/* * Copyright (c) 1998, 2012, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ // FORMS.CPP - Definitions for ADL Parser Forms Classes #include "adlc.hpp" //==============================Instructions=================================== //------------------------------InstructForm----------------------------------- InstructForm::InstructForm(const char *id, bool ideal_only) : _ident(id), _ideal_only(ideal_only), _localNames(cmpstr, hashstr, Form::arena), _effects(cmpstr, hashstr, Form::arena), _is_mach_constant(false), _has_call(false) { _ftype = Form::INS; _matrule = NULL; _insencode = NULL; _constant = NULL; _opcode = NULL; _size = NULL; _attribs = NULL; _predicate = NULL; _exprule = NULL; _rewrule = NULL; _format = NULL; _peephole = NULL; _ins_pipe = NULL; _uniq_idx = NULL; _num_uniq = 0; _cisc_spill_operand = Not_cisc_spillable;// Which operand may cisc-spill _cisc_spill_alternate = NULL; // possible cisc replacement _cisc_reg_mask_name = NULL; _is_cisc_alternate = false; _is_short_branch = false; _short_branch_form = NULL; _alignment = 1; } InstructForm::InstructForm(const char *id, InstructForm *instr, MatchRule *rule) : _ident(id), _ideal_only(false), _localNames(instr->_localNames), _effects(instr->_effects), _is_mach_constant(false), _has_call(false) { _ftype = Form::INS; _matrule = rule; _insencode = instr->_insencode; _constant = instr->_constant; _opcode = instr->_opcode; _size = instr->_size; _attribs = instr->_attribs; _predicate = instr->_predicate; _exprule = instr->_exprule; _rewrule = instr->_rewrule; _format = instr->_format; _peephole = instr->_peephole; _ins_pipe = instr->_ins_pipe; _uniq_idx = instr->_uniq_idx; _num_uniq = instr->_num_uniq; _cisc_spill_operand = Not_cisc_spillable;// Which operand may cisc-spill _cisc_spill_alternate = NULL; // possible cisc replacement _cisc_reg_mask_name = NULL; _is_cisc_alternate = false; _is_short_branch = false; _short_branch_form = NULL; _alignment = 1; // Copy parameters const char *name; instr->_parameters.reset(); for (; (name = instr->_parameters.iter()) != NULL;) _parameters.addName(name); } InstructForm::~InstructForm() { } InstructForm *InstructForm::is_instruction() const { return (InstructForm*)this; } bool InstructForm::ideal_only() const { return _ideal_only; } bool InstructForm::sets_result() const { return (_matrule != NULL && _matrule->sets_result()); } bool InstructForm::needs_projections() { _components.reset(); for( Component *comp; (comp = _components.iter()) != NULL; ) { if (comp->isa(Component::KILL)) { return true; } } return false; } bool InstructForm::has_temps() { if (_matrule) { // Examine each component to see if it is a TEMP _components.reset(); // Skip the first component, if already handled as (SET dst (...)) Component *comp = NULL; if (sets_result()) comp = _components.iter(); while ((comp = _components.iter()) != NULL) { if (comp->isa(Component::TEMP)) { return true; } } } return false; } uint InstructForm::num_defs_or_kills() { uint defs_or_kills = 0; _components.reset(); for( Component *comp; (comp = _components.iter()) != NULL; ) { if( comp->isa(Component::DEF) || comp->isa(Component::KILL) ) { ++defs_or_kills; } } return defs_or_kills; } // This instruction has an expand rule? bool InstructForm::expands() const { return ( _exprule != NULL ); } // This instruction has a peephole rule? Peephole *InstructForm::peepholes() const { return _peephole; } // This instruction has a peephole rule? void InstructForm::append_peephole(Peephole *peephole) { if( _peephole == NULL ) { _peephole = peephole; } else { _peephole->append_peephole(peephole); } } // ideal opcode enumeration const char *InstructForm::ideal_Opcode( FormDict &globalNames ) const { if( !_matrule ) return "Node"; // Something weird // Chain rules do not really have ideal Opcodes; use their source // operand ideal Opcode instead. if( is_simple_chain_rule(globalNames) ) { const char *src = _matrule->_rChild->_opType; OperandForm *src_op = globalNames[src]->is_operand(); assert( src_op, "Not operand class of chain rule" ); if( !src_op->_matrule ) return "Node"; return src_op->_matrule->_opType; } // Operand chain rules do not really have ideal Opcodes if( _matrule->is_chain_rule(globalNames) ) return "Node"; return strcmp(_matrule->_opType,"Set") ? _matrule->_opType : _matrule->_rChild->_opType; } // Recursive check on all operands' match rules in my match rule bool InstructForm::is_pinned(FormDict &globals) { if ( ! _matrule) return false; int index = 0; if (_matrule->find_type("Goto", index)) return true; if (_matrule->find_type("If", index)) return true; if (_matrule->find_type("CountedLoopEnd",index)) return true; if (_matrule->find_type("Return", index)) return true; if (_matrule->find_type("Rethrow", index)) return true; if (_matrule->find_type("TailCall", index)) return true; if (_matrule->find_type("TailJump", index)) return true; if (_matrule->find_type("Halt", index)) return true; if (_matrule->find_type("Jump", index)) return true; return is_parm(globals); } // Recursive check on all operands' match rules in my match rule bool InstructForm::is_projection(FormDict &globals) { if ( ! _matrule) return false; int index = 0; if (_matrule->find_type("Goto", index)) return true; if (_matrule->find_type("Return", index)) return true; if (_matrule->find_type("Rethrow", index)) return true; if (_matrule->find_type("TailCall",index)) return true; if (_matrule->find_type("TailJump",index)) return true; if (_matrule->find_type("Halt", index)) return true; return false; } // Recursive check on all operands' match rules in my match rule bool InstructForm::is_parm(FormDict &globals) { if ( ! _matrule) return false; int index = 0; if (_matrule->find_type("Parm",index)) return true; return false; } // Return 'true' if this instruction matches an ideal 'Copy*' node int InstructForm::is_ideal_copy() const { return _matrule ? _matrule->is_ideal_copy() : 0; } // Return 'true' if this instruction is too complex to rematerialize. int InstructForm::is_expensive() const { // We can prove it is cheap if it has an empty encoding. // This helps with platform-specific nops like ThreadLocal and RoundFloat. if (is_empty_encoding()) return 0; if (is_tls_instruction()) return 1; if (_matrule == NULL) return 0; return _matrule->is_expensive(); } // Has an empty encoding if _size is a constant zero or there // are no ins_encode tokens. int InstructForm::is_empty_encoding() const { if (_insencode != NULL) { _insencode->reset(); if (_insencode->encode_class_iter() == NULL) { return 1; } } if (_size != NULL && strcmp(_size, "0") == 0) { return 1; } return 0; } int InstructForm::is_tls_instruction() const { if (_ident != NULL && ( ! strcmp( _ident,"tlsLoadP") || ! strncmp(_ident,"tlsLoadP_",9)) ) { return 1; } if (_matrule != NULL && _insencode != NULL) { const char* opType = _matrule->_opType; if (strcmp(opType, "Set")==0) opType = _matrule->_rChild->_opType; if (strcmp(opType,"ThreadLocal")==0) { fprintf(stderr, "Warning: ThreadLocal instruction %s should be named 'tlsLoadP_*'\n", (_ident == NULL ? "NULL" : _ident)); return 1; } } return 0; } // Return 'true' if this instruction matches an ideal 'If' node bool InstructForm::is_ideal_if() const { if( _matrule == NULL ) return false; return _matrule->is_ideal_if(); } // Return 'true' if this instruction matches an ideal 'FastLock' node bool InstructForm::is_ideal_fastlock() const { if( _matrule == NULL ) return false; return _matrule->is_ideal_fastlock(); } // Return 'true' if this instruction matches an ideal 'MemBarXXX' node bool InstructForm::is_ideal_membar() const { if( _matrule == NULL ) return false; return _matrule->is_ideal_membar(); } // Return 'true' if this instruction matches an ideal 'LoadPC' node bool InstructForm::is_ideal_loadPC() const { if( _matrule == NULL ) return false; return _matrule->is_ideal_loadPC(); } // Return 'true' if this instruction matches an ideal 'Box' node bool InstructForm::is_ideal_box() const { if( _matrule == NULL ) return false; return _matrule->is_ideal_box(); } // Return 'true' if this instruction matches an ideal 'Goto' node bool InstructForm::is_ideal_goto() const { if( _matrule == NULL ) return false; return _matrule->is_ideal_goto(); } // Return 'true' if this instruction matches an ideal 'Jump' node bool InstructForm::is_ideal_jump() const { if( _matrule == NULL ) return false; return _matrule->is_ideal_jump(); } // Return 'true' if instruction matches ideal 'If' | 'Goto' | 'CountedLoopEnd' bool InstructForm::is_ideal_branch() const { if( _matrule == NULL ) return false; return _matrule->is_ideal_if() || _matrule->is_ideal_goto(); } // Return 'true' if this instruction matches an ideal 'Return' node bool InstructForm::is_ideal_return() const { if( _matrule == NULL ) return false; // Check MatchRule to see if the first entry is the ideal "Return" node int index = 0; if (_matrule->find_type("Return",index)) return true; if (_matrule->find_type("Rethrow",index)) return true; if (_matrule->find_type("TailCall",index)) return true; if (_matrule->find_type("TailJump",index)) return true; return false; } // Return 'true' if this instruction matches an ideal 'Halt' node bool InstructForm::is_ideal_halt() const { int index = 0; return _matrule && _matrule->find_type("Halt",index); } // Return 'true' if this instruction matches an ideal 'SafePoint' node bool InstructForm::is_ideal_safepoint() const { int index = 0; return _matrule && _matrule->find_type("SafePoint",index); } // Return 'true' if this instruction matches an ideal 'Nop' node bool InstructForm::is_ideal_nop() const { return _ident && _ident[0] == 'N' && _ident[1] == 'o' && _ident[2] == 'p' && _ident[3] == '_'; } bool InstructForm::is_ideal_control() const { if ( ! _matrule) return false; return is_ideal_return() || is_ideal_branch() || _matrule->is_ideal_jump() || is_ideal_halt(); } // Return 'true' if this instruction matches an ideal 'Call' node Form::CallType InstructForm::is_ideal_call() const { if( _matrule == NULL ) return Form::invalid_type; // Check MatchRule to see if the first entry is the ideal "Call" node int idx = 0; if(_matrule->find_type("CallStaticJava",idx)) return Form::JAVA_STATIC; idx = 0; if(_matrule->find_type("Lock",idx)) return Form::JAVA_STATIC; idx = 0; if(_matrule->find_type("Unlock",idx)) return Form::JAVA_STATIC; idx = 0; if(_matrule->find_type("CallDynamicJava",idx)) return Form::JAVA_DYNAMIC; idx = 0; if(_matrule->find_type("CallRuntime",idx)) return Form::JAVA_RUNTIME; idx = 0; if(_matrule->find_type("CallLeaf",idx)) return Form::JAVA_LEAF; idx = 0; if(_matrule->find_type("CallLeafNoFP",idx)) return Form::JAVA_LEAF; idx = 0; return Form::invalid_type; } // Return 'true' if this instruction matches an ideal 'Load?' node Form::DataType InstructForm::is_ideal_load() const { if( _matrule == NULL ) return Form::none; return _matrule->is_ideal_load(); } // Return 'true' if this instruction matches an ideal 'LoadKlass' node bool InstructForm::skip_antidep_check() const { if( _matrule == NULL ) return false; return _matrule->skip_antidep_check(); } // Return 'true' if this instruction matches an ideal 'Load?' node Form::DataType InstructForm::is_ideal_store() const { if( _matrule == NULL ) return Form::none; return _matrule->is_ideal_store(); } // Return 'true' if this instruction matches an ideal vector node bool InstructForm::is_vector() const { if( _matrule == NULL ) return false; return _matrule->is_vector(); } // Return the input register that must match the output register // If this is not required, return 0 uint InstructForm::two_address(FormDict &globals) { uint matching_input = 0; if(_components.count() == 0) return 0; _components.reset(); Component *comp = _components.iter(); // Check if there is a DEF if( comp->isa(Component::DEF) ) { // Check that this is a register const char *def_type = comp->_type; const Form *form = globals[def_type]; OperandForm *op = form->is_operand(); if( op ) { if( op->constrained_reg_class() != NULL && op->interface_type(globals) == Form::register_interface ) { // Remember the local name for equality test later const char *def_name = comp->_name; // Check if a component has the same name and is a USE do { if( comp->isa(Component::USE) && strcmp(comp->_name,def_name)==0 ) { return operand_position_format(def_name); } } while( (comp = _components.iter()) != NULL); } } } return 0; } // when chaining a constant to an instruction, returns 'true' and sets opType Form::DataType InstructForm::is_chain_of_constant(FormDict &globals) { const char *dummy = NULL; const char *dummy2 = NULL; return is_chain_of_constant(globals, dummy, dummy2); } Form::DataType InstructForm::is_chain_of_constant(FormDict &globals, const char * &opTypeParam) { const char *result = NULL; return is_chain_of_constant(globals, opTypeParam, result); } Form::DataType InstructForm::is_chain_of_constant(FormDict &globals, const char * &opTypeParam, const char * &resultParam) { Form::DataType data_type = Form::none; if ( ! _matrule) return data_type; // !!!!! // The source of the chain rule is 'position = 1' uint position = 1; const char *result = NULL; const char *name = NULL; const char *opType = NULL; // Here base_operand is looking for an ideal type to be returned (opType). if ( _matrule->is_chain_rule(globals) && _matrule->base_operand(position, globals, result, name, opType) ) { data_type = ideal_to_const_type(opType); // if it isn't an ideal constant type, just return if ( data_type == Form::none ) return data_type; // Ideal constant types also adjust the opType parameter. resultParam = result; opTypeParam = opType; return data_type; } return data_type; } // Check if a simple chain rule bool InstructForm::is_simple_chain_rule(FormDict &globals) const { if( _matrule && _matrule->sets_result() && _matrule->_rChild->_lChild == NULL && globals[_matrule->_rChild->_opType] && globals[_matrule->_rChild->_opType]->is_opclass() ) { return true; } return false; } // check for structural rematerialization bool InstructForm::rematerialize(FormDict &globals, RegisterForm *registers ) { bool rematerialize = false; Form::DataType data_type = is_chain_of_constant(globals); if( data_type != Form::none ) rematerialize = true; // Constants if( _components.count() == 1 && _components[0]->is(Component::USE_DEF) ) rematerialize = true; // Pseudo-constants (values easily available to the runtime) if (is_empty_encoding() && is_tls_instruction()) rematerialize = true; // 1-input, 1-output, such as copies or increments. if( _components.count() == 2 && _components[0]->is(Component::DEF) && _components[1]->isa(Component::USE) ) rematerialize = true; // Check for an ideal 'Load?' and eliminate rematerialize option if ( is_ideal_load() != Form::none || // Ideal load? Do not rematerialize is_ideal_copy() != Form::none || // Ideal copy? Do not rematerialize is_expensive() != Form::none) { // Expensive? Do not rematerialize rematerialize = false; } // Always rematerialize the flags. They are more expensive to save & // restore than to recompute (and possibly spill the compare's inputs). if( _components.count() >= 1 ) { Component *c = _components[0]; const Form *form = globals[c->_type]; OperandForm *opform = form->is_operand(); if( opform ) { // Avoid the special stack_slots register classes const char *rc_name = opform->constrained_reg_class(); if( rc_name ) { if( strcmp(rc_name,"stack_slots") ) { // Check for ideal_type of RegFlags const char *type = opform->ideal_type( globals, registers ); if( !strcmp(type,"RegFlags") ) rematerialize = true; } else rematerialize = false; // Do not rematerialize things target stk } } } return rematerialize; } // loads from memory, so must check for anti-dependence bool InstructForm::needs_anti_dependence_check(FormDict &globals) const { if ( skip_antidep_check() ) return false; // Machine independent loads must be checked for anti-dependences if( is_ideal_load() != Form::none ) return true; // !!!!! !!!!! !!!!! // TEMPORARY // if( is_simple_chain_rule(globals) ) return false; // String.(compareTo/equals/indexOf) and Arrays.equals use many memorys edges, // but writes none if( _matrule && _matrule->_rChild && ( strcmp(_matrule->_rChild->_opType,"StrComp" )==0 || strcmp(_matrule->_rChild->_opType,"StrEquals" )==0 || strcmp(_matrule->_rChild->_opType,"StrIndexOf" )==0 || strcmp(_matrule->_rChild->_opType,"AryEq" )==0 )) return true; // Check if instruction has a USE of a memory operand class, but no defs bool USE_of_memory = false; bool DEF_of_memory = false; Component *comp = NULL; ComponentList &components = (ComponentList &)_components; components.reset(); while( (comp = components.iter()) != NULL ) { const Form *form = globals[comp->_type]; if( !form ) continue; OpClassForm *op = form->is_opclass(); if( !op ) continue; if( form->interface_type(globals) == Form::memory_interface ) { if( comp->isa(Component::USE) ) USE_of_memory = true; if( comp->isa(Component::DEF) ) { OperandForm *oper = form->is_operand(); if( oper && oper->is_user_name_for_sReg() ) { // Stack slots are unaliased memory handled by allocator oper = oper; // debug stopping point !!!!! } else { DEF_of_memory = true; } } } } return (USE_of_memory && !DEF_of_memory); } bool InstructForm::is_wide_memory_kill(FormDict &globals) const { if( _matrule == NULL ) return false; if( !_matrule->_opType ) return false; if( strcmp(_matrule->_opType,"MemBarRelease") == 0 ) return true; if( strcmp(_matrule->_opType,"MemBarAcquire") == 0 ) return true; if( strcmp(_matrule->_opType,"MemBarReleaseLock") == 0 ) return true; if( strcmp(_matrule->_opType,"MemBarAcquireLock") == 0 ) return true; if( strcmp(_matrule->_opType,"MemBarStoreStore") == 0 ) return true; return false; } int InstructForm::memory_operand(FormDict &globals) const { // Machine independent loads must be checked for anti-dependences // Check if instruction has a USE of a memory operand class, or a def. int USE_of_memory = 0; int DEF_of_memory = 0; const char* last_memory_DEF = NULL; // to test DEF/USE pairing in asserts Component *unique = NULL; Component *comp = NULL; ComponentList &components = (ComponentList &)_components; components.reset(); while( (comp = components.iter()) != NULL ) { const Form *form = globals[comp->_type]; if( !form ) continue; OpClassForm *op = form->is_opclass(); if( !op ) continue; if( op->stack_slots_only(globals) ) continue; if( form->interface_type(globals) == Form::memory_interface ) { if( comp->isa(Component::DEF) ) { last_memory_DEF = comp->_name; DEF_of_memory++; unique = comp; } else if( comp->isa(Component::USE) ) { if( last_memory_DEF != NULL ) { assert(0 == strcmp(last_memory_DEF, comp->_name), "every memory DEF is followed by a USE of the same name"); last_memory_DEF = NULL; } USE_of_memory++; if (DEF_of_memory == 0) // defs take precedence unique = comp; } else { assert(last_memory_DEF == NULL, "unpaired memory DEF"); } } } assert(last_memory_DEF == NULL, "unpaired memory DEF"); assert(USE_of_memory >= DEF_of_memory, "unpaired memory DEF"); USE_of_memory -= DEF_of_memory; // treat paired DEF/USE as one occurrence if( (USE_of_memory + DEF_of_memory) > 0 ) { if( is_simple_chain_rule(globals) ) { //fprintf(stderr, "Warning: chain rule is not really a memory user.