, "(inst%d->_opnds[%d]->constant() /* %d.%s */", left_index, left_op_index, left_index, left_op ); fprintf(fp, " == "); fprintf(fp, "/* %d.%s */ inst%d->_opnds[%d]->constant())", right_index, right_op, right_index, right_op_index ); break; } case Form::memory_interface: { // Compare 'base', 'index', 'scale', and 'disp' // base fprintf(fp, "( \n"); fprintf(fp, " (inst%d->_opnds[%d]->base(ra_,inst%d,inst%d_idx%d) /* %d.%s$$base */", left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op ); fprintf(fp, " == "); fprintf(fp, "/* %d.%s$$base */ inst%d->_opnds[%d]->base(ra_,inst%d,inst%d_idx%d)) &&\n", right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index ); // index fprintf(fp, " (inst%d->_opnds[%d]->index(ra_,inst%d,inst%d_idx%d) /* %d.%s$$index */", left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op ); fprintf(fp, " == "); fprintf(fp, "/* %d.%s$$index */ inst%d->_opnds[%d]->index(ra_,inst%d,inst%d_idx%d)) &&\n", right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index ); // scale fprintf(fp, " (inst%d->_opnds[%d]->scale() /* %d.%s$$scale */", left_index, left_op_index, left_index, left_op ); fprintf(fp, " == "); fprintf(fp, "/* %d.%s$$scale */ inst%d->_opnds[%d]->scale()) &&\n", right_index, right_op, right_index, right_op_index ); // disp fprintf(fp, " (inst%d->_opnds[%d]->disp(ra_,inst%d,inst%d_idx%d) /* %d.%s$$disp */", left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op ); fprintf(fp, " == "); fprintf(fp, "/* %d.%s$$disp */ inst%d->_opnds[%d]->disp(ra_,inst%d,inst%d_idx%d))\n", right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index ); fprintf(fp, ") \n"); break; } case Form::conditional_interface: { // Compare the condition code being tested assert( false, "Unimplemented()" ); break; } default: { assert( false, "ShouldNotReachHere()" ); break; } } // Advance to next constraint pconstraint = pconstraint->next(); first_constraint = false; } fprintf(fp, ";\n"); } } // // EXPERIMENTAL -- TEMPORARY code // static Form::DataType get_operand_type(FormDict &globals, InstructForm *instr, const char *op_name ) { // int op_index = instr->operand_position(op_name, Component::USE); // if( op_index == -1 ) { // op_index = instr->operand_position(op_name, Component::DEF); // if( op_index == -1 ) { // op_index = instr->operand_position(op_name, Component::USE_DEF); // } // } // assert( op_index != NameList::Not_in_list, "Did not find operand in instruction"); // // ComponentList components_right = instr->_components; // char *right_comp_type = components_right.at(op_index)->_type; // OpClassForm *right_opclass = globals[right_comp_type]->is_opclass(); // Form::InterfaceType right_interface_type = right_opclass->interface_type(globals); // // return; // } // Construct the new sub-tree static void generate_peepreplace( FILE *fp, FormDict &globals, PeepMatch *pmatch, PeepConstraint *pconstraint, PeepReplace *preplace, int max_position ) { fprintf(fp, " // IF instructions and constraints matched\n"); fprintf(fp, " if( matches ) {\n"); fprintf(fp, " // generate the new sub-tree\n"); fprintf(fp, " assert( true, \"Debug stopping point\");\n"); if( preplace != NULL ) { // Get the root of the new sub-tree const char *root_inst = NULL; preplace->next_instruction(root_inst); InstructForm *root_form = globals[root_inst]->is_instruction(); assert( root_form != NULL, "Replacement instruction was not previously defined"); fprintf(fp, " %sNode *root = new (C) %sNode();\n", root_inst, root_inst); int inst_num; const char *op_name; int opnds_index = 0; // define result operand // Then install the use-operands for the new sub-tree // preplace->reset(); // reset breaks iteration for( preplace->next_operand( inst_num, op_name ); op_name != NULL; preplace->next_operand( inst_num, op_name ) ) { InstructForm *inst_form; inst_form = globals[pmatch->instruction_name(inst_num)]->is_instruction(); assert( inst_form, "Parser should guaranty this is an instruction"); int inst_op_num = inst_form->operand_position(op_name, Component::USE); if( inst_op_num == NameList::Not_in_list ) inst_op_num = inst_form->operand_position(op_name, Component::USE_DEF); assert( inst_op_num != NameList::Not_in_list, "Did not find operand as USE"); // find the name of the OperandForm from the local name const Form *form = inst_form->_localNames[op_name]; OperandForm *op_form = form->is_operand(); if( opnds_index == 0 ) { // Initial setup of new instruction fprintf(fp, " // ----- Initial setup -----\n"); // // Add control edge for this node fprintf(fp, " root->add_req(_in[0]); // control edge\n"); // Add unmatched edges from root of match tree int op_base = root_form->oper_input_base(globals); for( int unmatched_edge = 1; unmatched_edge < op_base; ++unmatched_edge ) { fprintf(fp, " root->add_req(inst%d->in(%d)); // unmatched ideal edge\n", inst_num, unmatched_edge); } // If new instruction captures bottom type if( root_form->captures_bottom_type(globals) ) { // Get bottom type from instruction whose result we are replacing fprintf(fp, " root->_bottom_type = inst%d->bottom_type();\n", inst_num); } // Define result register and result operand fprintf(fp, " ra_->add_reference(root, inst%d);\n", inst_num); fprintf(fp, " ra_->set_oop (root, ra_->is_oop(inst%d));\n", inst_num); fprintf(fp, " ra_->set_pair(root->_idx, ra_->get_reg_second(inst%d), ra_->get_reg_first(inst%d));\n", inst_num, inst_num); fprintf(fp, " root->_opnds[0] = inst%d->_opnds[0]->clone(C); // result\n", inst_num); fprintf(fp, " // ----- Done with initial setup -----\n"); } else { if( (op_form == NULL) || (op_form->is_base_constant(globals) == Form::none) ) { // Do not have ideal edges for constants after matching fprintf(fp, " for( unsigned x%d = inst%d_idx%d; x%d < inst%d_idx%d; x%d++ )\n", inst_op_num, inst_num, inst_op_num, inst_op_num, inst_num, inst_op_num+1, inst_op_num ); fprintf(fp, " root->add_req( inst%d->in(x%d) );\n", inst_num, inst_op_num ); } else { fprintf(fp, " // no ideal edge for constants after matching\n"); } fprintf(fp, " root->_opnds[%d] = inst%d->_opnds[%d]->clone(C);\n", opnds_index, inst_num, inst_op_num ); } ++opnds_index; } }else { // Replacing subtree with empty-tree assert( false, "ShouldNotReachHere();"); } // Return the new sub-tree fprintf(fp, " deleted = %d;\n", max_position+1 /*zero to one based*/); fprintf(fp, " return root; // return new root;\n"); fprintf(fp, " }\n"); } // Define the Peephole method for an instruction node void ArchDesc::definePeephole(FILE *fp, InstructForm *node) { // Generate Peephole function header fprintf(fp, "MachNode *%sNode::peephole( Block *block, int block_index, PhaseRegAlloc *ra_, int &deleted, Compile* C ) {\n", node->_ident); fprintf(fp, " bool matches = true;\n"); // Identify the maximum instruction position, // generate temporaries that hold current instruction // // MachNode *inst0 = NULL; // ... // MachNode *instMAX = NULL; // int max_position = 0; Peephole *peep; for( peep = node->peepholes(); peep != NULL; peep = peep->next() ) { PeepMatch *pmatch = peep->match(); assert( pmatch != NULL, "fatal(), missing peepmatch rule"); if( max_position < pmatch->max_position() ) max_position = pmatch->max_position(); } for( int i = 0; i <= max_position; ++i ) { if( i == 0 ) { fprintf(fp, " MachNode *inst0 = this;\n"); } else { fprintf(fp, " MachNode *inst%d = NULL;\n", i); } } // For each peephole rule in architecture description // Construct a test for the desired instruction sub-tree // then check the constraints // If these match, Generate the new subtree for( peep = node->peepholes(); peep != NULL; peep = peep->next() ) { int peephole_number = peep->peephole_number(); PeepMatch *pmatch = peep->match(); PeepConstraint *pconstraint = peep->constraints(); PeepReplace *preplace = peep->replacement(); // Root of this peephole is the current MachNode assert( true, // %%name?%% strcmp( node->_ident, pmatch->name(0) ) == 0, "root of PeepMatch does not match instruction"); // Make each peephole rule individually selectable fprintf(fp, " if( (OptoPeepholeAt == -1) || (OptoPeepholeAt==%d) ) {\n", peephole_number); fprintf(fp, " matches = true;\n"); // Scan the peepmatch and output a test for each instruction check_peepmatch_instruction_sequence( fp, pmatch, pconstraint ); // Check constraints and build replacement inside scope fprintf(fp, " // If instruction subtree matches\n"); fprintf(fp, " if( matches ) {\n"); // Generate tests for the constraints check_peepconstraints( fp, _globalNames, pmatch, pconstraint ); // Construct the new sub-tree generate_peepreplace( fp, _globalNames, pmatch, pconstraint, preplace, max_position ); // End of scope for this peephole's constraints fprintf(fp, " }\n"); // Closing brace '}' to make each peephole rule individually selectable fprintf(fp, " } // end of peephole rule #%d\n", peephole_number); fprintf(fp, "\n"); } fprintf(fp, " return NULL; // No peephole rules matched\n"); fprintf(fp, "}\n"); fprintf(fp, "\n"); } // Define the Expand method for an instruction node void ArchDesc::defineExpand(FILE *fp, InstructForm *node) { unsigned cnt = 0; // Count nodes we have expand into unsigned i; // Generate Expand function header fprintf(fp, "MachNode* %sNode::Expand(State* state, Node_List& proj_list, Node* mem) {\n", node->_ident); fprintf(fp, " Compile* C = Compile::current();\n"); // Generate expand code if( node->expands() ) { const char *opid; int new_pos, exp_pos; const char *new_id = NULL; const Form *frm = NULL; InstructForm *new_inst = NULL; OperandForm *new_oper = NULL; unsigned numo = node->num_opnds() + node->_exprule->_newopers.count(); // If necessary, generate any operands created in expand rule if (node->_exprule->_newopers.count()) { for(node->_exprule->_newopers.reset(); (new_id = node->_exprule->_newopers.iter()) != NULL; cnt++) { frm = node->_localNames[new_id]; assert(frm, "Invalid entry in new operands list of expand rule"); new_oper = frm->is_operand(); char *tmp = (char *)node->_exprule->_newopconst[new_id]; if (tmp == NULL) { fprintf(fp," MachOper *op%d = new (C) %sOper();\n", cnt, new_oper->_ident); } else { fprintf(fp," MachOper *op%d = new (C) %sOper(%s);\n", cnt, new_oper->_ident, tmp); } } } cnt = 0; // Generate the temps to use for DAG building for(i = 0; i < numo; i++) { if (i < node->num_opnds()) { fprintf(fp," MachNode *tmp%d = this;\n", i); } else { fprintf(fp," MachNode *tmp%d = NULL;\n", i); } } // Build mapping from num_edges to local variables fprintf(fp," unsigned num0 = 0;\n"); for( i = 1; i < node->num_opnds(); i++ ) { fprintf(fp," unsigned num%d = opnd_array(%d)->num_edges();\n",i,i); } // Build a mapping from operand index to input edges fprintf(fp," unsigned idx0 = oper_input_base();\n"); // The order in which the memory input is added to a node is very // strange. Store nodes get a memory input before Expand is // called and other nodes get it afterwards or before depending on // match order so oper_input_base is wrong during expansion. This // code adjusts it so that expansion will work correctly. int has_memory_edge = node->_matrule->needs_ideal_memory_edge(_globalNames); if (has_memory_edge) { fprintf(fp," if (mem == (Node*)1) {\n"); fprintf(fp," idx0--; // Adjust base because memory edge hasn't been inserted yet\n"); fprintf(fp," }\n"); } for( i = 0; i < node->num_opnds(); i++ ) { fprintf(fp," unsigned idx%d = idx%d + num%d;\n", i+1,i,i); } // Declare variable to hold root of expansion fprintf(fp," MachNode *result = NULL;\n"); // Iterate over the instructions 'node' expands into ExpandRule *expand = node->_exprule; NameAndList *expand_instr = NULL; for(expand->reset_instructions(); (expand_instr = expand->iter_instructions()) != NULL; cnt++) { new_id = expand_instr->name(); InstructForm* expand_instruction = (InstructForm*)globalAD->globalNames()[new_id]; if (expand_instruction->has_temps()) { globalAD->syntax_err(node->_linenum, "In %s: expand rules using instructs with TEMPs aren't supported: %s", node->_ident, new_id); } // Build the node for the instruction fprintf(fp,"\n %sNode *n%d = new (C) %sNode();\n", new_id, cnt, new_id); // Add control edge for this node fprintf(fp," n%d->add_req(_in[0]);\n", cnt); // Build the operand for the value this node defines. Form *form = (Form*)_globalNames[new_id]; assert( form, "'new_id' must be a defined form name"); // Grab the InstructForm for the new instruction new_inst = form->is_instruction(); assert( new_inst, "'new_id' must be an instruction name"); if( node->is_ideal_if() && new_inst->is_ideal_if() ) { fprintf(fp, " ((MachIfNode*)n%d)->_prob = _prob;\n",cnt); fprintf(fp, " ((MachIfNode*)n%d)->_fcnt = _fcnt;\n",cnt); } if( node->is_ideal_fastlock() && new_inst->is_ideal_fastlock() ) { fprintf(fp, " ((MachFastLockNode*)n%d)->_counters = _counters;\n",cnt); } // Fill in the bottom_type where requested if (node->captures_bottom_type(_globalNames) && new_inst->captures_bottom_type(_globalNames)) { fprintf(fp, " ((MachTypeNode*)n%d)->_bottom_type = bottom_type();\n", cnt); } const char *resultOper = new_inst->reduce_result(); fprintf(fp," n%d->set_opnd_array(0, state->MachOperGenerator( %s, C ));\n", cnt, machOperEnum(resultOper)); // get the formal operand NameList NameList *formal_lst = &new_inst->_parameters; formal_lst->reset(); // Handle any memory operand int memory_operand = new_inst->memory_operand(_globalNames); if( memory_operand != InstructForm::NO_MEMORY_OPERAND ) { int node_mem_op = node->memory_operand(_globalNames); assert( node_mem_op != InstructForm::NO_MEMORY_OPERAND, "expand rule member needs memory but top-level inst doesn't have any" ); if (has_memory_edge) { // Copy memory edge fprintf(fp," if (mem != (Node*)1) {\n"); fprintf(fp," n%d->add_req(_in[1]);\t// Add memory edge\n", cnt); fprintf(fp," }\n"); } } // Iterate over the new instruction's operands int prev_pos = -1; for( expand_instr->reset(); (opid = expand_instr->iter()) != NULL; ) { // Use 'parameter' at current position in list of new instruction's formals // instead of 'opid' when looking up info internal to new_inst const char *parameter = formal_lst->iter(); // Check for an operand which is created in the expand rule if ((exp_pos = node->_exprule->_newopers.index(opid)) != -1) { new_pos = new_inst->operand_position(parameter,Component::USE); exp_pos += node->num_opnds(); // If there is no use of the created operand, just skip it if (new_pos != -1) { //Copy the operand from the original made above fprintf(fp," n%d->set_opnd_array(%d, op%d->clone(C)); // %s\n", cnt, new_pos, exp_pos-node->num_opnds(), opid); // Check for who defines this operand & add edge if needed fprintf(fp," if(tmp%d != NULL)\n", exp_pos); fprintf(fp," n%d->add_req(tmp%d);\n", cnt, exp_pos); } } else { // Use operand name to get an index into instruction component list // ins = (InstructForm *) _globalNames[new_id]; exp_pos = node->operand_position_format(opid); assert(exp_pos != -1, "Bad expand rule"); if (prev_pos > exp_pos && expand_instruction->_matrule != NULL) { // For the add_req calls below to work correctly they need // to added in the same order that a match would add them. // This means that they would need to be in the order of // the components list instead of the formal parameters. // This is a sort of hidden invariant that previously // wasn't checked and could lead to incorrectly // constructed nodes. syntax_err(node->_linenum, "For expand in %s to work, parameter declaration order in %s must follow matchrule\n", node->_ident, new_inst->_ident); } prev_pos = exp_pos; new_pos = new_inst->operand_position(parameter,Component::USE); if (new_pos != -1) { // Copy the operand from the ExpandNode to the new node fprintf(fp," n%d->set_opnd_array(%d, opnd_array(%d)->clone(C)); // %s\n", cnt, new_pos, exp_pos, opid); // For each operand add appropriate input edges by looking at tmp's fprintf(fp," if(tmp%d == this) {\n", exp_pos); // Grab corresponding edges from ExpandNode and insert them here fprintf(fp," for(unsigned i = 0; i < num%d; i++) {\n", exp_pos); fprintf(fp," n%d->add_req(_in[i + idx%d]);\n", cnt, exp_pos); fprintf(fp," }\n"); fprintf(fp," }\n"); // This value is generated by one of the new instructions fprintf(fp," else n%d->add_req(tmp%d);\n", cnt, exp_pos); } } // Update the DAG tmp's for values defined by this instruction int new_def_pos = new_inst->operand_position(parameter,Component::DEF); Effect *eform = (Effect *)new_inst->_effects[parameter]; // If this operand is a definition in either an effects rule // or a match rule if((eform) && (is_def(eform->_use_def))) { // Update the temp associated with this operand fprintf(fp," tmp%d = n%d;\n", exp_pos, cnt); } else if( new_def_pos != -1 ) { // Instruction defines a value but user did not declare it // in the 'effect' clause fprintf(fp," tmp%d = n%d;\n", exp_pos, cnt); } } // done iterating over a new instruction's operands // Invoke Expand() for the newly created instruction. fprintf(fp," result = n%d->Expand( state, proj_list, mem );\n", cnt); assert( !new_inst->expands(), "Do not have complete support for recursive expansion"); } // done iterating over new instructions fprintf(fp,"\n"); } // done generating expand rule // Generate projections for instruction's additional DEFs and KILLs if( ! node->expands() && (node->needs_projections() || node->has_temps())) { // Get string representing the MachNode that projections point at const char *machNode = "this"; // Generate the projections fprintf(fp," // Add projection edges for additional defs or kills\n"); // Examine each component to see if it is a DEF or KILL node->_components.reset(); // Skip the first component, if already handled as (SET dst (...)) Component *comp = NULL; // For kills, the choice of projection numbers is arbitrary int proj_no = 1; bool declared_def = false; bool declared_kill = false; while( (comp = node->_components.iter()) != NULL ) { // Lookup register class associated with operand type Form *form = (Form*)_globalNames[comp->_type]; assert( form, "component type must be a defined form"); OperandForm *op = form->is_operand(); if (comp->is(Component::TEMP)) { fprintf(fp, " // TEMP %s\n", comp->_name); if (!declared_def) { // Define the variable "def" to hold new MachProjNodes fprintf(fp, " MachTempNode *def;\n"); declared_def = true; } if (op && op->_interface && op->_interface->is_RegInterface()) { fprintf(fp," def = new (C) MachTempNode(state->MachOperGenerator( %s, C ));\n", machOperEnum(op->_ident)); fprintf(fp," add_req(def);\n"); // The operand for TEMP is already constructed during // this mach node construction, see buildMachNode(). // // int idx = node->operand_position_format(comp->_name); // fprintf(fp," set_opnd_array(%d, state->MachOperGenerator( %s, C ));\n", // idx, machOperEnum(op->_ident)); } else { assert(false, "can't have temps which aren't registers"); } } else if (comp->isa(Component::KILL)) { fprintf(fp, " // DEF/KILL %s\n", comp->_name); if (!declared_kill) { // Define the variable "kill" to hold new MachProjNodes fprintf(fp, " MachProjNode *kill;\n"); declared_kill = true; } assert( op, "Support additional KILLS for base operands"); const char *regmask = reg_mask(*op); const char *ideal_type = op->ideal_type(_globalNames, _register); if (!op->is_bound_register()) { syntax_err(node->_linenum, "In %s only bound registers can be killed: %s %s\n", node->_ident, comp->_type, comp->_name); } fprintf(fp," kill = "); fprintf(fp,"new (C, 1) MachProjNode( %s, %d, (%s), Op_%s );\n", machNode, proj_no++, regmask, ideal_type); fprintf(fp," proj_list.push(kill);\n"); } } } if( !node->expands() && node->_matrule != NULL ) { // Remove duplicated operands and inputs which use the same name. // Seach through match operands for the same name usage. uint cur_num_opnds = node->num_opnds(); if( cur_num_opnds > 1 && cur_num_opnds != node->num_unique_opnds() ) { Component *comp = NULL; // Build mapping from num_edges to local variables fprintf(fp," unsigned num0 = 0;\n"); for( i = 1; i < cur_num_opnds; i++ ) { fprintf(fp," unsigned num%d = opnd_array(%d)->num_edges();\n",i,i); } // Build a mapping from operand index to input edges fprintf(fp," unsigned idx0 = oper_input_base();\n"); for( i = 0; i < cur_num_opnds; i++ ) { fprintf(fp," unsigned idx%d = idx%d + num%d;\n", i+1,i,i); } uint new_num_opnds = 1; node->_components.reset(); // Skip first unique operands. for( i = 1; i < cur_num_opnds; i++ ) { comp = node->_components.iter(); if( (int)i != node->unique_opnds_idx(i) ) { break; } new_num_opnds++; } // Replace not unique operands with next unique operands. for( ; i < cur_num_opnds; i++ ) { comp = node->_components.iter(); int j = node->unique_opnds_idx(i); // unique_opnds_idx(i) is unique if unique_opnds_idx(j) is not unique. if( j != node->unique_opnds_idx(j) ) { fprintf(fp," set_opnd_array(%d, opnd_array(%d)->clone(C)); // %s\n", new_num_opnds, i, comp->_name); // delete not unique edges here fprintf(fp," for(unsigned i = 0; i < num%d; i++) {\n", i); fprintf(fp," set_req(i + idx%d, _in[i + idx%d]);\n", new_num_opnds, i); fprintf(fp," }\n"); fprintf(fp," num%d = num%d;\n", new_num_opnds, i); fprintf(fp," idx%d = idx%d + num%d;\n", new_num_opnds+1, new_num_opnds, new_num_opnds); new_num_opnds++; } } // delete the rest of edges fprintf(fp," for(int i = idx%d - 1; i >= (int)idx%d; i--) {\n", cur_num_opnds, new_num_opnds); fprintf(fp," del_req(i);\n"); fprintf(fp," }\n"); fprintf(fp," _num_opnds = %d;\n", new_num_opnds); assert(new_num_opnds == node->num_unique_opnds(), "what?"); } } // If the node is a MachConstantNode, insert the MachConstantBaseNode edge. // NOTE: this edge must be the last input (see MachConstantNode::mach_constant_base_node_input). if (node->is_mach_constant()) { fprintf(fp," add_req(C->mach_constant_base_node());\n"); } fprintf(fp,"\n"); if( node->expands() ) { fprintf(fp," return result;\n"); } else { fprintf(fp," return this;\n"); } fprintf(fp,"}\n"); fprintf(fp,"\n"); } //------------------------------Emit Routines---------------------------------- // Special classes and routines for defining node emit routines which output // target specific instruction object encodings. // Define the ___Node::emit() routine // // (1) void ___Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const { // (2) // ... encoding defined by user // (3) // (4) } // class DefineEmitState { private: enum reloc_format { RELOC_NONE = -1, RELOC_IMMEDIATE = 0, RELOC_DISP = 1, RELOC_CALL_DISP = 2 }; enum literal_status{ LITERAL_NOT_SEEN = 0, LITERAL_SEEN = 1, LITERAL_ACCESSED = 2, LITERAL_OUTPUT = 3 }; // Temporaries that describe current operand bool _cleared; OpClassForm *_opclass; OperandForm *_operand; int _operand_idx; const char *_local_name; const char *_operand_name; bool _doing_disp; bool _doing_constant; Form::DataType _constant_type; DefineEmitState::literal_status _constant_status; DefineEmitState::literal_status _reg_status; bool _doing_emit8; bool _doing_emit_d32; bool _doing_emit_d16; bool _doing_emit_hi; bool _doing_emit_lo; bool _may_reloc; reloc_format _reloc_form; const char * _reloc_type; bool _processing_noninput; NameList _strings_to_emit; // Stable state, set by constructor ArchDesc &_AD; FILE *_fp; EncClass &_encoding; InsEncode &_ins_encode; InstructForm &_inst; public: DefineEmitState(FILE *fp, ArchDesc &AD, EncClass &encoding, InsEncode &ins_encode, InstructForm &inst) : _AD(AD), _fp(fp), _encoding(encoding), _ins_encode(ins_encode), _inst(inst) { clear(); } void clear() { _cleared = true; _opclass = NULL; _operand = NULL; _operand_idx = 0; _local_name = ""; _operand_name = ""; _doing_disp = false; _doing_constant= false; _constant_type = Form::none; _constant_status = LITERAL_NOT_SEEN; _reg_status = LITERAL_NOT_SEEN; _doing_emit8 = false; _doing_emit_d32= false; _doing_emit_d16= false; _doing_emit_hi = false; _doing_emit_lo = false; _may_reloc = false; _reloc_form = RELOC_NONE; _reloc_type = AdlcVMDeps::none_reloc_type(); _strings_to_emit.clear(); } // Track necessary state when identifying a replacement variable void update_state(const char *rep_var) { // A replacement variable or one of its subfields // Obtain replacement variable from list if ( (*rep_var) != '$' ) { // A replacement variable, '$' prefix // check_rep_var( rep_var ); if ( Opcode::as_opcode_type(rep_var) != Opcode::NOT_AN_OPCODE ) { // No state needed. assert( _opclass == NULL, "'primary', 'secondary' and 'tertiary' don't follow operand."); } else if ((strcmp(rep_var, "constanttablebase") == 0) || (strcmp(rep_var, "constantoffset") == 0) || (strcmp(rep_var, "constantaddress") == 0)) { if (!_inst.is_mach_constant()) { _AD.syntax_err(_encoding._linenum, "Replacement variable %s not allowed in instruct %s (only in MachConstantNode).\n", rep_var, _encoding._name); } } else { // Lookup its position in parameter list int param_no = _encoding.rep_var_index(rep_var); if ( param_no == -1 ) { _AD.syntax_err( _encoding._linenum, "Replacement variable %s not found in enc_class %s.\n", rep_var, _encoding._name); } // Lookup the corresponding ins_encode parameter const char *inst_rep_var = _ins_encode.rep_var_name(_inst, param_no); if (inst_rep_var == NULL) { _AD.syntax_err( _ins_encode._linenum, "Parameter %s not passed to enc_class %s from instruct %s.