/* * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef OS_LINUX_VM_OS_LINUX_HPP #define OS_LINUX_VM_OS_LINUX_HPP // Linux_OS defines the interface to Linux operating systems /* pthread_getattr_np comes with LinuxThreads-0.9-7 on RedHat 7.1 */ typedef int (*pthread_getattr_func_type) (pthread_t, pthread_attr_t *); // Information about the protection of the page at address '0' on this os. static bool zero_page_read_protected() { return true; } class Linux { friend class os; friend class TestReserveMemorySpecial; // For signal-chaining #define MAXSIGNUM 32 static struct sigaction sigact[MAXSIGNUM]; // saved preinstalled sigactions static unsigned int sigs; // mask of signals that have // preinstalled signal handlers static bool libjsig_is_loaded; // libjsig that interposes sigaction(), // __sigaction(), signal() is loaded static struct sigaction *(*get_signal_action)(int); static struct sigaction *get_preinstalled_handler(int); static void save_preinstalled_handler(int, struct sigaction&); static void check_signal_handler(int sig); // For signal flags diagnostics static int sigflags[MAXSIGNUM]; static int (*_clock_gettime)(clockid_t, struct timespec *); static int (*_pthread_getcpuclockid)(pthread_t, clockid_t *); static address _initial_thread_stack_bottom; static uintptr_t _initial_thread_stack_size; static const char *_glibc_version; static const char *_libpthread_version; static bool _is_floating_stack; static bool _is_NPTL; static bool _supports_fast_thread_cpu_time; static GrowableArray* _cpu_to_node; static GrowableArray* _nindex_to_node; protected: static julong _physical_memory; static pthread_t _main_thread; static Mutex* _createThread_lock; static int _page_size; static const int _vm_default_page_size; static julong available_memory(); static julong physical_memory() { return _physical_memory; } static void initialize_system_info(); static int commit_memory_impl(char* addr, size_t bytes, bool exec); static int commit_memory_impl(char* addr, size_t bytes, size_t alignment_hint, bool exec); static void set_glibc_version(const char *s) { _glibc_version = s; } static void set_libpthread_version(const char *s) { _libpthread_version = s; } static bool supports_variable_stack_size(); static void set_is_NPTL() { _is_NPTL = true; } static void set_is_LinuxThreads() { _is_NPTL = false; } static void set_is_floating_stack() { _is_floating_stack = true; } static void rebuild_cpu_to_node_map(); static void rebuild_nindex_to_node_map(); static GrowableArray* cpu_to_node() { return _cpu_to_node; } static GrowableArray* nindex_to_node() { return _nindex_to_node; } static size_t find_large_page_size(); static size_t setup_large_page_size(); static bool setup_large_page_type(size_t page_size); static bool transparent_huge_pages_sanity_check(bool warn, size_t pages_size); static bool hugetlbfs_sanity_check(bool warn, size_t page_size); static char* reserve_memory_special_shm(size_t bytes, size_t alignment, char* req_addr, bool exec); static char* reserve_memory_special_huge_tlbfs(size_t bytes, size_t alignment, char* req_addr, bool exec); static char* reserve_memory_special_huge_tlbfs_only(size_t bytes, char* req_addr, bool exec); static char* reserve_memory_special_huge_tlbfs_mixed(size_t bytes, size_t alignment, char* req_addr, bool exec); static bool release_memory_special_impl(char* base, size_t bytes); static bool release_memory_special_shm(char* base, size_t bytes); static bool release_memory_special_huge_tlbfs(char* base, size_t bytes); static void print_full_memory_info(outputStream* st); static void print_distro_info(outputStream* st); static void print_libversion_info(outputStream* st); public: static bool _stack_is_executable; static void *dlopen_helper(const char *name, char *ebuf, int ebuflen); static void *dll_load_in_vmthread(const char *name, char *ebuf, int ebuflen); static void init_thread_fpu_state(); static int get_fpu_control_word(); static void set_fpu_control_word(int fpu_control); static pthread_t main_thread(void) { return _main_thread; } // returns kernel thread id (similar to LWP id on Solaris), which can be // used to access /proc static pid_t gettid(); static void set_createThread_lock(Mutex* lk) { _createThread_lock = lk; } static Mutex* createThread_lock(void) { return _createThread_lock; } static void hotspot_sigmask(Thread* thread); static address initial_thread_stack_bottom(void) { return _initial_thread_stack_bottom; } static uintptr_t initial_thread_stack_size(void) { return _initial_thread_stack_size; } static bool is_initial_thread(void); static int page_size(void) { return _page_size; } static void set_page_size(int val) { _page_size = val; } static int vm_default_page_size(void) { return _vm_default_page_size; } static address ucontext_get_pc(ucontext_t* uc); static intptr_t* ucontext_get_sp(ucontext_t* uc); static intptr_t* ucontext_get_fp(ucontext_t* uc); // For Analyzer Forte AsyncGetCallTrace profiling support: // // This interface should be declared in os_linux_i486.hpp, but // that file provides extensions to the os class and not the // Linux class. static ExtendedPC fetch_frame_from_ucontext(Thread* thread, ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp); // This boolean allows users to forward their own non-matching signals // to JVM_handle_linux_signal, harmlessly. static bool signal_handlers_are_installed; static int get_our_sigflags(int); static void set_our_sigflags(int, int); static void signal_sets_init(); static void install_signal_handlers(); static void set_signal_handler(int, bool); static bool is_sig_ignored(int sig); static sigset_t* unblocked_signals(); static sigset_t* vm_signals(); static sigset_t* allowdebug_blocked_signals(); // For signal-chaining static struct sigaction *get_chained_signal_action(int sig); static bool chained_handler(int sig, siginfo_t* siginfo, void* context); // GNU libc and libpthread version strings static const char *glibc_version() { return _glibc_version; } static const char *libpthread_version() { return _libpthread_version; } // NPTL or LinuxThreads? static bool is_LinuxThreads() { return !_is_NPTL; } static bool is_NPTL() { return _is_NPTL; } // NPTL is always floating stack. LinuxThreads could be using floating // stack or fixed stack. static bool is_floating_stack() { return _is_floating_stack; } static void libpthread_init(); static bool libnuma_init(); static void* libnuma_dlsym(void* handle, const char* name); // libnuma v2 (libnuma_1.2) symbols static void* libnuma_v2_dlsym(void* handle, const char* name); // Minimum stack size a thread can be created with (allowing // the VM to completely create the thread and enter user code) static size_t min_stack_allowed; // Return default stack size or guard size for the specified thread type static size_t default_stack_size(os::ThreadType thr_type); static size_t default_guard_size(os::ThreadType thr_type); static void capture_initial_stack(size_t max_size); // Stack overflow handling static bool manually_expand_stack(JavaThread * t, address addr); static int max_register_window_saves_before_flushing(); // Real-time clock functions static void clock_init(void); // fast POSIX clocks support static void fast_thread_clock_init(void); static inline bool supports_monotonic_clock() { return _clock_gettime != NULL; } static int clock_gettime(clockid_t clock_id, struct timespec *tp) { return _clock_gettime ? _clock_gettime(clock_id, tp) : -1; } static int pthread_getcpuclockid(pthread_t tid, clockid_t *clock_id) { return _pthread_getcpuclockid ? _pthread_getcpuclockid(tid, clock_id) : -1; } static bool supports_fast_thread_cpu_time() { return _supports_fast_thread_cpu_time; } static