\n", rep_var, _encoding._name, _inst._ident); } // Check if instruction's actual parameter is a local name in the instruction const Form *local = _inst._localNames[inst_rep_var]; OpClassForm *opc = (local != NULL) ? local->is_opclass() : NULL; // Note: assert removed to allow constant and symbolic parameters // assert( opc, "replacement variable was not found in local names"); // Lookup the index position iff the replacement variable is a localName int idx = (opc != NULL) ? _inst.operand_position_format(inst_rep_var) : -1; if ( idx != -1 ) { // This is a local in the instruction // Update local state info. _opclass = opc; _operand_idx = idx; _local_name = rep_var; _operand_name = inst_rep_var; // !!!!! // Do not support consecutive operands. assert( _operand == NULL, "Unimplemented()"); _operand = opc->is_operand(); } else if( ADLParser::is_literal_constant(inst_rep_var) ) { // Instruction provided a constant expression // Check later that encoding specifies $$$constant to resolve as constant _constant_status = LITERAL_SEEN; } else if( Opcode::as_opcode_type(inst_rep_var) != Opcode::NOT_AN_OPCODE ) { // Instruction provided an opcode: "primary", "secondary", "tertiary" // Check later that encoding specifies $$$constant to resolve as constant _constant_status = LITERAL_SEEN; } else if((_AD.get_registers() != NULL ) && (_AD.get_registers()->getRegDef(inst_rep_var) != NULL)) { // Instruction provided a literal register name for this parameter // Check that encoding specifies $$$reg to resolve.as register. _reg_status = LITERAL_SEEN; } else { // Check for unimplemented functionality before hard failure assert( strcmp(opc->_ident,"label")==0, "Unimplemented() Label"); assert( false, "ShouldNotReachHere()"); } } // done checking which operand this is. } else { // // A subfield variable, '$$' prefix // Check for fields that may require relocation information. // Then check that literal register parameters are accessed with 'reg' or 'constant' // if ( strcmp(rep_var,"$disp") == 0 ) { _doing_disp = true; assert( _opclass, "Must use operand or operand class before '$disp'"); if( _operand == NULL ) { // Only have an operand class, generate run-time check for relocation _may_reloc = true; _reloc_form = RELOC_DISP; _reloc_type = AdlcVMDeps::oop_reloc_type(); } else { // Do precise check on operand: is it a ConP or not // // Check interface for value of displacement assert( ( _operand->_interface != NULL ), "$disp can only follow memory interface operand"); MemInterface *mem_interface= _operand->_interface->is_MemInterface(); assert( mem_interface != NULL, "$disp can only follow memory interface operand"); const char *disp = mem_interface->_disp; if( disp != NULL && (*disp == '$') ) { // MemInterface::disp contains a replacement variable, // Check if this matches a ConP // // Lookup replacement variable, in operand's component list const char *rep_var_name = disp + 1; // Skip '$' const Component *comp = _operand->_components.search(rep_var_name); assert( comp != NULL,"Replacement variable not found in components"); const char *type = comp->_type; // Lookup operand form for replacement variable's type const Form *form = _AD.globalNames()[type]; assert( form != NULL, "Replacement variable's type not found"); OperandForm *op = form->is_operand(); assert( op, "Attempting to emit a non-register or non-constant"); // Check if this is a constant if (op->_matrule && op->_matrule->is_base_constant(_AD.globalNames())) { // Check which constant this name maps to: _c0, _c1, ..., _cn // const int idx = _operand.constant_position(_AD.globalNames(), comp); // assert( idx != -1, "Constant component not found in operand"); Form::DataType dtype = op->is_base_constant(_AD.globalNames()); if ( dtype == Form::idealP ) { _may_reloc = true; // No longer true that idealP is always an oop _reloc_form = RELOC_DISP; _reloc_type = AdlcVMDeps::oop_reloc_type(); } } else if( _operand->is_user_name_for_sReg() != Form::none ) { // The only non-constant allowed access to disp is an operand sRegX in a stackSlotX assert( op->ideal_to_sReg_type(type) != Form::none, "StackSlots access displacements using 'sRegs'"); _may_reloc = false; } else { assert( false, "fatal(); Only stackSlots can access a non-constant using 'disp'"); } } } // finished with precise check of operand for relocation. } // finished with subfield variable else if ( strcmp(rep_var,"$constant") == 0 ) { _doing_constant = true; if ( _constant_status == LITERAL_NOT_SEEN ) { // Check operand for type of constant assert( _operand, "Must use operand before '$$constant'"); Form::DataType dtype = _operand->is_base_constant(_AD.globalNames()); _constant_type = dtype; if ( dtype == Form::idealP ) { _may_reloc = true; // No longer true that idealP is always an oop // // _must_reloc = true; _reloc_form = RELOC_IMMEDIATE; _reloc_type = AdlcVMDeps::oop_reloc_type(); } else { // No relocation information needed } } else { // User-provided literals may not require relocation information !!!!! assert( _constant_status == LITERAL_SEEN, "Must know we are processing a user-provided literal"); } } else if ( strcmp(rep_var,"$label") == 0 ) { // Calls containing labels require relocation if ( _inst.is_ideal_call() ) { _may_reloc = true; // !!!!! !!!!! _reloc_type = AdlcVMDeps::none_reloc_type(); } } // literal register parameter must be accessed as a 'reg' field. if ( _reg_status != LITERAL_NOT_SEEN ) { assert( _reg_status == LITERAL_SEEN, "Must have seen register literal before now"); if (strcmp(rep_var,"$reg") == 0 || reg_conversion(rep_var) != NULL) { _reg_status = LITERAL_ACCESSED; } else { assert( false, "invalid access to literal register parameter"); } } // literal constant parameters must be accessed as a 'constant' field if ( _constant_status != LITERAL_NOT_SEEN ) { assert( _constant_status == LITERAL_SEEN, "Must have seen constant literal before now"); if( strcmp(rep_var,"$constant") == 0 ) { _constant_status = LITERAL_ACCESSED; } else { assert( false, "invalid access to literal constant parameter"); } } } // end replacement and/or subfield } void add_rep_var(const char *rep_var) { // Handle subfield and replacement variables. if ( ( *rep_var == '$' ) && ( *(rep_var+1) == '$' ) ) { // Check for emit prefix, '$$emit32' assert( _cleared, "Can not nest $$$emit32"); if ( strcmp(rep_var,"$$emit32") == 0 ) { _doing_emit_d32 = true; } else if ( strcmp(rep_var,"$$emit16") == 0 ) { _doing_emit_d16 = true; } else if ( strcmp(rep_var,"$$emit_hi") == 0 ) { _doing_emit_hi = true; } else if ( strcmp(rep_var,"$$emit_lo") == 0 ) { _doing_emit_lo = true; } else if ( strcmp(rep_var,"$$emit8") == 0 ) { _doing_emit8 = true; } else { _AD.syntax_err(_encoding._linenum, "Unsupported $$operation '%s'\n",rep_var); assert( false, "fatal();"); } } else { // Update state for replacement variables update_state( rep_var ); _strings_to_emit.addName(rep_var); } _cleared = false; } void emit_replacement() { // A replacement variable or one of its subfields // Obtain replacement variable from list // const char *ec_rep_var = encoding->_rep_vars.iter(); const char *rep_var; _strings_to_emit.reset(); while ( (rep_var = _strings_to_emit.iter()) != NULL ) { if ( (*rep_var) == '$' ) { // A subfield variable, '$$' prefix emit_field( rep_var ); } else { if (_strings_to_emit.peek() != NULL && strcmp(_strings_to_emit.peek(), "$Address") == 0) { fprintf(_fp, "Address::make_raw("); emit_rep_var( rep_var ); fprintf(_fp,"->base(ra_,this,idx%d), ", _operand_idx); _reg_status = LITERAL_ACCESSED; emit_rep_var( rep_var ); fprintf(_fp,"->index(ra_,this,idx%d), ", _operand_idx); _reg_status = LITERAL_ACCESSED; emit_rep_var( rep_var ); fprintf(_fp,"->scale(), "); _reg_status = LITERAL_ACCESSED; emit_rep_var( rep_var ); Form::DataType stack_type = _operand ? _operand->is_user_name_for_sReg() : Form::none; if( _operand && _operand_idx==0 && stack_type != Form::none ) { fprintf(_fp,"->disp(ra_,this,0), "); } else { fprintf(_fp,"->disp(ra_,this,idx%d), ", _operand_idx); } _reg_status = LITERAL_ACCESSED; emit_rep_var( rep_var ); fprintf(_fp,"->disp_reloc())"); // skip trailing $Address _strings_to_emit.iter(); } else { // A replacement variable, '$' prefix const char* next = _strings_to_emit.peek(); const char* next2 = _strings_to_emit.peek(2); if (next != NULL && next2 != NULL && strcmp(next2, "$Register") == 0 && (strcmp(next, "$base") == 0 || strcmp(next, "$index") == 0)) { // handle $rev_var$$base$$Register and $rev_var$$index$$Register by // producing as_Register(opnd_array(#)->base(ra_,this,idx1)). fprintf(_fp, "as_Register("); // emit the operand reference emit_rep_var( rep_var ); rep_var = _strings_to_emit.iter(); assert(strcmp(rep_var, "$base") == 0 || strcmp(rep_var, "$index") == 0, "bad pattern"); // handle base or index emit_field(rep_var); rep_var = _strings_to_emit.iter(); assert(strcmp(rep_var, "$Register") == 0, "bad pattern"); // close up the parens fprintf(_fp, ")"); } else { emit_rep_var( rep_var ); } } } // end replacement and/or subfield } } void emit_reloc_type(const char* type) { fprintf(_fp, "%s", type) ; } void emit() { // // "emit_d32_reloc(" or "emit_hi_reloc" or "emit_lo_reloc" // // Emit the function name when generating an emit function if ( _doing_emit_d32 || _doing_emit_hi || _doing_emit_lo ) { const char *d32_hi_lo = _doing_emit_d32 ? "d32" : (_doing_emit_hi ? "hi" : "lo"); // In general, relocatable isn't known at compiler compile time. // Check results of prior scan if ( ! _may_reloc ) { // Definitely don't need relocation information fprintf( _fp, "emit_%s(cbuf, ", d32_hi_lo ); emit_replacement(); fprintf(_fp, ")"); } else { // Emit RUNTIME CHECK to see if value needs relocation info // If emitting a relocatable address, use 'emit_d32_reloc' const char *disp_constant = _doing_disp ? "disp" : _doing_constant ? "constant" : "INVALID"; assert( (_doing_disp || _doing_constant) && !(_doing_disp && _doing_constant), "Must be emitting either a displacement or a constant"); fprintf(_fp,"\n"); fprintf(_fp,"if ( opnd_array(%d)->%s_reloc() != relocInfo::none ) {\n", _operand_idx, disp_constant); fprintf(_fp," "); fprintf(_fp,"emit_%s_reloc(cbuf, ", d32_hi_lo ); emit_replacement(); fprintf(_fp,", "); fprintf(_fp,"opnd_array(%d)->%s_reloc(), ", _operand_idx, disp_constant); fprintf(_fp, "%d", _reloc_form);fprintf(_fp, ");"); fprintf(_fp,"\n"); fprintf(_fp,"} else {\n"); fprintf(_fp," emit_%s(cbuf, ", d32_hi_lo); emit_replacement(); fprintf(_fp, ");\n"); fprintf(_fp,"}"); } } else if ( _doing_emit_d16 ) { // Relocation of 16-bit values is not supported fprintf(_fp,"emit_d16(cbuf, "); emit_replacement(); fprintf(_fp, ")"); // No relocation done for 16-bit values } else if ( _doing_emit8 ) { // Relocation of 8-bit values is not supported fprintf(_fp,"emit_d8(cbuf, "); emit_replacement(); fprintf(_fp, ")"); // No relocation done for 8-bit values } else { // Not an emit# command, just output the replacement string. emit_replacement(); } // Get ready for next state collection. clear(); } private: // recognizes names which represent MacroAssembler register types // and return the conversion function to build them from OptoReg const char* reg_conversion(const char* rep_var) { if (strcmp(rep_var,"$Register") == 0) return "as_Register"; if (strcmp(rep_var,"$FloatRegister") == 0) return "as_FloatRegister"; #if defined(IA32) || defined(AMD64) if (strcmp(rep_var,"$XMMRegister") == 0) return "as_XMMRegister"; #endif return NULL; } void emit_field(const char *rep_var) { const char* reg_convert = reg_conversion(rep_var); // A subfield variable, '$$subfield' if ( strcmp(rep_var, "$reg") == 0 || reg_convert != NULL) { // $reg form or the $Register MacroAssembler type conversions assert( _operand_idx != -1, "Must use this subfield after operand"); if( _reg_status == LITERAL_NOT_SEEN ) { if (_processing_noninput) { const Form *local = _inst._localNames[_operand_name]; OperandForm *oper = local->is_operand(); const RegDef* first = oper->get_RegClass()->find_first_elem(); if (reg_convert != NULL) { fprintf(_fp, "%s(%s_enc)", reg_convert, first->_regname); } else { fprintf(_fp, "%s_enc", first->_regname); } } else { fprintf(_fp,"->%s(ra_,this", reg_convert != NULL ? reg_convert : "reg"); // Add parameter for index position, if not result operand if( _operand_idx != 0 ) fprintf(_fp,",idx%d", _operand_idx); fprintf(_fp,")"); } } else { assert( _reg_status == LITERAL_OUTPUT, "should have output register literal in emit_rep_var"); // Register literal has already been sent to output file, nothing more needed } } else if ( strcmp(rep_var,"$base") == 0 ) { assert( _operand_idx != -1, "Must use this subfield after operand"); assert( ! _may_reloc, "UnImplemented()"); fprintf(_fp,"->base(ra_,this,idx%d)", _operand_idx); } else if ( strcmp(rep_var,"$index") == 0 ) { assert( _operand_idx != -1, "Must use this subfield after operand"); assert( ! _may_reloc, "UnImplemented()"); fprintf(_fp,"->index(ra_,this,idx%d)", _operand_idx); } else if ( strcmp(rep_var,"$scale") == 0 ) { assert( ! _may_reloc, "UnImplemented()"); fprintf(_fp,"->scale()"); } else if ( strcmp(rep_var,"$cmpcode") == 0 ) { assert( ! _may_reloc, "UnImplemented()"); fprintf(_fp,"->ccode()"); } else if ( strcmp(rep_var,"$constant") == 0 ) { if( _constant_status == LITERAL_NOT_SEEN ) { if ( _constant_type == Form::idealD ) { fprintf(_fp,"->constantD()"); } else if ( _constant_type == Form::idealF ) { fprintf(_fp,"->constantF()"); } else if ( _constant_type == Form::idealL ) { fprintf(_fp,"->constantL()"); } else { fprintf(_fp,"->constant()"); } } else { assert( _constant_status == LITERAL_OUTPUT, "should have output constant literal in emit_rep_var"); // Cosntant literal has already been sent to output file, nothing more needed } } else if ( strcmp(rep_var,"$disp") == 0 ) { Form::DataType stack_type = _operand ? _operand->is_user_name_for_sReg() : Form::none; if( _operand && _operand_idx==0 && stack_type != Form::none ) { fprintf(_fp,"->disp(ra_,this,0)"); } else { fprintf(_fp,"->disp(ra_,this,idx%d)", _operand_idx); } } else if ( strcmp(rep_var,"$label") == 0 ) { fprintf(_fp,"->label()"); } else if ( strcmp(rep_var,"$method") == 0 ) { fprintf(_fp,"->method()"); } else { printf("emit_field: %s\n",rep_var); assert( false, "UnImplemented()"); } } void emit_rep_var(const char *rep_var) { _processing_noninput = false; // A replacement variable, originally '$' if ( Opcode::as_opcode_type(rep_var) != Opcode::NOT_AN_OPCODE ) { if (!_inst._opcode->print_opcode(_fp, Opcode::as_opcode_type(rep_var) )) { // Missing opcode _AD.syntax_err( _inst._linenum, "Missing $%s opcode definition in %s, used by encoding %s\n", rep_var, _inst._ident, _encoding._name); } } else if (strcmp(rep_var, "constanttablebase") == 0) { fprintf(_fp, "as_Register(ra_->get_encode(in(mach_constant_base_node_input())))"); } else if (strcmp(rep_var, "constantoffset") == 0) { fprintf(_fp, "constant_offset()"); } else if (strcmp(rep_var, "constantaddress") == 0) { fprintf(_fp, "InternalAddress(__ code()->consts()->start() + constant_offset())"); } else { // Lookup its position in parameter list int param_no = _encoding.rep_var_index(rep_var); if ( param_no == -1 ) { _AD.syntax_err( _encoding._linenum, "Replacement variable %s not found in enc_class %s.\n", rep_var, _encoding._name); } // Lookup the corresponding ins_encode parameter const char *inst_rep_var = _ins_encode.rep_var_name(_inst, param_no); // Check if instruction's actual parameter is a local name in the instruction const Form *local = _inst._localNames[inst_rep_var]; OpClassForm *opc = (local != NULL) ? local->is_opclass() : NULL; // Note: assert removed to allow constant and symbolic parameters // assert( opc, "replacement variable was not found in local names"); // Lookup the index position iff the replacement variable is a localName int idx = (opc != NULL) ? _inst.operand_position_format(inst_rep_var) : -1; if( idx != -1 ) { if (_inst.is_noninput_operand(idx)) { // This operand isn't a normal input so printing it is done // specially. _processing_noninput = true; } else { // Output the emit code for this operand fprintf(_fp,"opnd_array(%d)",idx); } assert( _operand == opc->is_operand(), "Previous emit $operand does not match current"); } else if( ADLParser::is_literal_constant(inst_rep_var) ) { // else check if it is a constant expression // Removed following assert to allow primitive C types as arguments to encodings // assert( _constant_status == LITERAL_ACCESSED, "Must be processing a literal constant parameter"); fprintf(_fp,"(%s)", inst_rep_var); _constant_status = LITERAL_OUTPUT; } else if( Opcode::as_opcode_type(inst_rep_var) != Opcode::NOT_AN_OPCODE ) { // else check if "primary", "secondary", "tertiary" assert( _constant_status == LITERAL_ACCESSED, "Must be processing a literal constant parameter"); if (!_inst._opcode->print_opcode(_fp, Opcode::as_opcode_type(inst_rep_var) )) { // Missing opcode _AD.syntax_err( _inst._linenum, "Missing $%s opcode definition in %s\n", rep_var, _inst._ident); } _constant_status = LITERAL_OUTPUT; } else if((_AD.get_registers() != NULL ) && (_AD.get_registers()->getRegDef(inst_rep_var) != NULL)) { // Instruction provided a literal register name for this parameter // Check that encoding specifies $$$reg to resolve.as register. assert( _reg_status == LITERAL_ACCESSED, "Must be processing a literal register parameter"); fprintf(_fp,"(%s_enc)", inst_rep_var); _reg_status = LITERAL_OUTPUT; } else { // Check for unimplemented functionality before hard failure assert( strcmp(opc->_ident,"label")==0, "Unimplemented() Label"); assert( false, "ShouldNotReachHere()"); } // all done } } }; // end class DefineEmitState void ArchDesc::defineSize(FILE *fp, InstructForm &inst) { //(1) // Output instruction's emit prototype fprintf(fp,"uint %sNode::size(PhaseRegAlloc *ra_) const {\n", inst._ident); fprintf(fp, " assert(VerifyOops || MachNode::size(ra_) <= %s, \"bad fixed size\");\n", inst._size); //(2) // Print the size fprintf(fp, " return (VerifyOops ? MachNode::size(ra_) : %s);\n", inst._size); // (3) and (4) fprintf(fp,"}\n"); } // defineEmit ----------------------------------------------------------------- void ArchDesc::defineEmit(FILE* fp, InstructForm& inst) { InsEncode* encode = inst._insencode; // (1) // Output instruction's emit prototype fprintf(fp, "void %sNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {\n", inst._ident); // If user did not define an encode section, // provide stub that does not generate any machine code. if( (_encode == NULL) || (encode == NULL) ) { fprintf(fp, " // User did not define an encode section.\n"); fprintf(fp, "}\n"); return; } // Save current instruction's starting address (helps with relocation). fprintf(fp, " cbuf.set_insts_mark();\n"); // For MachConstantNodes which are ideal jump nodes, fill the jump table. if (inst.is_mach_constant() && inst.is_ideal_jump()) { fprintf(fp, " ra_->C->constant_table().fill_jump_table(cbuf, (MachConstantNode*) this, _index2label);\n"); } // Output each operand's offset into the array of registers. inst.index_temps(fp, _globalNames); // Output this instruction's encodings const char *ec_name; bool user_defined = false; encode->reset(); while ((ec_name = encode->encode_class_iter()) != NULL) { fprintf(fp, " {\n"); // Output user-defined encoding user_defined = true; const char *ec_code = NULL; const char *ec_rep_var = NULL; EncClass *encoding = _encode->encClass(ec_name); if (encoding == NULL) { fprintf(stderr, "User did not define contents of this encode_class: %s\n", ec_name); abort(); } if (encode->current_encoding_num_args() != encoding->num_args()) { globalAD->syntax_err(encode->_linenum, "In %s: passing %d arguments to %s but expecting %d", inst._ident, encode->current_encoding_num_args(), ec_name, encoding->num_args()); } DefineEmitState pending(fp, *this, *encoding, *encode, inst); encoding->_code.reset(); encoding->_rep_vars.reset(); // Process list of user-defined strings, // and occurrences of replacement variables. // Replacement Vars are pushed into a list and then output while ((ec_code = encoding->_code.iter()) != NULL) { if (!encoding->_code.is_signal(ec_code)) { // Emit pending code pending.emit(); pending.clear(); // Emit this code section fprintf(fp, "%s", ec_code); } else { // A replacement variable or one of its subfields // Obtain replacement variable from list ec_rep_var = encoding->_rep_vars.iter(); pending.add_rep_var(ec_rep_var); } } // Emit pending code pending.emit(); pending.clear(); fprintf(fp, " }\n"); } // end while instruction's encodings // Check if user stated which encoding to user if ( user_defined == false ) { fprintf(fp, " // User did not define which encode class to use.\n"); } // (3) and (4) fprintf(fp, "}\n"); } // defineEvalConstant --------------------------------------------------------- void ArchDesc::defineEvalConstant(FILE* fp, InstructForm& inst) { InsEncode* encode = inst._constant; // (1) // Output instruction's emit prototype fprintf(fp, "void %sNode::eval_constant(Compile* C) {\n", inst._ident); // For ideal jump nodes, add a jump-table entry. if (inst.is_ideal_jump()) { fprintf(fp, " _constant = C->constant_table().add_jump_table(this);\n"); } // If user did not define an encode section, // provide stub that does not generate any machine code. if ((_encode == NULL) || (encode == NULL)) { fprintf(fp, " // User did not define an encode section.\n"); fprintf(fp, "}\n"); return; } // Output this instruction's encodings const char *ec_name; bool user_defined = false; encode->reset(); while ((ec_name = encode->encode_class_iter()) != NULL) { fprintf(fp, " {\n"); // Output user-defined encoding user_defined = true; const char *ec_code = NULL; const char *ec_rep_var = NULL; EncClass *encoding = _encode->encClass(ec_name); if (encoding == NULL) { fprintf(stderr, "User did not define contents of this encode_class: %s\n", ec_name); abort(); } if (encode->current_encoding_num_args() != encoding->num_args()) { globalAD->syntax_err(encode->_linenum, "In %s: passing %d arguments to %s but expecting %d", inst._ident, encode->current_encoding_num_args(), ec_name, encoding->num_args()); } DefineEmitState pending(fp, *this, *encoding, *encode, inst); encoding->_code.reset(); encoding->_rep_vars.reset(); // Process list of user-defined strings, // and occurrences of replacement variables. // Replacement Vars are pushed into a list and then output while ((ec_code = encoding->_code.iter()) != NULL) { if (!encoding->_code.is_signal(ec_code)) { // Emit pending code pending.emit(); pending.clear(); // Emit this code section fprintf(fp, "%s", ec_code); } else { // A replacement variable or one of its subfields // Obtain replacement variable from list ec_rep_var = encoding->_rep_vars.iter(); pending.add_rep_var(ec_rep_var); } } // Emit pending code pending.emit(); pending.clear(); fprintf(fp, " }\n"); } // end while instruction's encodings // Check if user stated which encoding to user if (user_defined == false) { fprintf(fp, " // User did not define which encode class to use.\n"); } // (3) and (4) fprintf(fp, "}\n"); } // --------------------------------------------------------------------------- //--------Utilities to build MachOper and MachNode derived Classes------------ // --------------------------------------------------------------------------- //------------------------------Utilities to build Operand Classes------------ static void defineIn_RegMask(FILE *fp, FormDict &globals, OperandForm &oper) { uint num_edges = oper.num_edges(globals); if( num_edges != 0 ) { // Method header fprintf(fp, "const RegMask *%sOper::in_RegMask(int index) const {\n", oper._ident); // Assert that the index is in range. fprintf(fp, " assert(0 <= index && index < %d, \"index out of range\");\n", num_edges); // Figure out if all RegMasks are the same. const char* first_reg_class = oper.in_reg_class(0, globals); bool all_same = true; assert(first_reg_class != NULL, "did not find register mask"); for (uint index = 1; all_same && index < num_edges; index++) { const char* some_reg_class = oper.in_reg_class(index, globals); assert(some_reg_class != NULL, "did not find register mask"); if (strcmp(first_reg_class, some_reg_class) != 0) { all_same = false; } } if (all_same) { // Return the sole RegMask. if (strcmp(first_reg_class, "stack_slots") == 0) { fprintf(fp," return &(Compile::current()->FIRST_STACK_mask());\n"); } else { fprintf(fp," return &%s_mask();\n", toUpper(first_reg_class)); } } else { // Build a switch statement to return the desired mask. fprintf(fp," switch (index) {\n"); for (uint index = 0; index < num_edges; index++) { const char *reg_class = oper.in_reg_class(index, globals); assert(reg_class != NULL, "did not find register mask"); if( !strcmp(reg_class, "stack_slots") ) { fprintf(fp, " case %d: return &(Compile::current()->FIRST_STACK_mask());\n", index); } else { fprintf(fp, " case %d: return &%s_mask();\n", index, toUpper(reg_class)); } } fprintf(fp," }\n"); fprintf(fp," ShouldNotReachHere();\n"); fprintf(fp," return NULL;\n"); } // Method close fprintf(fp, "}\n\n"); } } // generate code to create a clone for a class derived from MachOper // // (0) MachOper *MachOperXOper::clone(Compile* C) const { // (1) return new (C) MachXOper( _ccode, _c0, _c1, ..., _cn); // (2) } // static void defineClone(FILE *fp, FormDict &globalNames, OperandForm &oper) { fprintf(fp,"MachOper *%sOper::clone(Compile* C) const {\n", oper._ident); // Check for constants that need to be copied over const int num_consts = oper.num_consts(globalNames); const bool is_ideal_bool = oper.is_ideal_bool(); if( (num_consts > 0) ) { fprintf(fp," return new (C) %sOper(", oper._ident); // generate parameters for constants int i = 0; fprintf(fp,"_c%d", i); for( i = 1; i < num_consts; ++i) { fprintf(fp,", _c%d", i); } // finish line (1) fprintf(fp,");\n"); } else { assert( num_consts == 0, "Currently support zero or one constant per operand clone function"); fprintf(fp," return new (C) %sOper();\n", oper._ident); } // finish method fprintf(fp,"}\n"); } static void define_hash(FILE *fp, char *operand) { fprintf(fp,"uint %sOper::hash() const { return 5; }\n", operand); } static void define_cmp(FILE *fp, char *operand) { fprintf(fp,"uint %sOper::cmp( const MachOper &oper ) const { return opcode() == oper.opcode(); }\n", operand); } // Helper functions for bug 4796752, abstracted with minimal modification // from define_oper_interface() OperandForm *rep_var_to_operand(const char *encoding, OperandForm &oper, FormDict &globals) { OperandForm *op = NULL; // Check for replacement variable if( *encoding == '$' ) { // Replacement variable const char *rep_var = encoding + 1; // Lookup replacement variable, rep_var, in operand's component list const Component *comp = oper._components.search(rep_var); assert( comp != NULL, "Replacement variable not found in components"); // Lookup operand form for replacement variable's type const char *type = comp->_type; Form *form = (Form*)globals[type]; assert( form != NULL, "Replacement variable's type not found"); op = form->is_operand(); assert( op, "Attempting to emit a non-register or non-constant"); } return op; } int rep_var_to_constant_index(const char *encoding, OperandForm &oper, FormDict &globals) { int idx = -1; // Check for replacement variable if( *encoding == '$' ) { // Replacement variable const char *rep_var = encoding + 1; // Lookup replacement variable, rep_var, in operand's component list const Component *comp = oper._components.search(rep_var); assert( comp != NULL, "Replacement variable not found in components"); // Lookup operand form for replacement variable's type const char *type = comp->_type; Form *form = (Form*)globals[type]; assert( form != NULL, "Replacement variable's type not found"); OperandForm *op = form->is_operand(); assert( op, "Attempting to emit a non-register or non-constant"); // Check that this is a constant and find constant's index: if (op->_matrule && op->_matrule->is_base_constant(globals)) { idx = oper.constant_position(globals, comp); } } return idx; } bool is_regI(const char *encoding, OperandForm &oper, FormDict &globals ) { bool is_regI = false; OperandForm *op = rep_var_to_operand(encoding, oper, globals); if( op != NULL ) { // Check that this is a register if ( (op->_matrule && op->_matrule->is_base_register(globals)) ) { // Register