jlong fast_thread_cpu_time(clockid_t clockid); // pthread_cond clock suppport private: static pthread_condattr_t _condattr[1]; public: static pthread_condattr_t* condAttr() { return _condattr; } // Stack repair handling // none present // LinuxThreads work-around for 6292965 static int safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime); private: typedef int (*sched_getcpu_func_t)(void); typedef int (*numa_node_to_cpus_func_t)(int node, unsigned long *buffer, int bufferlen); typedef int (*numa_max_node_func_t)(void); typedef int (*numa_num_configured_nodes_func_t)(void); typedef int (*numa_available_func_t)(void); typedef int (*numa_tonode_memory_func_t)(void *start, size_t size, int node); typedef void (*numa_interleave_memory_func_t)(void *start, size_t size, unsigned long *nodemask); typedef void (*numa_interleave_memory_v2_func_t)(void *start, size_t size, struct bitmask* mask); typedef void (*numa_set_bind_policy_func_t)(int policy); typedef int (*numa_bitmask_isbitset_func_t)(struct bitmask *bmp, unsigned int n); typedef int (*numa_distance_func_t)(int node1, int node2); static sched_getcpu_func_t _sched_getcpu; static numa_node_to_cpus_func_t _numa_node_to_cpus; static numa_max_node_func_t _numa_max_node; static numa_num_configured_nodes_func_t _numa_num_configured_nodes; static numa_available_func_t _numa_available; static numa_tonode_memory_func_t _numa_tonode_memory; static numa_interleave_memory_func_t _numa_interleave_memory; static numa_interleave_memory_v2_func_t _numa_interleave_memory_v2; static numa_set_bind_policy_func_t _numa_set_bind_policy; static numa_bitmask_isbitset_func_t _numa_bitmask_isbitset; static numa_distance_func_t _numa_distance; static unsigned long* _numa_all_nodes; static struct bitmask* _numa_all_nodes_ptr; static struct bitmask* _numa_nodes_ptr; static void set_sched_getcpu(sched_getcpu_func_t func) { _sched_getcpu = func; } static void set_numa_node_to_cpus(numa_node_to_cpus_func_t func) { _numa_node_to_cpus = func; } static void set_numa_max_node(numa_max_node_func_t func) { _numa_max_node = func; } static void set_numa_num_configured_nodes(numa_num_configured_nodes_func_t func) { _numa_num_configured_nodes = func; } static void set_numa_available(numa_available_func_t func) { _numa_available = func; } static void set_numa_tonode_memory(numa_tonode_memory_func_t func) { _numa_tonode_memory = func; } static void set_numa_interleave_memory(numa_interleave_memory_func_t func) { _numa_interleave_memory = func; } static void set_numa_interleave_memory_v2(numa_interleave_memory_v2_func_t func) { _numa_interleave_memory_v2 = func; } static void set_numa_set_bind_policy(numa_set_bind_policy_func_t func) { _numa_set_bind_policy = func; } static void set_numa_bitmask_isbitset(numa_bitmask_isbitset_func_t func) { _numa_bitmask_isbitset = func; } static void set_numa_distance(numa_distance_func_t func) { _numa_distance = func; } static void set_numa_all_nodes(unsigned long* ptr) { _numa_all_nodes = ptr; } static void set_numa_all_nodes_ptr(struct bitmask **ptr) { _numa_all_nodes_ptr = (ptr == NULL ? NULL : *ptr); } static void set_numa_nodes_ptr(struct bitmask **ptr) { _numa_nodes_ptr = (ptr == NULL ? NULL : *ptr); } static int sched_getcpu_syscall(void); public: static int sched_getcpu() { return _sched_getcpu != NULL ? _sched_getcpu() : -1; } static int numa_node_to_cpus(int node, unsigned long *buffer, int bufferlen) { return _numa_node_to_cpus != NULL ? _numa_node_to_cpus(node, buffer, bufferlen) : -1; } static int numa_max_node() { return _numa_max_node != NULL ? _numa_max_node() : -1; } static int numa_num_configured_nodes() { return _numa_num_configured_nodes != NULL ? _numa_num_configured_nodes() : -1; } static int numa_available() { return _numa_available != NULL ? _numa_available() : -1; } static int