const char* ideal = op->ideal_type(globals); is_regI = (ideal && (op->ideal_to_Reg_type(ideal) == Form::idealI)); } } return is_regI; } bool is_conP(const char *encoding, OperandForm &oper, FormDict &globals ) { bool is_conP = false; OperandForm *op = rep_var_to_operand(encoding, oper, globals); if( op != NULL ) { // Check that this is a constant pointer if (op->_matrule && op->_matrule->is_base_constant(globals)) { // Constant Form::DataType dtype = op->is_base_constant(globals); is_conP = (dtype == Form::idealP); } } return is_conP; } // Define a MachOper interface methods void ArchDesc::define_oper_interface(FILE *fp, OperandForm &oper, FormDict &globals, const char *name, const char *encoding) { bool emit_position = false; int position = -1; fprintf(fp," virtual int %s", name); // Generate access method for base, index, scale, disp, ... if( (strcmp(name,"base") == 0) || (strcmp(name,"index") == 0) ) { fprintf(fp,"(PhaseRegAlloc *ra_, const Node *node, int idx) const { \n"); emit_position = true; } else if ( (strcmp(name,"disp") == 0) ) { fprintf(fp,"(PhaseRegAlloc *ra_, const Node *node, int idx) const { \n"); } else { fprintf(fp,"() const { "); } // Check for hexadecimal value OR replacement variable if( *encoding == '$' ) { // Replacement variable const char *rep_var = encoding + 1; fprintf(fp,"// Replacement variable: %s\n", encoding+1); // Lookup replacement variable, rep_var, in operand's component list const Component *comp = oper._components.search(rep_var); assert( comp != NULL, "Replacement variable not found in components"); // Lookup operand form for replacement variable's type const char *type = comp->_type; Form *form = (Form*)globals[type]; assert( form != NULL, "Replacement variable's type not found"); OperandForm *op = form->is_operand(); assert( op, "Attempting to emit a non-register or non-constant"); // Check that this is a register or a constant and generate code: if ( (op->_matrule && op->_matrule->is_base_register(globals)) ) { // Register int idx_offset = oper.register_position( globals, rep_var); position = idx_offset; fprintf(fp," return (int)ra_->get_encode(node->in(idx"); if ( idx_offset > 0 ) fprintf(fp, "+%d",idx_offset); fprintf(fp,"));\n"); } else if ( op->ideal_to_sReg_type(op->_ident) != Form::none ) { // StackSlot for an sReg comes either from input node or from self, when idx==0 fprintf(fp," if( idx != 0 ) {\n"); fprintf(fp," // Access register number for input operand\n"); fprintf(fp," return ra_->reg2offset(ra_->get_reg_first(node->in(idx)));/* sReg */\n"); fprintf(fp," }\n"); fprintf(fp," // Access register number from myself\n"); fprintf(fp," return ra_->reg2offset(ra_->get_reg_first(node));/* sReg */\n"); } else if (op->_matrule && op->_matrule->is_base_constant(globals)) { // Constant // Check which constant this name maps to: _c0, _c1, ..., _cn const int idx = oper.constant_position(globals, comp); assert( idx != -1, "Constant component not found in operand"); // Output code for this constant, type dependent. fprintf(fp," return (int)" ); oper.access_constant(fp, globals, (uint)idx /* , const_type */); fprintf(fp,";\n"); } else { assert( false, "Attempting to emit a non-register or non-constant"); } } else if( *encoding == '0' && *(encoding+1) == 'x' ) { // Hex value fprintf(fp,"return %s;", encoding); } else { assert( false, "Do not support octal or decimal encode constants"); } fprintf(fp," }\n"); if( emit_position && (position != -1) && (oper.num_edges(globals) > 0) ) { fprintf(fp," virtual int %s_position() const { return %d; }\n", name, position); MemInterface *mem_interface = oper._interface->is_MemInterface(); const char *base = mem_interface->_base; const char *disp = mem_interface->_disp; if( emit_position && (strcmp(name,"base") == 0) && base != NULL && is_regI(base, oper, globals) && disp != NULL && is_conP(disp, oper, globals) ) { // Found a memory access using a constant pointer for a displacement // and a base register containing an integer offset. // In this case the base and disp are reversed with respect to what // is expected by MachNode::get_base_and_disp() and MachNode::adr_type(). // Provide a non-NULL return for disp_as_type() that will allow adr_type() // to correctly compute the access type for alias analysis. // // See BugId 4796752, operand indOffset32X in i486.ad int idx = rep_var_to_constant_index(disp, oper, globals); fprintf(fp," virtual const TypePtr *disp_as_type() const { return _c%d; }\n", idx); } } } // // Construct the method to copy _idx, inputs and operands to new node. static void define_fill_new_machnode(bool used, FILE *fp_cpp) { fprintf(fp_cpp, "\n"); fprintf(fp_cpp, "// Copy _idx, inputs and operands to new node\n"); fprintf(fp_cpp, "void MachNode::fill_new_machnode( MachNode* node, Compile* C) const {\n"); if( !used ) { fprintf(fp_cpp, " // This architecture does not have cisc or short branch instructions\n"); fprintf(fp_cpp, " ShouldNotCallThis();\n"); fprintf(fp_cpp, "}\n"); } else { // New node must use same node index for access through allocator's tables fprintf(fp_cpp, " // New node must use same node index\n"); fprintf(fp_cpp, " node->set_idx( _idx );\n"); // Copy machine-independent inputs fprintf(fp_cpp, " // Copy machine-independent inputs\n"); fprintf(fp_cpp, " for( uint j = 0; j < req(); j++ ) {\n"); fprintf(fp_cpp, " node->add_req(in(j));\n"); fprintf(fp_cpp, " }\n"); // Copy machine operands to new MachNode fprintf(fp_cpp, " // Copy my operands, except for cisc position\n"); fprintf(fp_cpp, " int nopnds = num_opnds();\n"); fprintf(fp_cpp, " assert( node->num_opnds() == (uint)nopnds, \"Must have same number of operands\");\n"); fprintf(fp_cpp, " MachOper **to = node->_opnds;\n"); fprintf(fp_cpp, " for( int i = 0; i < nopnds; i++ ) {\n"); fprintf(fp_cpp, " if( i != cisc_operand() ) \n"); fprintf(fp_cpp, " to[i] = _opnds[i]->clone(C);\n"); fprintf(fp_cpp, " }\n"); fprintf(fp_cpp, "}\n"); } fprintf(fp_cpp, "\n"); } //------------------------------defineClasses---------------------------------- // Define members of MachNode and MachOper classes based on // operand and instruction lists void ArchDesc::defineClasses(FILE *fp) { // Define the contents of an array containing the machine register names defineRegNames(fp, _register); // Define an array containing the machine register encoding values defineRegEncodes(fp, _register); // Generate an enumeration of user-defined register classes // and a list of register masks, one for each class. // Only define the RegMask value objects in the expand file. // Declare each as an extern const RegMask ...; in ad_.hpp declare_register_masks(_HPP_file._fp); // build_register_masks(fp); build_register_masks(_CPP_EXPAND_file._fp); // Define the pipe_classes build_pipe_classes(_CPP_PIPELINE_file._fp); // Generate Machine Classes for each operand defined in AD file fprintf(fp,"\n"); fprintf(fp,"\n"); fprintf(fp,"//------------------Define classes derived from MachOper---------------------\n"); // Iterate through all operands _operands.reset(); OperandForm *oper; for( ; (oper = (OperandForm*)_operands.iter()) != NULL; ) { // Ensure this is a machine-world instruction if ( oper->ideal_only() ) continue; // !!!!! // The declaration of labelOper is in machine-independent file: machnode if ( strcmp(oper->_ident,"label") == 0 ) { defineIn_RegMask(_CPP_MISC_file._fp, _globalNames, *oper); fprintf(fp,"MachOper *%sOper::clone(Compile* C) const {\n", oper->_ident); fprintf(fp," return new (C) %sOper(_label, _block_num);\n", oper->_ident); fprintf(fp,"}\n"); fprintf(fp,"uint %sOper::opcode() const { return %s; }\n", oper->_ident, machOperEnum(oper->_ident)); // // Currently all XXXOper::Hash() methods are identical (990820) // define_hash(fp, oper->_ident); // // Currently all XXXOper::Cmp() methods are identical (990820) // define_cmp(fp, oper->_ident); fprintf(fp,"\n"); continue; } // The declaration of methodOper is in machine-independent file: machnode if ( strcmp(oper->_ident,"method") == 0 ) { defineIn_RegMask(_CPP_MISC_file._fp, _globalNames, *oper); fprintf(fp,"MachOper *%sOper::clone(Compile* C) const {\n", oper->_ident); fprintf(fp," return new (C) %sOper(_method);\n", oper->_ident); fprintf(fp,"}\n"); fprintf(fp,"uint %sOper::opcode() const { return %s; }\n", oper->_ident, machOperEnum(oper->_ident)); // // Currently all XXXOper::Hash() methods are identical (990820) // define_hash(fp, oper->_ident); // // Currently all XXXOper::Cmp() methods are identical (990820) // define_cmp(fp, oper->_ident); fprintf(fp,"\n"); continue; } defineIn_RegMask(fp, _globalNames, *oper); defineClone(_CPP_CLONE_file._fp, _globalNames, *oper); // // Currently all XXXOper::Hash() methods are identical (990820) // define_hash(fp, oper->_ident); // // Currently all XXXOper::Cmp() methods are identical (990820) // define_cmp(fp, oper->_ident); // side-call to generate output that used to be in the header file: extern void gen_oper_format(FILE *fp, FormDict &globals, OperandForm &oper, bool for_c_file); gen_oper_format(_CPP_FORMAT_file._fp, _globalNames, *oper, true); } // Generate Machine Classes for each instruction defined in AD file fprintf(fp,"//------------------Define members for classes derived from MachNode----------\n"); // Output the definitions for out_RegMask() // & kill_RegMask() _instructions.reset(); InstructForm *instr; MachNodeForm *machnode; for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) { // Ensure this is a machine-world instruction if ( instr->ideal_only() ) continue; defineOut_RegMask(_CPP_MISC_file._fp, instr->_ident, reg_mask(*instr)); } bool used = false; // Output the definitions for expand rules & peephole rules _instructions.reset(); for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) { // Ensure this is a machine-world instruction if ( instr->ideal_only() ) continue; // If there are multiple defs/kills, or an explicit expand rule, build rule if( instr->expands() || instr->needs_projections() || instr->has_temps() || instr->is_mach_constant() || instr->_matrule != NULL && instr->num_opnds() != instr->num_unique_opnds() ) defineExpand(_CPP_EXPAND_file._fp, instr); // If there is an explicit peephole rule, build it if ( instr->peepholes() ) definePeephole(_CPP_PEEPHOLE_file._fp, instr); // Output code to convert to the cisc version, if applicable used |= instr->define_cisc_version(*this, fp); // Output code to convert to the short branch version, if applicable used |= instr->define_short_branch_methods(*this, fp); } // Construct the method called by cisc_version() to copy inputs and operands. define_fill_new_machnode(used, fp); // Output the definitions for labels _instructions.reset(); while( (instr = (InstructForm*)_instructions.iter()) != NULL ) { // Ensure this is a machine-world instruction if ( instr->ideal_only() ) continue; // Access the fields for operand Label int label_position = instr->label_position(); if( label_position != -1 ) { // Set the label fprintf(fp,"void %sNode::label_set( Label* label, uint block_num ) {\n", instr->_ident); fprintf(fp," labelOper* oper = (labelOper*)(opnd_array(%d));\n", label_position ); fprintf(fp," oper->_label = label;\n"); fprintf(fp," oper->_block_num = block_num;\n"); fprintf(fp,"}\n"); // Save the label fprintf(fp,"void %sNode::save_label( Label** label, uint* block_num ) {\n", instr->_ident); fprintf(fp," labelOper* oper = (labelOper*)(opnd_array(%d));\n", label_position ); fprintf(fp," *label = oper->_label;\n"); fprintf(fp," *block_num = oper->_block_num;\n"); fprintf(fp,"}\n"); } } // Output the definitions for methods _instructions.reset(); while( (instr = (InstructForm*)_instructions.iter()) != NULL ) { // Ensure this is a machine-world instruction if ( instr->ideal_only() ) continue; // Access the fields for operand Label int method_position = instr->method_position(); if( method_position != -1 ) { // Access the method's address fprintf(fp,"void %sNode::method_set( intptr_t method ) {\n", instr->_ident); fprintf(fp," ((methodOper*)opnd_array(%d))->_method = method;\n", method_position ); fprintf(fp,"}\n"); fprintf(fp,"\n"); } } // Define this instruction's number of relocation entries, base is '0' _instructions.reset(); while( (instr = (InstructForm*)_instructions.iter()) != NULL ) { // Output the definition for number of relocation entries uint reloc_size = instr->reloc(_globalNames); if ( reloc_size != 0 ) { fprintf(fp,"int %sNode::reloc() const {\n", instr->_ident); fprintf(fp, " return %d;\n", reloc_size ); fprintf(fp,"}\n"); fprintf(fp,"\n"); } } fprintf(fp,"\n"); // Output the definitions for code generation // // address ___Node::emit(address ptr, PhaseRegAlloc *ra_) const { // // ... encoding defined by user // return ptr; // } // _instructions.reset(); for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) { // Ensure this is a machine-world instruction if ( instr->ideal_only() ) continue; if (instr->_insencode) defineEmit (fp, *instr); if (instr->is_mach_constant()) defineEvalConstant(fp, *instr); if (instr->_size) defineSize (fp, *instr); // side-call to generate output that used to be in the header file: extern void gen_inst_format(FILE *fp, FormDict &globals, InstructForm &oper, bool for_c_file); gen_inst_format(_CPP_FORMAT_file._fp, _globalNames, *instr, true); } // Output the definitions for alias analysis _instructions.reset(); for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) { // Ensure this is a machine-world instruction if ( instr->ideal_only() ) continue; // Analyze machine instructions that either USE or DEF memory. int memory_operand = instr->memory_operand(_globalNames); // Some guys kill all of memory if ( instr->is_wide_memory_kill(_globalNames) ) { memory_operand = InstructForm::MANY_MEMORY_OPERANDS; } if ( memory_operand != InstructForm::NO_MEMORY_OPERAND ) { if( memory_operand == InstructForm::MANY_MEMORY_OPERANDS ) { fprintf(fp,"const TypePtr *%sNode::adr_type() const { return TypePtr::BOTTOM; }\n", instr->_ident); fprintf(fp,"const MachOper* %sNode::memory_operand() const { return (MachOper*)-1; }\n", instr->_ident); } else { fprintf(fp,"const MachOper* %sNode::memory_operand() const { return _opnds[%d]; }\n", instr->_ident, memory_operand); } } } // Get the length of the longest identifier int max_ident_len = 0; _instructions.reset(); for ( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) { if (instr->_ins_pipe && _pipeline->_classlist.search(instr->_ins_pipe)) { int ident_len = (int)strlen(instr->_ident); if( max_ident_len < ident_len ) max_ident_len = ident_len; } } // Emit specifically for Node(s) fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline_class() { return %s; }\n", max_ident_len, "Node", _pipeline ? "(&pipeline_class_Zero_Instructions)" : "NULL"); fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline() const { return %s; }\n", max_ident_len, "Node", _pipeline ? "(&pipeline_class_Zero_Instructions)" : "NULL"); fprintf(_CPP_PIPELINE_file._fp, "\n"); fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline_class() { return %s; }\n", max_ident_len, "MachNode", _pipeline ? "(&pipeline_class_Unknown_Instructions)" : "NULL"); fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline() const { return pipeline_class(); }\n", max_ident_len, "MachNode"); fprintf(_CPP_PIPELINE_file._fp, "\n"); // Output the definitions for machine node specific pipeline data _machnodes.reset(); for ( ; (machnode = (MachNodeForm*)_machnodes.iter()) != NULL; ) { fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %sNode::pipeline() const { return (&pipeline_class_%03d); }\n", machnode->_ident, ((class PipeClassForm *)_pipeline->_classdict[machnode->_machnode_pipe])->_num); } fprintf(_CPP_PIPELINE_file._fp, "\n"); // Output the definitions for instruction pipeline static data references _instructions.reset(); for ( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) { if (instr->_ins_pipe && _pipeline->_classlist.search(instr->_ins_pipe)) { fprintf(_CPP_PIPELINE_file._fp, "\n"); fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*sNode::pipeline_class() { return (&pipeline_class_%03d); }\n", max_ident_len, instr->_ident, ((class PipeClassForm *)_pipeline->_classdict[instr->_ins_pipe])->_num); fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*sNode::pipeline() const { return (&pipeline_class_%03d); }\n", max_ident_len, instr->_ident, ((class PipeClassForm *)_pipeline->_classdict[instr->_ins_pipe])->_num); } } } // -------------------------------- maps ------------------------------------ // Information needed to generate the ReduceOp mapping for the DFA class OutputReduceOp : public OutputMap { public: OutputReduceOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD) : OutputMap(hpp, cpp, globals, AD) {}; void declaration() { fprintf(_hpp, "extern const int reduceOp[];\n"); } void definition() { fprintf(_cpp, "const int reduceOp[] = {\n"); } void closing() { fprintf(_cpp, " 0 // no trailing comma\n"); OutputMap::closing(); } void map(OpClassForm &opc) { const char *reduce = opc._ident; if( reduce ) fprintf(_cpp, " %s_rule", reduce); else fprintf(_cpp, " 0"); } void map(OperandForm &oper) { // Most operands without match rules, e.g. eFlagsReg, do not have a result operand const char *reduce = (oper._matrule ? oper.reduce_result() : NULL); // operand stackSlot does not have a match rule, but produces a stackSlot if( oper.is_user_name_for_sReg() != Form::none ) reduce = oper.reduce_result(); if( reduce ) fprintf(_cpp, " %s_rule", reduce); else fprintf(_cpp, " 0"); } void map(InstructForm &inst) { const char *reduce = (inst._matrule ? inst.reduce_result() : NULL); if( reduce ) fprintf(_cpp, " %s_rule", reduce); else fprintf(_cpp, " 0"); } void map(char *reduce) { if( reduce ) fprintf(_cpp, " %s_rule", reduce); else fprintf(_cpp, " 0"); } }; // Information needed to generate the LeftOp mapping for the DFA class OutputLeftOp : public OutputMap { public: OutputLeftOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD) : OutputMap(hpp, cpp, globals, AD) {}; void declaration() { fprintf(_hpp, "extern const int leftOp[];\n"); } void definition() { fprintf(_cpp, "const int leftOp[] = {\n"); } void closing() { fprintf(_cpp, " 0 // no trailing comma\n"); OutputMap::closing(); } void map(OpClassForm &opc) { fprintf(_cpp, " 0"); } void map(OperandForm &oper) { const char *reduce = oper.reduce_left(_globals); if( reduce ) fprintf(_cpp, " %s_rule", reduce); else fprintf(_cpp, " 0"); } void map(char *name) { const char *reduce = _AD.reduceLeft(name); if( reduce ) fprintf(_cpp, " %s_rule", reduce); else fprintf(_cpp, " 0"); } void map(InstructForm &inst) { const char *reduce = inst.reduce_left(_globals); if( reduce ) fprintf(_cpp, " %s_rule", reduce); else fprintf(_cpp, " 0"); } }; // Information needed to generate the RightOp mapping for the DFA class OutputRightOp : public OutputMap { public: OutputRightOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD) : OutputMap(hpp, cpp, globals, AD) {}; void declaration() { fprintf(_hpp, "extern const int rightOp[];\n"); } void definition() { fprintf(_cpp, "const int rightOp[] = {\n"); } void closing() { fprintf(_cpp, " 0 // no trailing comma\n"); OutputMap::closing(); } void map(OpClassForm &opc) { fprintf(_cpp, " 0"); } void map(OperandForm &oper) { const char *reduce = oper.reduce_right(_globals); if( reduce ) fprintf(_cpp, " %s_rule", reduce); else fprintf(_cpp, " 0"); } void map(char *name) { const char *reduce = _AD.reduceRight(name); if( reduce ) fprintf(_cpp, " %s_rule", reduce); else fprintf(_cpp, " 0"); } void map(InstructForm &inst) { const char *reduce = inst.reduce_right(_globals); if( reduce ) fprintf(_cpp, " %s_rule", reduce); else fprintf(_cpp, " 0"); } }; // Information needed to generate the Rule names for the DFA class OutputRuleName : public OutputMap { public: OutputRuleName(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD) : OutputMap(hpp, cpp, globals, AD) {}; void declaration() { fprintf(_hpp, "extern const char *ruleName[];\n"); } void definition() { fprintf(_cpp, "const char *ruleName[] = {\n"); } void closing() { fprintf(_cpp, " \"no trailing comma\"\n"); OutputMap::closing(); } void map(OpClassForm &opc) { fprintf(_cpp, " \"%s\"", _AD.machOperEnum(opc._ident) ); } void map(OperandForm &oper) { fprintf(_cpp, " \"%s\"", _AD.machOperEnum(oper._ident) ); } void map(char *name) { fprintf(_cpp, " \"%s\"", name ? name : "0"); } void map(InstructForm &inst){ fprintf(_cpp, " \"%s\"", inst._ident ? inst._ident : "0"); } }; // Information needed to generate the swallowed mapping for the DFA class OutputSwallowed : public OutputMap { public: OutputSwallowed(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD) : OutputMap(hpp, cpp, globals, AD) {}; void declaration() { fprintf(_hpp, "extern const bool swallowed[];\n"); } void definition() { fprintf(_cpp, "const bool swallowed[] = {\n"); } void closing() { fprintf(_cpp, " false // no trailing comma\n"); OutputMap::closing(); } void map(OperandForm &oper) { // Generate the entry for this opcode const char *swallowed = oper.swallowed(_globals) ? "true" : "false"; fprintf(_cpp, " %s", swallowed); } void map(OpClassForm &opc) { fprintf(_cpp, " false"); } void map(char *name) { fprintf(_cpp, " false"); } void map(InstructForm &inst){ fprintf(_cpp, " false"); } }; // Information needed to generate the decision array for instruction chain rule class OutputInstChainRule : public OutputMap { public: OutputInstChainRule(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD) : OutputMap(hpp, cpp, globals, AD) {}; void declaration() { fprintf(_hpp, "extern const bool instruction_chain_rule[];\n"); } void definition() { fprintf(_cpp, "const bool instruction_chain_rule[] = {\n"); } void closing() { fprintf(_cpp, " false // no trailing comma\n"); OutputMap::closing(); } void map(OpClassForm &opc) { fprintf(_cpp, " false"); } void map(OperandForm &oper) { fprintf(_cpp, " false"); } void map(char *name) { fprintf(_cpp, " false"); } void map(InstructForm &inst) { // Check for simple chain rule const char *chain = inst.is_simple_chain_rule(_globals) ? "true" : "false"; fprintf(_cpp, " %s", chain); } }; //---------------------------build_map------------------------------------ // Build mapping from enumeration for densely packed operands // TO result and child types. void ArchDesc::build_map(OutputMap &map) { FILE *fp_hpp = map.decl_file(); FILE *fp_cpp = map.def_file(); int idx = 0; OperandForm *op; OpClassForm *opc; InstructForm *inst; // Construct this mapping map.declaration(); fprintf(fp_cpp,"\n"); map.definition(); // Output the mapping for operands map.record_position(OutputMap::BEGIN_OPERANDS, idx ); _operands.reset(); for(; (op = (OperandForm*)_operands.iter()) != NULL; ) { // Ensure this is a machine-world instruction if ( op->ideal_only() ) continue; // Generate the entry for this opcode map.map(*op); fprintf(fp_cpp, ", // %d\n", idx); ++idx; }; fprintf(fp_cpp, " // last operand\n"); // Place all user-defined operand classes into the mapping map.record_position(OutputMap::BEGIN_OPCLASSES, idx ); _opclass.reset(); for(; (opc = (OpClassForm*)_opclass.iter()) != NULL; ) { map.map(*opc); fprintf(fp_cpp, ", // %d\n", idx); ++idx; }; fprintf(fp_cpp, " // last operand class\n"); // Place all internally defined operands into the mapping map.record_position(OutputMap::BEGIN_INTERNALS, idx ); _internalOpNames.reset(); char *name = NULL; for(; (name = (char *)_internalOpNames.iter()) != NULL; ) { map.map(name); fprintf(fp_cpp, ", // %d\n", idx); ++idx; }; fprintf(fp_cpp, " // last internally defined operand\n"); // Place all user-defined instructions into the mapping if( map.do_instructions() ) { map.record_position(OutputMap::BEGIN_INSTRUCTIONS, idx ); // Output all simple instruction chain rules first map.record_position(OutputMap::BEGIN_INST_CHAIN_RULES, idx ); { _instructions.reset(); for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) { // Ensure this is a machine-world instruction if ( inst->ideal_only() ) continue; if ( ! inst->is_simple_chain_rule(_globalNames) ) continue; if ( inst->rematerialize(_globalNames, get_registers()) ) continue; map.map(*inst); fprintf(fp_cpp, ", // %d\n", idx); ++idx; }; map.record_position(OutputMap::BEGIN_REMATERIALIZE, idx ); _instructions.reset(); for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) { // Ensure this is a machine-world instruction if ( inst->ideal_only() ) continue; if ( ! inst->is_simple_chain_rule(_globalNames) ) continue; if ( ! inst->rematerialize(_globalNames, get_registers()) ) continue; map.map(*inst); fprintf(fp_cpp, ", // %d\n", idx); ++idx; }; map.record_position(OutputMap::END_INST_CHAIN_RULES, idx ); } // Output all instructions that are NOT simple chain rules { _instructions.reset(); for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) { // Ensure this is a machine-world instruction if ( inst->ideal_only() ) continue; if ( inst->is_simple_chain_rule(_globalNames) ) continue; if ( ! inst->rematerialize(_globalNames, get_registers()) ) continue; map.map(*inst); fprintf(fp_cpp, ", // %d\n", idx); ++idx; }; map.record_position(OutputMap::END_REMATERIALIZE, idx ); _instructions.reset(); for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) { // Ensure this is a machine-world instruction if ( inst->ideal_only() ) continue; if ( inst->is_simple_chain_rule(_globalNames) ) continue; if ( inst->rematerialize(_globalNames, get_registers()) ) continue; map.map(*inst); fprintf(fp_cpp, ", // %d\n", idx); ++idx; }; } fprintf(fp_cpp, " // last instruction\n"); map.record_position(OutputMap::END_INSTRUCTIONS, idx ); } // Finish defining table map.closing(); }; // Helper function for buildReduceMaps char reg_save_policy(const char *calling_convention) { char callconv; if (!strcmp(calling_convention, "NS")) callconv = 'N'; else if (!strcmp(calling_convention, "SOE")) callconv = 'E'; else if (!strcmp(calling_convention, "SOC")) callconv = 'C'; else if (!strcmp(calling_convention, "AS")) callconv = 'A'; else callconv = 'Z'; return callconv; } //---------------------------generate_assertion_checks------------------- void ArchDesc::generate_adlc_verification(FILE *fp_cpp) { fprintf(fp_cpp, "\n"); fprintf(fp_cpp, "#ifndef PRODUCT\n"); fprintf(fp_cpp, "void Compile::adlc_verification() {\n"); globalDefs().print_asserts(fp_cpp); fprintf(fp_cpp, "}\n"); fprintf(fp_cpp, "#endif\n"); fprintf(fp_cpp, "\n"); } //---------------------------addSourceBlocks----------------------------- void ArchDesc::addSourceBlocks(FILE *fp_cpp) { if (_source.count() > 0) _source.output(fp_cpp); generate_adlc_verification(fp_cpp); } //---------------------------addHeaderBlocks----------------------------- void ArchDesc::addHeaderBlocks(FILE *fp_hpp) { if (_header.count() > 0) _header.output(fp_hpp); } //-------------------------addPreHeaderBlocks---------------------------- void ArchDesc::addPreHeaderBlocks(FILE *fp_hpp) { // Output #defines from definition block globalDefs().print_defines(fp_hpp); if (_pre_header.count() > 0) _pre_header.output(fp_hpp); } //---------------------------buildReduceMaps----------------------------- // Build mapping from enumeration for densely packed operands // TO result and child types. void ArchDesc::buildReduceMaps(FILE *fp_hpp, FILE *fp_cpp) { RegDef *rdef; RegDef *next; // The emit bodies currently require functions defined in the source block. // Build external declarations for mappings fprintf(fp_hpp, "\n"); fprintf(fp_hpp, "extern const char register_save_policy[];\n"); fprintf(fp_hpp, "extern const char c_reg_save_policy[];\n"); fprintf(fp_hpp, "extern const int register_save_type[];\n"); fprintf(fp_hpp, "\n"); // Construct Save-Policy array fprintf(fp_cpp, "// Map from machine-independent register number to register_save_policy\n"); fprintf(fp_cpp, "const char register_save_policy[] = {\n"); _register->reset_RegDefs(); for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) { next = _register->iter_RegDefs(); char policy = reg_save_policy(rdef->_callconv); const char *comma = (next != NULL) ? "," : " // no trailing comma"; fprintf(fp_cpp, " '%c'%s\n", policy, comma); } fprintf(fp_cpp, "};\n\n"); // Construct Native Save-Policy array fprintf(fp_cpp, "// Map from machine-independent register number to c_reg_save_policy\n"); fprintf(fp_cpp, "const char c_reg_save_policy[] = {\n"); _register->reset_RegDefs(); for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) { next = _register->iter_RegDefs(); char policy = reg_save_policy(rdef->_c_conv); const char *comma = (next != NULL) ? "," : " // no trailing comma"; fprintf(fp_cpp, " '%c'%s\n", policy, comma); } fprintf(fp_cpp, "};\n\n"); // Construct Register Save Type array fprintf(fp_cpp, "// Map from machine-independent register number to register_save_type\n"); fprintf(fp_cpp, "const int register_save_type[] = {\n"); _register->reset_RegDefs(); for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) { next = _register->iter_RegDefs(); const char *comma = (next != NULL) ? "," : " // no trailing comma"; fprintf(fp_cpp, " %s%s\n", rdef->_idealtype, comma); } fprintf(fp_cpp, "};\n\n"); // Construct the table for reduceOp OutputReduceOp output_reduce_op(fp_hpp, fp_cpp, _globalNames, *this); build_map(output_reduce_op); // Construct the table for leftOp OutputLeftOp output_left_op(fp_hpp, fp_cpp, _globalNames, *this); build_map(output_left_op); // Construct the table for rightOp OutputRightOp output_right_op(fp_hpp, fp_cpp, _globalNames, *this); build_map(output_right_op); // Construct the table of rule names OutputRuleName output_rule_name(fp_hpp, fp_cpp, _globalNames, *this); build_map(output_rule_name); // Construct the boolean table for subsumed operands OutputSwallowed output_swallowed(fp_hpp, fp_cpp, _globalNames, *this); build_map(output_swallowed); // // // Preserve in case we decide to use this table instead of another //// Construct the boolean table for instruction chain rules //OutputInstChainRule output_inst_chain(fp_hpp, fp_cpp, _globalNames, *this); //build_map(output_inst_chain); } //---------------------------buildMachOperGenerator--------------------------- // Recurse through match tree, building path through corresponding state tree, // Until we reach the constant we are looking for. static void path_to_constant(FILE *fp, FormDict &globals, MatchNode *mnode, uint idx) { if ( ! mnode) return; unsigned position = 0; const char *result = NULL; const char *name = NULL; const char *optype = NULL; // Base Case: access constant in ideal node linked to current state node // Each type of constant has its own access function if ( (mnode->_lChild == NULL) && (mnode->_rChild == NULL) && mnode->base_operand(position, globals, result, name, optype) ) { if ( strcmp(optype,"ConI") == 0 ) { fprintf(fp, "_leaf->get_int()"); } else if ( (strcmp(optype,"ConP") == 0) ) { fprintf(fp, "_leaf->bottom_type()->is_ptr()"); } else if ( (strcmp(optype,"ConN") == 0) ) { fprintf(fp, "_leaf->bottom_type()->is_narrowoop()"); } else if ( (strcmp(optype,"ConF") == 0) ) { fprintf(fp, "_leaf->getf()"); } else if ( (strcmp(optype,"ConD") == 0) ) { fprintf(fp, "_leaf->getd()"); } else if ( (strcmp(optype,"ConL") == 0) ) { fprintf(fp, "_leaf->get_long()"); } else if ( (strcmp(optype,"Con")==0) ) { // !!!!! - Update if adding a machine-independent constant type fprintf(fp, "_leaf->get_int()"); assert( false, "Unsupported constant type, pointer or indefinite"); } else if ( (strcmp(optype,"Bool") == 0) ) { fprintf(fp, "_leaf->as_Bool()->_test._test"); } else { assert( false, "Unsupported constant type"); } return; } // If constant is in left child, build path and recurse uint lConsts = (mnode->_lChild) ? (mnode->_lChild->num_consts(globals) ) : 0; uint rConsts = (mnode->_rChild) ? (mnode->_rChild->num_consts(globals) ) : 0; if ( (mnode->_lChild) && (lConsts > idx) ) { fprintf(fp, "_kids[0]->"); path_to_constant(fp, globals, mnode->_lChild, idx); return; } // If constant is in right child, build path and recurse if ( (mnode->_rChild) && (rConsts > (idx - lConsts) ) ) { idx = idx - lConsts; fprintf(fp, "_kids[1]->"); path_to_constant(fp, globals, mnode->_rChild, idx); return; } assert( false, "ShouldNotReachHere()"); } // Generate code that is executed when generating a specific Machine Operand static void genMachOperCase(FILE *fp, FormDict &globalNames, ArchDesc &AD, OperandForm &op) { const char *opName = op._ident; const char *opEnumName = AD.machOperEnum(opName); uint num_consts = op.num_consts(globalNames); // Generate the case statement for this opcode fprintf(fp, " case %s:", opEnumName); fprintf(fp, "\n return new (C) %sOper(", opName); // Access parameters for constructor from the stat object // // Build access to condition code value if ( (num_consts > 0) ) { uint i = 0; path_to_constant(fp, globalNames, op._matrule, i); for ( i = 1; i < num_consts; ++i ) { fprintf(fp, ", "); path_to_constant(fp, globalNames, op._matrule, i); } } fprintf(fp, " );\n"); } // Build switch to invoke "new" MachNode or MachOper void ArchDesc::buildMachOperGenerator(FILE *fp_cpp) { int idx = 0; // Build switch to invoke 'new' for a specific MachOper fprintf(fp_cpp, "\n"); fprintf(fp_cpp, "\n"); fprintf(fp_cpp, "//------------------------- MachOper Generator ---------------\n"); fprintf(fp_cpp, "// A switch statement on the dense-packed user-defined type system\n" "// that invokes 'new' on the corresponding class constructor.\n"); fprintf(fp_cpp, "\n"); fprintf(fp_cpp, "MachOper *State::MachOperGenerator"); fprintf(fp_cpp, "(int opcode, Compile* C)"); fprintf(fp_cpp, "{\n"); fprintf(fp_cpp, "\n"); fprintf(fp_cpp, " switch(opcode) {\n"); // Place all user-defined operands into the mapping _operands.reset(); int opIndex = 0; OperandForm *op; for( ; (op = (OperandForm*)_operands.iter()) != NULL; ) { // Ensure this is a machine-world instruction if ( op->ideal_only() ) continue; genMachOperCase(fp_cpp, _globalNames, *this, *op); }; // Do not iterate over operand classes for the operand generator!!! // Place all internal operands into the mapping _internalOpNames.reset(); const char *iopn; for( ; (iopn = _internalOpNames.iter()) != NULL; ) { const char *opEnumName = machOperEnum(iopn); // Generate the case statement for this opcode fprintf(fp_cpp, " case %s:", opEnumName); fprintf(fp_cpp, " return NULL;\n"); }; // Generate the default case for switch(opcode) fprintf(fp_cpp, " \n"); fprintf(fp_cpp, " default:\n"); fprintf(fp_cpp, " fprintf(stderr, \"Default MachOper Generator invoked for: \\n\");\n"); fprintf(fp_cpp, " fprintf(stderr, \" opcode = %cd\\n\", opcode);\n", '%'); fprintf(fp_cpp, " break;\n"); fprintf(fp_cpp, " }\n"); // Generate the closing for method Matcher::MachOperGenerator fprintf(fp_cpp, " return NULL;\n"); fprintf(fp_cpp, "};\n"); } //---------------------------buildMachNode------------------------------------- // Build a new MachNode, for MachNodeGenerator or cisc-spilling void ArchDesc::buildMachNode(FILE *fp_cpp, InstructForm *inst, const char *indent) { const char *opType = NULL; const char *opClass = inst->_ident; // Create the MachNode object fprintf(fp_cpp, "%s %sNode *node = new (C) %sNode();\n",indent, opClass,opClass); if ( (inst->num_post_match_opnds() != 0) ) { // Instruction that contains operands which are not in match rule. // // Check if the first post-match component may be an interesting def bool dont_care = false; ComponentList &comp_list = inst->_components; Component *comp = NULL; comp_list.reset(); if ( comp_list.match_iter() != NULL ) dont_care = true; // Insert operands that are not in match-rule. // Only insert a DEF if the do_care flag is set comp_list.reset(); while ( comp = comp_list.post_match_iter() ) { // Check if we don't care about DEFs or KILLs that are not USEs if ( dont_care && (! comp->isa(Component::USE)) ) { continue; } dont_care = true; // For each operand not in the match rule, call MachOperGenerator // with the enum for the opcode that needs to be built. ComponentList clist = inst->_components; int index = clist.operand_position(comp->_name, comp->_usedef); const char *opcode = machOperEnum(comp->_type); fprintf(fp_cpp, "%s node->set_opnd_array(%d, ", indent, index); fprintf(fp_cpp, "MachOperGenerator(%s, C));\n", opcode); } } else if ( inst->is_chain_of_constant(_globalNames, opType) ) { // An instruction that chains from a constant! // In this case, we need to subsume the constant into the node // at operand position, oper_input_base(). // // Fill in the constant fprintf(fp_cpp, "%s node->_opnd_array[%d] = ", indent, inst->oper_input_base(_globalNames)); // ##### // Check for multiple constants and then fill them in. // Just like MachOperGenerator const char *opName = inst->_matrule->_rChild->_opType; fprintf(fp_cpp, "new (C) %sOper(", opName); // Grab operand form OperandForm *op = (_globalNames[opName])->is_operand(); // Look up the number of constants uint num_consts = op->num_consts(_globalNames); if ( (num_consts > 0) ) { uint i = 0; path_to_constant(fp_cpp, _globalNames, op->_matrule, i); for ( i = 1; i < num_consts; ++i ) { fprintf(fp_cpp, ", "); path_to_constant(fp_cpp, _globalNames, op->_matrule, i); } } fprintf(fp_cpp, " );\n"); // ##### } // Fill in the bottom_type where requested if ( inst->captures_bottom_type(_globalNames) ) { fprintf(fp_cpp, "%s node->_bottom_type = _leaf->bottom_type();\n", indent); } if( inst->is_ideal_if() ) { fprintf(fp_cpp, "%s node->_prob = _leaf->as_If()->_prob;\n", indent); fprintf(fp_cpp, "%s node->_fcnt = _leaf->as_If()->_fcnt;\n", indent); } if( inst->is_ideal_fastlock() ) { fprintf(fp_cpp, "%s node->_counters = _leaf->as_FastLock()->counters();\n", indent); } } //---------------------------declare_cisc_version------------------------------ // Build CISC version of this instruction void InstructForm::declare_cisc_version(ArchDesc &AD, FILE *fp_hpp) { if( AD.can_cisc_spill() ) { InstructForm *inst_cisc = cisc_spill_alternate(); if (inst_cisc != NULL) { fprintf(fp_hpp, " virtual int cisc_operand() const { return %d; }\n", cisc_spill_operand()); fprintf(fp_hpp, " virtual MachNode *cisc_version(int offset, Compile* C);\n"); fprintf(fp_hpp, " virtual void use_cisc_RegMask();\n"); fprintf(fp_hpp, " virtual const RegMask *cisc_RegMask() const { return _cisc_RegMask; }\n"); } } } //---------------------------define_cisc_version------------------------------- // Build CISC version of this instruction bool InstructForm::define_cisc_version(ArchDesc &AD, FILE *fp_cpp) { InstructForm *inst_cisc = this->cisc_spill_alternate(); if( AD.can_cisc_spill() && (inst_cisc != NULL) ) { const char *name = inst_cisc->_ident; assert( inst_cisc->num_opnds() == this->num_opnds(), "Must have same number of operands"); OperandForm *cisc_oper = AD.cisc_spill_operand(); assert( cisc_oper != NULL, "insanity check"); const char *cisc_oper_name = cisc_oper->_ident; assert( cisc_oper_name != NULL, "insanity check"); // // Set the correct reg_mask_or_stack for the cisc operand fprintf(fp_cpp, "\n"); fprintf(fp_cpp, "void %sNode::use_cisc_RegMask() {\n", this->_ident); // Lookup the correct reg_mask_or_stack const char *reg_mask_name = cisc_reg_mask_name(); fprintf(fp_cpp, " _cisc_RegMask = &STACK_OR_%s;\n", reg_mask_name); fprintf(fp_cpp, "}\n"); // // Construct CISC version of this instruction fprintf(fp_cpp, "\n"); fprintf(fp_cpp, "// Build CISC version of this instruction\n"); fprintf(fp_cpp, "MachNode *%sNode::cisc_version( int offset, Compile* C ) {\n", this->_ident); // Create the MachNode object fprintf(fp_cpp, " %sNode *node = new (C) %sNode();\n", name, name); // Fill in the bottom_type where requested if ( this->captures_bottom_type(AD.globalNames()) ) { fprintf(fp_cpp, " node->_bottom_type = bottom_type();\n"); } uint cur_num_opnds = num_opnds(); if (cur_num_opnds > 1 && cur_num_opnds != num_unique_opnds()) { fprintf(fp_cpp," node->_num_opnds = %d;\n", num_unique_opnds()); } fprintf(fp_cpp, "\n"); fprintf(fp_cpp, " // Copy _idx, inputs and operands to new node\n"); fprintf(fp_cpp, " fill_new_machnode(node, C);\n"); // Construct operand to access [stack_pointer + offset] fprintf(fp_cpp, " // Construct operand to access [stack_pointer + offset]\n"); fprintf(fp_cpp, " node->set_opnd_array(cisc_operand(), new (C) %sOper(offset));\n", cisc_oper_name); fprintf(fp_cpp, "\n"); // Return result and exit scope fprintf(fp_cpp, " return node;\n"); fprintf(fp_cpp, "}\n"); fprintf(fp_cpp, "\n"); return true; } return false; } //---------------------------declare_short_branch_methods---------------------- // Build prototypes for short branch methods void InstructForm::declare_short_branch_methods(FILE *fp_hpp) { if (has_short_branch_form()) { fprintf(fp_hpp, " virtual MachNode *short_branch_version(Compile* C);\n"); } } //---------------------------define_short_branch_methods----------------------- // Build definitions for short branch methods bool InstructForm::define_short_branch_methods(ArchDesc &AD, FILE *fp_cpp) { if (has_short_branch_form()) { InstructForm *short_branch = short_branch_form(); const char *name = short_branch->_ident; // Construct short_branch_version() method. fprintf(fp_cpp, "// Build short branch version of this instruction\n"); fprintf(fp_cpp, "MachNode *%sNode::short_branch_version(Compile* C) {\n", this->_ident); // Create the MachNode object fprintf(fp_cpp, " %sNode *node = new (C) %sNode();\n", name, name); if( is_ideal_if() ) { fprintf(fp_cpp, " node->_prob = _prob;\n"); fprintf(fp_cpp, " node->_fcnt = _fcnt;\n"); } // Fill in the bottom_type where requested if ( this->captures_bottom_type(AD.globalNames()) ) { fprintf(fp_cpp, " node->_bottom_type = bottom_type();\n"); } fprintf(fp_cpp, "\n"); // Short branch version must use same node index for access // through allocator's tables fprintf(fp_cpp, " // Copy _idx, inputs and operands to new node\n"); fprintf(fp_cpp, " fill_new_machnode(node, C);\n"); // Return result and exit scope fprintf(fp_cpp, " return node;\n"); fprintf(fp_cpp, "}\n"); fprintf(fp_cpp,"\n"); return true; } return false; } //---------------------------buildMachNodeGenerator---------------------------- // Build switch to invoke appropriate "new" MachNode for an opcode void ArchDesc::buildMachNodeGenerator(FILE *fp_cpp) { // Build switch to invoke 'new' for a specific MachNode fprintf(fp_cpp, "\n"); fprintf(fp_cpp, "\n"); fprintf(fp_cpp, "//------------------------- MachNode Generator ---------------\n"); fprintf(fp_cpp, "// A switch statement on the dense-packed user-defined type system\n" "// that invokes 'new' on the corresponding class constructor.\n"); fprintf(fp_cpp, "\n"); fprintf(fp_cpp, "MachNode *State::MachNodeGenerator"); fprintf(fp_cpp, "(int opcode, Compile* C)"); fprintf(fp_cpp, "{\n"); fprintf(fp_cpp, " switch(opcode) {\n"); // Provide constructor for all user-defined instructions _instructions.reset(); int opIndex = operandFormCount(); InstructForm *inst; for( ; (inst = (InstructForm*)_instructions.iter()) != NULL; ) { // Ensure that matrule is defined. if ( inst->_matrule == NULL ) continue; int opcode = opIndex++; const char *opClass = inst->_ident; char *opType = NULL; // Generate the case statement for this instruction fprintf(fp_cpp, " case %s_rule:", opClass); // Start local scope fprintf(fp_cpp, " {\n"); // Generate code to construct the new MachNode buildMachNode(fp_cpp, inst, " "); // Return result and exit scope fprintf(fp_cpp, " return node;\n"); fprintf(fp_cpp, " }\n"); } // Generate the default case for switch(opcode) fprintf(fp_cpp, " \n"); fprintf(fp_cpp, " default:\n"); fprintf(fp_cpp, " fprintf(stderr, \"Default MachNode Generator invoked for: \\n\");\n"); fprintf(fp_cpp, " fprintf(stderr, \" opcode = %cd\\n\", opcode);\n", '%'); fprintf(fp_cpp, " break;\n"); fprintf(fp_cpp, " };\n"); // Generate the closing for method Matcher::MachNodeGenerator fprintf(fp_cpp, " return NULL;\n"); fprintf(fp_cpp, "}\n"); } //---------------------------buildInstructMatchCheck-------------------------- // Output the method to Matcher which checks whether or not a specific // instruction has a matching rule for the host architecture. void ArchDesc::buildInstructMatchCheck(FILE *fp_cpp) const { fprintf(fp_cpp, "\n\n"); fprintf(fp_cpp, "const bool Matcher::has_match_rule(int opcode) {\n"); fprintf(fp_cpp, " assert(_last_machine_leaf < opcode && opcode < _last_opcode, \"opcode in range\");\n"); fprintf(fp_cpp, " return _hasMatchRule[opcode];\n"); fprintf(fp_cpp, "}\n\n"); fprintf(fp_cpp, "const bool Matcher::_hasMatchRule[_last_opcode] = {\n"); int i; for (i = 0; i < _last_opcode - 1; i++) { fprintf(fp_cpp, " %-5s, // %s\n", _has_match_rule[i] ? "true" : "false", NodeClassNames[i]); } fprintf(fp_cpp, " %-5s // %s\n", _has_match_rule[i] ? "true" : "false", NodeClassNames[i]); fprintf(fp_cpp, "};\n"); } //---------------------------buildFrameMethods--------------------------------- // Output the methods to Matcher which specify frame behavior void ArchDesc::buildFrameMethods(FILE *fp_cpp) { fprintf(fp_cpp,"\n\n"); // Stack Direction fprintf(fp_cpp,"bool Matcher::stack_direction() const { return %s; }\n\n", _frame->_direction ? "true" : "false"); // Sync Stack Slots fprintf(fp_cpp,"int Compile::sync_stack_slots() const { return %s; }\n\n", _frame->_sync_stack_slots); // Java Stack Alignment fprintf(fp_cpp,"uint Matcher::stack_alignment_in_bytes() { return %s; }\n\n", _frame->_alignment); // Java Return Address Location fprintf(fp_cpp,"OptoReg::Name Matcher::return_addr() const {"); if (_frame->_return_addr_loc) { fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n", _frame->_return_addr); } else { fprintf(fp_cpp," return OptoReg::stack2reg(%s); }\n\n", _frame->_return_addr); } // Java Stack Slot Preservation fprintf(fp_cpp,"uint Compile::in_preserve_stack_slots() "); fprintf(fp_cpp,"{ return %s; }\n\n", _frame->_in_preserve_slots); // Top Of Stack Slot Preservation, for both Java and C fprintf(fp_cpp,"uint Compile::out_preserve_stack_slots() "); fprintf(fp_cpp,"{ return SharedRuntime::out_preserve_stack_slots(); }\n\n"); // varargs C out slots killed fprintf(fp_cpp,"uint Compile::varargs_C_out_slots_killed() const "); fprintf(fp_cpp,"{ return %s; }\n\n", _frame->_varargs_C_out_slots_killed); // Java Argument Position fprintf(fp_cpp,"void Matcher::calling_convention(BasicType *sig_bt, VMRegPair *regs, uint length, bool is_outgoing) {\n"); fprintf(fp_cpp,"%s\n", _frame->_calling_convention); fprintf(fp_cpp,"}\n\n"); // Native Argument Position fprintf(fp_cpp,"void Matcher::c_calling_convention(BasicType *sig_bt, VMRegPair *regs, uint length) {\n"); fprintf(fp_cpp,"%s\n", _frame->_c_calling_convention); fprintf(fp_cpp,"}\n\n"); // Java Return Value Location fprintf(fp_cpp,"OptoRegPair Matcher::return_value(int ideal_reg, bool is_outgoing) {\n"); fprintf(fp_cpp,"%s\n", _frame->_return_value); fprintf(fp_cpp,"}\n\n"); // Native Return Value Location fprintf(fp_cpp,"OptoRegPair Matcher::c_return_value(int ideal_reg, bool is_outgoing) {\n"); fprintf(fp_cpp,"%s\n", _frame->_c_return_value); fprintf(fp_cpp,"}\n\n"); // Inline Cache Register, mask definition, and encoding fprintf(fp_cpp,"OptoReg::Name Matcher::inline_cache_reg() {"); fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n", _frame->_inline_cache_reg); fprintf(fp_cpp,"int Matcher::inline_cache_reg_encode() {"); fprintf(fp_cpp," return _regEncode[inline_cache_reg()]; }\n\n"); // Interpreter's Method Oop Register, mask definition, and encoding fprintf(fp_cpp,"OptoReg::Name Matcher::interpreter_method_oop_reg() {"); fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n", _frame->_interpreter_method_oop_reg); fprintf(fp_cpp,"int Matcher::interpreter_method_oop_reg_encode() {"); fprintf(fp_cpp," return _regEncode[interpreter_method_oop_reg()]; }\n\n"); // Interpreter's Frame Pointer Register, mask definition, and encoding fprintf(fp_cpp,"OptoReg::Name Matcher::interpreter_frame_pointer_reg() {"); if (_frame->_interpreter_frame_pointer_reg == NULL) fprintf(fp_cpp," return OptoReg::Bad; }\n\n"); else fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n", _frame->_interpreter_frame_pointer_reg); // Frame Pointer definition /* CNC - I can not contemplate having a different frame pointer between Java and native code; makes my head hurt to think about it. fprintf(fp_cpp,"OptoReg::Name Matcher::frame_pointer() const {"); fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n", _frame->_frame_pointer); */ // (Native) Frame Pointer definition fprintf(fp_cpp,"OptoReg::Name Matcher::c_frame_pointer() const {"); fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n", _frame->_frame_pointer); // Number of callee-save + always-save registers for calling convention fprintf(fp_cpp, "// Number of callee-save + always-save registers\n"); fprintf(fp_cpp, "int Matcher::number_of_saved_registers() {\n"); RegDef *rdef; int nof_saved_registers = 0; _register->reset_RegDefs(); while( (rdef = _register->iter_RegDefs()) != NULL ) { if( !strcmp(rdef->_callconv, "SOE") || !strcmp(rdef->_callconv, "AS") ) ++nof_saved_registers; } fprintf(fp_cpp, " return %d;\n", nof_saved_registers); fprintf(fp_cpp, "};\n\n"); } static int PrintAdlcCisc = 0; //---------------------------identify_cisc_spilling---------------------------- // Get info for the CISC_oracle and MachNode::cisc_version() void ArchDesc::identify_cisc_spill_instructions() { // Find the user-defined operand for cisc-spilling if( _frame->_cisc_spilling_operand_name != NULL ) { const Form *form = _globalNames[_frame->_cisc_spilling_operand_name]; OperandForm *oper = form ? form->is_operand() : NULL; // Verify the user's suggestion if( oper != NULL ) { // Ensure that match field is defined. if ( oper->_matrule != NULL ) { MatchRule &mrule = *oper->_matrule; if( strcmp(mrule._opType,"AddP") == 0 ) { MatchNode *left = mrule._lChild; MatchNode *right= mrule._rChild; if( left != NULL && right != NULL ) { const Form *left_op = _globalNames[left->_opType]->is_operand(); const Form *right_op = _globalNames[right->_opType]->is_operand(); if( (left_op != NULL && right_op != NULL) && (left_op->interface_type(_globalNames) == Form::register_interface) && (right_op->interface_type(_globalNames) == Form::constant_interface) ) { // Successfully verified operand set_cisc_spill_operand( oper ); if( _cisc_spill_debug ) { fprintf(stderr, "\n\nVerified CISC-spill operand %s\n\n", oper->_ident); } } } } } } } if( cisc_spill_operand() != NULL ) { // N^2 comparison of instructions looking for a cisc-spilling version _instructions.reset(); InstructForm *instr; for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) { // Ensure that match field is defined. if ( instr->_matrule == NULL ) continue; MatchRule &mrule = *instr->_matrule; Predicate *pred = instr->build_predicate(); // Grab the machine type of the operand const char *rootOp = instr->_ident; mrule._machType = rootOp; // Find result type for match const char *result = instr->reduce_result(); if( PrintAdlcCisc ) fprintf(stderr, " new instruction %s \n", instr->_ident ? instr->_ident : " "); bool found_cisc_alternate = false; _instructions.reset2(); InstructForm *instr2; for( ; !found_cisc_alternate && (instr2 = (InstructForm*)_instructions.iter2()) != NULL; ) { // Ensure that match field is defined. if( PrintAdlcCisc ) fprintf(stderr, " instr2 == %s \n", instr2->_ident ? instr2->_ident : " "); if ( instr2->_matrule != NULL && (instr != instr2 ) // Skip self && (instr2->reduce_result() != NULL) // want same result && (strcmp(result, instr2->reduce_result()) == 0)) { MatchRule &mrule2 = *instr2->_matrule; Predicate *pred2 = instr2->build_predicate(); found_cisc_alternate = instr->cisc_spills_to(*this, instr2); } } } } } //---------------------------build_cisc_spilling------------------------------- // Get info for the CISC_oracle and MachNode::cisc_version() void ArchDesc::build_cisc_spill_instructions(FILE *fp_hpp, FILE *fp_cpp) { // Output the table for cisc spilling fprintf(fp_cpp, "// The following instructions can cisc-spill\n"); _instructions.reset(); InstructForm *inst = NULL; for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) { // Ensure this is a machine-world instruction if ( inst->ideal_only() ) continue; const char *inst_name = inst->_ident; int operand = inst->cisc_spill_operand(); if( operand != AdlcVMDeps::Not_cisc_spillable ) { InstructForm *inst2 = inst->cisc_spill_alternate(); fprintf(fp_cpp, "// %s can cisc-spill operand %d to %s\n", inst->_ident, operand, inst2->_ident); } } fprintf(fp_cpp, "\n\n"); } //---------------------------identify_short_branches---------------------------- // Get info for our short branch replacement oracle. void ArchDesc::identify_short_branches() { // Walk over all instructions, checking to see if they match a short // branching alternate. _instructions.reset(); InstructForm *instr; while( (instr = (InstructForm*)_instructions.iter()) != NULL ) { // The instruction must have a match rule. if (instr->_matrule != NULL && instr->is_short_branch()) { _instructions.reset2(); InstructForm *instr2; while( (instr2 = (InstructForm*)_instructions.iter2()) != NULL ) { instr2->check_branch_variant(*this, instr); } } } } //---------------------------identify_unique_operands--------------------------- // Identify unique operands. void ArchDesc::identify_unique_operands() { // Walk over all instructions. _instructions.reset(); InstructForm *instr; while( (instr = (InstructForm*)_instructions.iter()) != NULL ) { // Ensure this is a machine-world instruction if (!instr->ideal_only()) { instr->set_unique_opnds(); } } }