numa_tonode_memory(void *start, size_t size, int node) { return _numa_tonode_memory != NULL ? _numa_tonode_memory(start, size, node) : -1; } static void numa_interleave_memory(void *start, size_t size) { // Use v2 api if available if (_numa_interleave_memory_v2 != NULL && _numa_all_nodes_ptr != NULL) { _numa_interleave_memory_v2(start, size, _numa_all_nodes_ptr); } else if (_numa_interleave_memory != NULL && _numa_all_nodes != NULL) { _numa_interleave_memory(start, size, _numa_all_nodes); } } static void numa_set_bind_policy(int policy) { if (_numa_set_bind_policy != NULL) { _numa_set_bind_policy(policy); } } static int numa_distance(int node1, int node2) { return _numa_distance != NULL ? _numa_distance(node1, node2) : -1; } static int get_node_by_cpu(int cpu_id); static int get_existing_num_nodes(); // Check if numa node is configured (non-zero memory node). static bool isnode_in_configured_nodes(unsigned int n) { if (_numa_bitmask_isbitset != NULL && _numa_all_nodes_ptr != NULL) { return _numa_bitmask_isbitset(_numa_all_nodes_ptr, n); } else return 0; } // Check if numa node exists in the system (including zero memory nodes). static bool isnode_in_existing_nodes(unsigned int n) { if (_numa_bitmask_isbitset != NULL && _numa_nodes_ptr != NULL) { return _numa_bitmask_isbitset(_numa_nodes_ptr, n); } else if (_numa_bitmask_isbitset != NULL && _numa_all_nodes_ptr != NULL) { // Not all libnuma API v2 implement numa_nodes_ptr, so it's not possible // to trust the API version for checking its absence. On the other hand, // numa_nodes_ptr found in libnuma 2.0.9 and above is the only way to get // a complete view of all numa nodes in the system, hence numa_nodes_ptr // is used to handle CPU and nodes on architectures (like PowerPC) where // there can exist nodes with CPUs but no memory or vice-versa and the // nodes may be non-contiguous. For most of the architectures, like // x86_64, numa_node_ptr presents the same node set as found in // numa_all_nodes_ptr so it's possible to use numa_all_nodes_ptr as a // substitute. return _numa_bitmask_isbitset(_numa_all_nodes_ptr, n); } else return 0; } }; class PlatformEvent : public CHeapObj { private: double CachePad [4] ; // increase odds that _mutex is sole occupant of cache line volatile int _Event ; volatile int _nParked ; pthread_mutex_t _mutex [1] ; pthread_cond_t _cond [1] ; double PostPad [2] ; Thread * _Assoc ; public: // TODO-FIXME: make dtor private ~PlatformEvent() { guarantee (0, "invariant") ; } public: PlatformEvent() { int status; status = pthread_cond_init (_cond, os::Linux::condAttr()); assert_status(status == 0, status, "cond_init"); status = pthread_mutex_init (_mutex, NULL); assert_status(status == 0, status, "mutex_init"); _Event = 0 ; _nParked = 0 ; _Assoc = NULL ; } // Use caution with reset() and fired() -- they may require MEMBARs void reset() { _Event = 0 ; } int fired() { return _Event; } void park () ; void unpark () ; int TryPark () ; int park (jlong millis) ; // relative timed-wait only void SetAssociation (Thread * a) { _Assoc = a ; } } ; class PlatformParker : public CHeapObj { protected: enum { REL_INDEX = 0, ABS_INDEX = 1 }; int _cur_index; // which cond is in use: -1, 0, 1 pthread_mutex_t _mutex [1] ; pthread_cond_t _cond [2] ; // one for relative times and one for abs. public: // TODO-FIXME: make dtor private ~PlatformParker() { guarantee (0, "invariant") ; } public: PlatformParker() { int status; status = pthread_cond_init (&_cond[REL_INDEX], os::Linux::condAttr()); assert_status(status == 0, status, "cond_init rel"); status = pthread_cond_init (&_cond[ABS_INDEX], NULL); assert_status(status == 0, status, "cond_init abs"); status = pthread_mutex_init (_mutex, NULL); assert_status(status == 0, status, "mutex_init"); _cur_index = -1; // mark as unused } }; #endif // OS_LINUX_VM_OS_LINUX_HPP