\n"); //((InstructForm*)this)->dump(); // Preceding code prints nothing on sparc and these insns on intel: // leaP8 leaP32 leaPIdxOff leaPIdxScale leaPIdxScaleOff leaP8 leaP32 // leaPIdxOff leaPIdxScale leaPIdxScaleOff return NO_MEMORY_OPERAND; } if( DEF_of_memory == 1 ) { assert(unique != NULL, ""); if( USE_of_memory == 0 ) { // unique def, no uses } else { // // unique def, some uses // // must return bottom unless all uses match def // unique = NULL; } } else if( DEF_of_memory > 0 ) { // multiple defs, don't care about uses unique = NULL; } else if( USE_of_memory == 1) { // unique use, no defs assert(unique != NULL, ""); } else if( USE_of_memory > 0 ) { // multiple uses, no defs unique = NULL; } else { assert(false, "bad case analysis"); } // process the unique DEF or USE, if there is one if( unique == NULL ) { return MANY_MEMORY_OPERANDS; } else { int pos = components.operand_position(unique->_name); if( unique->isa(Component::DEF) ) { pos += 1; // get corresponding USE from DEF } assert(pos >= 1, "I was just looking at it!"); return pos; } } // missed the memory op?? if( true ) { // %%% should not be necessary if( is_ideal_store() != Form::none ) { fprintf(stderr, "Warning: cannot find memory opnd in instr.\n"); ((InstructForm*)this)->dump(); // pretend it has multiple defs and uses return MANY_MEMORY_OPERANDS; } if( is_ideal_load() != Form::none ) { fprintf(stderr, "Warning: cannot find memory opnd in instr.\n"); ((InstructForm*)this)->dump(); // pretend it has multiple uses and no defs return MANY_MEMORY_OPERANDS; } } return NO_MEMORY_OPERAND; } // This instruction captures the machine-independent bottom_type // Expected use is for pointer vs oop determination for LoadP bool InstructForm::captures_bottom_type(FormDict &globals) const { if( _matrule && _matrule->_rChild && (!strcmp(_matrule->_rChild->_opType,"CastPP") || // new result type !strcmp(_matrule->_rChild->_opType,"CastX2P") || // new result type !strcmp(_matrule->_rChild->_opType,"DecodeN") || !strcmp(_matrule->_rChild->_opType,"EncodeP") || !strcmp(_matrule->_rChild->_opType,"DecodeNKlass") || !strcmp(_matrule->_rChild->_opType,"EncodePKlass") || !strcmp(_matrule->_rChild->_opType,"LoadN") || !strcmp(_matrule->_rChild->_opType,"GetAndSetN") || !strcmp(_matrule->_rChild->_opType,"LoadNKlass") || !strcmp(_matrule->_rChild->_opType,"CreateEx") || // type of exception !strcmp(_matrule->_rChild->_opType,"CheckCastPP")) ) return true; else if ( is_ideal_load() == Form::idealP ) return true; else if ( is_ideal_store() != Form::none ) return true; if (needs_base_oop_edge(globals)) return true; if (is_vector()) return true; if (is_mach_constant()) return true; return false; } // Access instr_cost attribute or return NULL. const char* InstructForm::cost() { for (Attribute* cur = _attribs; cur != NULL; cur = (Attribute*)cur->_next) { if( strcmp(cur->_ident,AttributeForm::_ins_cost) == 0 ) { return cur->_val; } } return NULL; } // Return count of top-level operands. uint InstructForm::num_opnds() { int num_opnds = _components.num_operands(); // Need special handling for matching some ideal nodes // i.e. Matching a return node /* if( _matrule ) { if( strcmp(_matrule->_opType,"Return" )==0 || strcmp(_matrule->_opType,"Halt" )==0 ) return 3; } */ return num_opnds; } // Return count of unmatched operands. uint InstructForm::num_post_match_opnds() { uint num_post_match_opnds = _components.count(); uint num_match_opnds = _components.match_count(); num_post_match_opnds = num_post_match_opnds - num_match_opnds; return num_post_match_opnds; } // Return the number of leaves below this complex operand uint InstructForm::num_consts(FormDict &globals) const { if ( ! _matrule) return 0; // This is a recursive invocation on all operands in the matchrule return _matrule->num_consts(globals); } // Constants in match rule with specified type uint InstructForm::num_consts(FormDict &globals, Form::DataType type) const { if ( ! _matrule) return 0; // This is a recursive invocation on all operands in the matchrule return _matrule->num_consts(globals, type); } // Return the register class associated with 'leaf'. const char *InstructForm::out_reg_class(FormDict &globals) { assert( false, "InstructForm::out_reg_class(FormDict &globals); Not Implemented"); return NULL; } // Lookup the starting position of inputs we are interested in wrt. ideal nodes uint InstructForm::oper_input_base(FormDict &globals) { if( !_matrule ) return 1; // Skip control for most nodes // Need special handling for matching some ideal nodes // i.e. Matching a return node if( strcmp(_matrule->_opType,"Return" )==0 || strcmp(_matrule->_opType,"Rethrow" )==0 || strcmp(_matrule->_opType,"TailCall" )==0 || strcmp(_matrule->_opType,"TailJump" )==0 || strcmp(_matrule->_opType,"SafePoint" )==0 || strcmp(_matrule->_opType,"Halt" )==0 ) return AdlcVMDeps::Parms; // Skip the machine-state edges if( _matrule->_rChild && ( strcmp(_matrule->_rChild->_opType,"AryEq" )==0 || strcmp(_matrule->_rChild->_opType,"StrComp" )==0 || strcmp(_matrule->_rChild->_opType,"StrEquals" )==0 || strcmp(_matrule->_rChild->_opType,"StrIndexOf")==0 )) { // String.(compareTo/equals/indexOf) and Arrays.equals // take 1 control and 1 memory edges. return 2; } // Check for handling of 'Memory' input/edge in the ideal world. // The AD file writer is shielded from knowledge of these edges. int base = 1; // Skip control base += _matrule->needs_ideal_memory_edge(globals); // Also skip the base-oop value for uses of derived oops. // The AD file writer is shielded from knowledge of these edges. base += needs_base_oop_edge(globals); return base; } // Implementation does not modify state of internal structures void InstructForm::build_components() { // Add top-level operands to the components if (_matrule) _matrule->append_components(_localNames, _components); // Add parameters that "do not appear in match rule". bool has_temp = false; const char *name; const char *kill_name = NULL; for (_parameters.reset(); (name = _parameters.iter()) != NULL;) { OperandForm *opForm = (OperandForm*)_localNames[name]; Effect* e = NULL; { const Form* form = _effects[name]; e = form ? form->is_effect() : NULL; } if (e != NULL) { has_temp |= e->is(Component::TEMP); // KILLs must be declared after any TEMPs because TEMPs are real // uses so their operand numbering must directly follow the real // inputs from the match rule. Fixing the numbering seems // complex so simply enforce the restriction during parse. if (kill_name != NULL && e->isa(Component::TEMP) && !e->isa(Component::DEF)) { OperandForm* kill = (OperandForm*)_localNames[kill_name]; globalAD->syntax_err(_linenum, "%s: %s %s must be at the end of the argument list\n", _ident, kill->_ident, kill_name); } else if (e->isa(Component::KILL) && !e->isa(Component::USE)) { kill_name = name; } } const Component *component = _components.search(name); if ( component == NULL ) { if (e) { _components.insert(name, opForm->_ident, e->_use_def, false); component = _components.search(name); if (component->isa(Component::USE) && !component->isa(Component::TEMP) && _matrule) { const Form *form = globalAD->globalNames()[component->_type]; assert( form, "component type must be a defined form"); OperandForm *op = form->is_operand(); if (op->_interface && op->_interface->is_RegInterface()) { globalAD->syntax_err(_linenum, "%s: illegal USE of non-input: %s %s\n", _ident, opForm->_ident, name); } } } else { // This would be a nice warning but it triggers in a few places in a benign way // if (_matrule != NULL && !expands()) { // globalAD->syntax_err(_linenum, "%s: %s %s not mentioned in effect or match rule\n", // _ident, opForm->_ident, name); // } _components.insert(name, opForm->_ident, Component::INVALID, false); } } else if (e) { // Component was found in the list // Check if there is a new effect that requires an extra component. // This happens when adding 'USE' to a component that is not yet one. if ((!component->isa( Component::USE) && ((e->_use_def & Component::USE) != 0))) { if (component->isa(Component::USE) && _matrule) { const Form *form = globalAD->globalNames()[component->_type]; assert( form, "component type must be a defined form"); OperandForm *op = form->is_operand(); if (op->_interface && op->_interface->is_RegInterface()) { globalAD->syntax_err(_linenum, "%s: illegal USE of non-input: %s %s\n", _ident, opForm->_ident, name); } } _components.insert(name, opForm->_ident, e->_use_def, false); } else { Component *comp = (Component*)component; comp->promote_use_def_info(e->_use_def); } // Component positions are zero based. int pos = _components.operand_position(name); assert( ! (component->isa(Component::DEF) && (pos >= 1)), "Component::DEF can only occur in the first position"); } } // Resolving the interactions between expand rules and TEMPs would // be complex so simply disallow it. if (_matrule == NULL && has_temp) { globalAD->syntax_err(_linenum, "%s: TEMPs without match rule isn't supported\n", _ident); } return; } // Return zero-based position in component list; -1 if not in list. int InstructForm::operand_position(const char *name, int usedef) { return unique_opnds_idx(_components.operand_position(name, usedef)); } int InstructForm::operand_position_format(const char *name) { return unique_opnds_idx(_components.operand_position_format(name)); } // Return zero-based position in component list; -1 if not in list. int InstructForm::label_position() { return unique_opnds_idx(_components.label_position()); } int InstructForm::method_position() { return unique_opnds_idx(_components.method_position()); } // Return number of relocation entries needed for this instruction. uint InstructForm::reloc(FormDict &globals) { uint reloc_entries = 0; // Check for "Call" nodes if ( is_ideal_call() ) ++reloc_entries; if ( is_ideal_return() ) ++reloc_entries; if ( is_ideal_safepoint() ) ++reloc_entries; // Check if operands MAYBE oop pointers, by checking for ConP elements // Proceed through the leaves of the match-tree and check for ConPs if ( _matrule != NULL ) { uint position = 0; const char *result = NULL; const char *name = NULL; const char *opType = NULL; while (_matrule->base_operand(position, globals, result, name, opType)) { if ( strcmp(opType,"ConP") == 0 ) { #ifdef SPARC reloc_entries += 2; // 1 for sethi + 1 for setlo #else ++reloc_entries; #endif } ++position; } } // Above is only a conservative estimate // because it did not check contents of operand classes. // !!!!! !!!!! // Add 1 to reloc info for each operand class in the component list. Component *comp; _components.reset(); while ( (comp = _components.iter()) != NULL ) { const Form *form = globals[comp->_type]; assert( form, "Did not find component's type in global names"); const OpClassForm *opc = form->is_opclass(); const OperandForm *oper = form->is_operand(); if ( opc && (oper == NULL) ) { ++reloc_entries; } else if ( oper ) { // floats and doubles loaded out of method's constant pool require reloc info Form::DataType type = oper->is_base_constant(globals); if ( (type == Form::idealF) || (type == Form::idealD) ) { ++reloc_entries; } } } // Float and Double constants may come from the CodeBuffer table // and require relocatable addresses for access // !!!!! // Check for any component being an immediate float or double. Form::DataType data_type = is_chain_of_constant(globals); if( data_type==idealD || data_type==idealF ) { #ifdef SPARC // sparc required more relocation entries for floating constants // (expires 9/98) reloc_entries += 6; #else reloc_entries++; #endif } return reloc_entries; } // Utility function defined in archDesc.cpp extern bool is_def(int usedef); // Return the result of reducing an instruction const char *InstructForm::reduce_result() { const char* result = "Universe"; // default _components.reset(); Component *comp = _components.iter(); if (comp != NULL && comp->isa(Component::DEF)) { result = comp->_type; // Override this if the rule is a store operation: if (_matrule && _matrule->_rChild && is_store_to_memory(_matrule->_rChild->_opType)) result = "Universe"; } return result; } // Return the name of the operand on the right hand side of the binary match // Return NULL if there is no right hand side const char *InstructForm::reduce_right(FormDict &globals) const { if( _matrule == NULL ) return NULL; return _matrule->reduce_right(globals); } // Similar for left const char *InstructForm::reduce_left(FormDict &globals) const { if( _matrule == NULL ) return NULL; return _matrule->reduce_left(globals); } // Base class for this instruction, MachNode except for calls const char *InstructForm::mach_base_class(FormDict &globals) const { if( is_ideal_call() == Form::JAVA_STATIC ) { return "MachCallStaticJavaNode"; } else if( is_ideal_call() == Form::JAVA_DYNAMIC ) { return "MachCallDynamicJavaNode"; } else if( is_ideal_call() == Form::JAVA_RUNTIME ) { return "MachCallRuntimeNode"; } else if( is_ideal_call() == Form::JAVA_LEAF ) { return "MachCallLeafNode"; } else if (is_ideal_return()) { return "MachReturnNode"; } else if (is_ideal_halt()) { return "MachHaltNode"; } else if (is_ideal_safepoint()) { return "MachSafePointNode"; } else if (is_ideal_if()) { return "MachIfNode"; } else if (is_ideal_goto()) { return "MachGotoNode"; } else if (is_ideal_fastlock()) { return "MachFastLockNode"; } else if (is_ideal_nop()) { return "MachNopNode"; } else if (is_mach_constant()) { return "MachConstantNode"; } else if (captures_bottom_type(globals)) { return "MachTypeNode"; } else { return "MachNode"; } assert( false, "ShouldNotReachHere()"); return NULL; } // Compare the instruction predicates for textual equality bool equivalent_predicates( const InstructForm *instr1, const InstructForm *instr2 ) { const Predicate *pred1 = instr1->_predicate; const Predicate *pred2 = instr2->_predicate; if( pred1 == NULL && pred2 == NULL ) { // no predicates means they are identical return true; } if( pred1 != NULL && pred2 != NULL ) { // compare the predicates if (ADLParser::equivalent_expressions(pred1->_pred, pred2->_pred)) { return true; } } return false; } // Check if this instruction can cisc-spill to 'alternate' bool InstructForm::cisc_spills_to(ArchDesc &AD, InstructForm *instr) { assert( _matrule != NULL && instr->_matrule != NULL, "must have match rules"); // Do not replace if a cisc-version has been found. if( cisc_spill_operand() != Not_cisc_spillable ) return false; int cisc_spill_operand = Maybe_cisc_spillable; char *result = NULL; char *result2 = NULL; const char *op_name = NULL; const char *reg_type = NULL; FormDict &globals = AD.globalNames(); cisc_spill_operand = _matrule->matchrule_cisc_spill_match(globals, AD.get_registers(), instr->_matrule, op_name, reg_type); if( (cisc_spill_operand != Not_cisc_spillable) && (op_name != NULL) && equivalent_predicates(this, instr) ) { cisc_spill_operand = operand_position(op_name, Component::USE); int def_oper = operand_position(op_name, Component::DEF); if( def_oper == NameList::Not_in_list && instr->num_opnds() == num_opnds()) { // Do not support cisc-spilling for destination operands and // make sure they have the same number of operands. _cisc_spill_alternate = instr; instr->set_cisc_alternate(true); if( AD._cisc_spill_debug ) { fprintf(stderr, "Instruction %s cisc-spills-to %s\n", _ident, instr->_ident); fprintf(stderr, " using operand %s %s at index %d\n", reg_type, op_name, cisc_spill_operand); } // Record that a stack-version of the reg_mask is needed // !!!!! OperandForm *oper = (OperandForm*)(globals[reg_type]->is_operand()); assert( oper != NULL, "cisc-spilling non operand"); const char *reg_class_name = oper->constrained_reg_class(); AD.set_stack_or_reg(reg_class_name); const char *reg_mask_name = AD.reg_mask(*oper); set_cisc_reg_mask_name(reg_mask_name); const char *stack_or_reg_mask_name = AD.stack_or_reg_mask(*oper); } else { cisc_spill_operand = Not_cisc_spillable; } } else { cisc_spill_operand = Not_cisc_spillable; } set_cisc_spill_operand(cisc_spill_operand); return (cisc_spill_operand != Not_cisc_spillable); } // Check to see if this instruction can be replaced with the short branch // instruction `short-branch' bool InstructForm::check_branch_variant(ArchDesc &AD, InstructForm *short_branch) { if (_matrule != NULL && this != short_branch && // Don't match myself !is_short_branch() && // Don't match another short branch variant reduce_result() != NULL && strcmp(reduce_result(), short_branch->reduce_result()) == 0 && _matrule->equivalent(AD.globalNames(), short_branch->_matrule)) { // The instructions are equivalent. // Now verify that both instructions have the same parameters and // the same effects. Both branch forms should have the same inputs // and resulting projections to correctly replace a long branch node // with corresponding short branch node during code generation. bool different = false; if (short_branch->_components.count() != _components.count()) { different = true; } else if (_components.count() > 0) { short_branch->_components.reset(); _components.reset(); Component *comp; while ((comp = _components.iter()) != NULL) { Component *short_comp = short_branch->_components.iter(); if (short_comp == NULL || short_comp->_type != comp->_type || short_comp->_usedef != comp->_usedef) { different = true; break; } } if (short_branch->_components.iter() != NULL) different = true; } if (different) { globalAD->syntax_err(short_branch->_linenum, "Instruction %s and its short form %s have different parameters\n", _ident, short_branch->_ident); } if (AD._short_branch_debug) { fprintf(stderr, "Instruction %s has short form %s\n", _ident, short_branch->_ident); } _short_branch_form = short_branch; return true; } return false; } // --------------------------- FILE *output_routines // // Generate the format call for the replacement variable void InstructForm::rep_var_format(FILE *fp, const char *rep_var) { // Handle special constant table variables. if (strcmp(rep_var, "constanttablebase") == 0) { fprintf(fp, "char reg[128]; ra->dump_register(in(mach_constant_base_node_input()), reg);\n"); fprintf(fp, " st->print(\"%%s\", reg);\n"); return; } if (strcmp(rep_var, "constantoffset") == 0) { fprintf(fp, "st->print(\"#%%d\", constant_offset());\n"); return; } if (strcmp(rep_var, "constantaddress") == 0) { fprintf(fp, "st->print(\"constant table base + #%%d\", constant_offset());\n"); return; } // Find replacement variable's type const Form *form = _localNames[rep_var]; if (form == NULL) { fprintf(stderr, "unknown replacement variable in format statement: '%s'\n", rep_var); assert(false, "ShouldNotReachHere()"); } OpClassForm *opc = form->is_opclass(); assert( opc, "replacement variable was not found in local names"); // Lookup the index position of the replacement variable int idx = operand_position_format(rep_var); if ( idx == -1 ) { assert( strcmp(opc->_ident,"label")==0, "Unimplemented"); assert( false, "ShouldNotReachHere()"); } if (is_noninput_operand(idx)) { // This component isn't in the input array. Print out the static // name of the register. OperandForm* oper = form->is_operand(); if (oper != NULL && oper->is_bound_register()) { const RegDef* first = oper->get_RegClass()->find_first_elem(); fprintf(fp, " tty->print(\"%s\");\n", first->_regname); } else { globalAD->syntax_err(_linenum, "In %s can't find format for %s %s", _ident, opc->_ident, rep_var); } } else { // Output the format call for this operand fprintf(fp,"opnd_array(%d)->",idx); if (idx == 0) fprintf(fp,"int_format(ra, this, st); // %s\n", rep_var); else fprintf(fp,"ext_format(ra, this,idx%d, st); // %s\n", idx, rep_var ); } } // Seach through operands to determine parameters unique positions. void InstructForm::set_unique_opnds() { uint* uniq_idx = NULL; int nopnds = num_opnds(); uint num_uniq = nopnds; int i; _uniq_idx_length = 0; if ( nopnds > 0 ) { // Allocate index array. Worst case we're mapping from each // component back to an index and any DEF always goes at 0 so the // length of the array has to be the number of components + 1. _uniq_idx_length = _components.count() + 1; uniq_idx = (uint*) malloc(sizeof(uint)*(_uniq_idx_length)); for( i = 0; i < _uniq_idx_length; i++ ) { uniq_idx[i] = i; } } // Do it only if there is a match rule and no expand rule. With an // expand rule it is done by creating new mach node in Expand() // method. if ( nopnds > 0 && _matrule != NULL && _exprule == NULL ) { const char *name; uint count; bool has_dupl_use = false; _parameters.reset(); while( (name = _parameters.iter()) != NULL ) { count = 0; int position = 0; int uniq_position = 0; _components.reset(); Component *comp = NULL; if( sets_result() ) { comp = _components.iter(); position++; } // The next code is copied from the method operand_position(). for (; (comp = _components.iter()) != NULL; ++position) { // When the first component is not a DEF, // leave space for the result operand! if ( position==0 && (! comp->isa(Component::DEF)) ) { ++position; } if( strcmp(name, comp->_name)==0 ) { if( ++count > 1 ) { assert(position < _uniq_idx_length, "out of bounds"); uniq_idx[position] = uniq_position; has_dupl_use = true; } else { uniq_position = position; } } if( comp->isa(Component::DEF) && comp->isa(Component::USE) ) { ++position; if( position != 1 ) --position; // only use two slots for the 1st USE_DEF } } } if( has_dupl_use ) { for( i = 1; i < nopnds; i++ ) if( i != uniq_idx[i] ) break; int j = i; for( ; i < nopnds; i++ ) if( i == uniq_idx[i] ) uniq_idx[i] = j++; num_uniq = j; } } _uniq_idx = uniq_idx; _num_uniq = num_uniq; } // Generate index values needed for determining the operand position void InstructForm::index_temps(FILE *fp, FormDict &globals, const char *prefix, const char *receiver) { uint idx = 0; // position of operand in match rule int cur_num_opnds = num_opnds(); // Compute the index into vector of operand pointers: // idx0=0 is used to indicate that info comes from this same node, not from input edge. // idx1 starts at oper_input_base() if ( cur_num_opnds >= 1 ) { fprintf(fp," // Start at oper_input_base() and count operands\n"); fprintf(fp," unsigned %sidx0 = %d;\n", prefix, oper_input_base(globals)); fprintf(fp," unsigned %sidx1 = %d;\n", prefix, oper_input_base(globals)); // Generate starting points for other unique operands if they exist for ( idx = 2; idx < num_unique_opnds(); ++idx ) { if( *receiver == 0 ) { fprintf(fp," unsigned %sidx%d = %sidx%d + opnd_array(%d)->num_edges();\n", prefix, idx, prefix, idx-1, idx-1 ); } else { fprintf(fp," unsigned %sidx%d = %sidx%d + %s_opnds[%d]->num_edges();\n", prefix, idx, prefix, idx-1, receiver, idx-1 ); } } } if( *receiver != 0 ) { // This value is used by generate_peepreplace when copying a node. // Don't emit it in other cases since it can hide bugs with the // use invalid idx's. fprintf(fp," unsigned %sidx%d = %sreq(); \n", prefix, idx, receiver); } } // --------------------------- bool InstructForm::verify() { // !!!!! !!!!! // Check that a "label" operand occurs last in the operand list, if present return true; } void InstructForm::dump() { output(stderr); } void InstructForm::output(FILE *fp) { fprintf(fp,"\nInstruction: %s\n", (_ident?_ident:"")); if (_matrule) _matrule->output(fp); if (_insencode) _insencode->output(fp); if (_constant) _constant->output(fp); if (_opcode) _opcode->output(fp); if (_attribs) _attribs->output(fp); if (_predicate) _predicate->output(fp); if (_effects.Size()) { fprintf(fp,"Effects\n"); _effects.dump(); } if (_exprule) _exprule->output(fp); if (_rewrule) _rewrule->output(fp); if (_format) _format->output(fp); if (_peephole) _peephole->output(fp); } void MachNodeForm::dump() { output(stderr); } void MachNodeForm::output(FILE *fp) { fprintf(fp,"\nMachNode: %s\n", (_ident?_ident:"")); } //------------------------------build_predicate-------------------------------- // Build instruction predicates. If the user uses the same operand name // twice, we need to check that the operands are pointer-eequivalent in // the DFA during the labeling process. Predicate *InstructForm::build_predicate() { char buf[1024], *s=buf; Dict names(cmpstr,hashstr,Form::arena); // Map Names to counts MatchNode *mnode = strcmp(_matrule->_opType, "Set") ? _matrule : _matrule->_rChild; mnode->count_instr_names(names); uint first = 1; // Start with the predicate supplied in the .ad file. if( _predicate ) { if( first ) first=0; strcpy(s,"("); s += strlen(s); strcpy(s,_predicate->_pred); s += strlen(s); strcpy(s,")"); s += strlen(s); } for( DictI i(&names); i.test(); ++i ) { uintptr_t cnt = (uintptr_t)i._value; if( cnt > 1 ) { // Need a predicate at all? assert( cnt == 2, "Unimplemented" ); // Handle many pairs if( first ) first=0; else { // All tests must pass, so use '&&' strcpy(s," && "); s += strlen(s); } // Add predicate to working buffer sprintf(s,"/*%s*/(",(char*)i._key); s += strlen(s); mnode->build_instr_pred(s,(char*)i._key,0); s += strlen(s); strcpy(s," == "); s += strlen(s); mnode->build_instr_pred(s,(char*)i._key,1); s += strlen(s); strcpy(s,")"); s += strlen(s); } } if( s == buf ) s = NULL; else { assert( strlen(buf) < sizeof(buf), "String buffer overflow" ); s = strdup(buf); } return new Predicate(s); } //------------------------------EncodeForm------------------------------------- // Constructor EncodeForm::EncodeForm() : _encClass(cmpstr,hashstr, Form::arena) { } EncodeForm::~EncodeForm() { } // record a new register class EncClass *EncodeForm::add_EncClass(const char *className) { EncClass *encClass = new EncClass(className); _eclasses.addName(className); _encClass.Insert(className,encClass); return encClass; } // Lookup the function body for an encoding class EncClass *EncodeForm::encClass(const char *className) { assert( className != NULL, "Must provide a defined encoding name"); EncClass *encClass = (EncClass*)_encClass[className]; return encClass; } // Lookup the function body for an encoding class const char *EncodeForm::encClassBody(const char *className) { if( className == NULL ) return NULL; EncClass *encClass = (EncClass*)_encClass[className]; assert( encClass != NULL, "Encode Class is missing."); encClass->_code.reset(); const char *code = (const char*)encClass->_code.iter(); assert( code != NULL, "Found an empty encode class body."); return code; } // Lookup the function body for an encoding class const char *EncodeForm::encClassPrototype(const char *className) { assert( className != NULL, "Encode class name must be non NULL."); return className; } void EncodeForm::dump() { // Debug printer output(stderr); } void EncodeForm::output(FILE *fp) { // Write info to output files const char *name; fprintf(fp,"\n"); fprintf(fp,"-------------------- Dump EncodeForm --------------------\n"); for (_eclasses.reset(); (name = _eclasses.iter()) != NULL;) { ((EncClass*)_encClass[name])->output(fp); } fprintf(fp,"-------------------- end EncodeForm --------------------\n"); } //------------------------------EncClass--------------------------------------- EncClass::EncClass(const char *name) : _localNames(cmpstr,hashstr, Form::arena), _name(name) { } EncClass::~EncClass() { } // Add a parameter pair void EncClass::add_parameter(const char *parameter_type, const char *parameter_name) { _parameter_type.addName( parameter_type ); _parameter_name.addName( parameter_name ); } // Verify operand types in parameter list bool EncClass::check_parameter_types(FormDict &globals) { // !!!!! return false; } // Add the decomposed "code" sections of an encoding's code-block void EncClass::add_code(const char *code) { _code.addName(code); } // Add the decomposed "replacement variables" of an encoding's code-block void EncClass::add_rep_var(char *replacement_var) { _code.addName(NameList::_signal); _rep_vars.addName(replacement_var); } // Lookup the function body for an encoding class int EncClass::rep_var_index(const char *rep_var) { uint position = 0; const char *name = NULL; _parameter_name.reset(); while ( (name = _parameter_name.iter()) != NULL ) { if ( strcmp(rep_var,name) == 0 ) return position; ++position; } return -1; } // Check after parsing bool EncClass::verify() { // 1!!!! // Check that each replacement variable, '$name' in architecture description // is actually a local variable for this encode class, or a reserved name // "primary, secondary, tertiary" return true; } void EncClass::dump() { output(stderr); } // Write info to output files void EncClass::output(FILE *fp) { fprintf(fp,"EncClass: %s", (_name ? _name : "")); // Output the parameter list _parameter_type.reset(); _parameter_name.reset(); const char *type = _parameter_type.iter(); const char *name = _parameter_name.iter(); fprintf(fp, " ( "); for ( ; (type != NULL) && (name != NULL); (type = _parameter_type.iter()), (name = _parameter_name.iter()) ) { fprintf(fp, " %s %s,", type, name); } fprintf(fp, " ) "); // Output the code block _code.reset(); _rep_vars.reset(); const char *code; while ( (code = _code.iter()) != NULL ) { if ( _code.is_signal(code) ) { // A replacement variable const char *rep_var = _rep_vars.iter(); fprintf(fp,"($%s)", rep_var); } else { // A section of code fprintf(fp,"%s", code); } } } //------------------------------Opcode----------------------------------------- Opcode::Opcode(char *primary, char *secondary, char *tertiary) : _primary(primary), _secondary(secondary), _tertiary(tertiary) { } Opcode::~Opcode() { } Opcode::opcode_type Opcode::as_opcode_type(const char *param) { if( strcmp(param,"primary") == 0 ) { return Opcode::PRIMARY; } else if( strcmp(param,"secondary") == 0 ) { return Opcode::SECONDARY; } else if( strcmp(param,"tertiary") == 0 ) { return Opcode::TERTIARY; } return Opcode::NOT_AN_OPCODE; } bool Opcode::print_opcode(FILE *fp, Opcode::opcode_type desired_opcode) { // Default values previously provided by MachNode::primary()... const char *description = NULL; const char *value = NULL; // Check if user provided any opcode definitions if( this != NULL ) { // Update 'value' if user provided a definition in the instruction switch (desired_opcode) { case PRIMARY: description = "primary()"; if( _primary != NULL) { value = _primary; } break; case SECONDARY: description = "secondary()"; if( _secondary != NULL ) { value = _secondary; } break; case TERTIARY: description = "tertiary()"; if( _tertiary != NULL ) { value = _tertiary; } break; default: assert( false, "ShouldNotReachHere();"); break; } } if (value != NULL) { fprintf(fp, "(%s /*%s*/)", value, description); } return value != NULL; } void Opcode::dump() { output(stderr); } // Write info to output files void Opcode::output(FILE *fp) { if (_primary != NULL) fprintf(fp,"Primary opcode: %s\n", _primary); if (_secondary != NULL) fprintf(fp,"Secondary opcode: %s\n", _secondary); if (_tertiary != NULL) fprintf(fp,"Tertiary opcode: %s\n", _tertiary); } //------------------------------InsEncode-------------------------------------- InsEncode::InsEncode() { } InsEncode::~InsEncode() { } // Add "encode class name" and its parameters NameAndList *InsEncode::add_encode(char *encoding) { assert( encoding != NULL, "Must provide name for encoding"); // add_parameter(NameList::_signal); NameAndList *encode = new NameAndList(encoding); _encoding.addName((char*)encode); return encode; } // Access the list of encodings void InsEncode::reset() { _encoding.reset(); // _parameter.reset(); } const char* InsEncode::encode_class_iter() { NameAndList *encode_class = (NameAndList*)_encoding.iter(); return ( encode_class != NULL ? encode_class->name() : NULL ); } // Obtain parameter name from zero based index const char *InsEncode::rep_var_name(InstructForm &inst, uint param_no) { NameAndList *params = (NameAndList*)_encoding.current(); assert( params != NULL, "Internal Error"); const char *param = (*params)[param_no]; // Remove '$' if parser placed it there. return ( param != NULL && *param == '$') ? (param+1) : param; } void InsEncode::dump() { output(stderr); } // Write info to output files void InsEncode::output(FILE *fp) { NameAndList *encoding = NULL; const char *parameter = NULL; fprintf(fp,"InsEncode: "); _encoding.reset(); while ( (encoding = (NameAndList*)_encoding.iter()) != 0 ) { // Output the encoding being used fprintf(fp,"%s(", encoding->name() ); // Output its parameter list, if any bool first_param = true; encoding->reset(); while ( (parameter = encoding->iter()) != 0 ) { // Output the ',' between parameters if ( ! first_param ) fprintf(fp,", "); first_param = false; // Output the parameter fprintf(fp,"%s", parameter); } // done with parameters fprintf(fp,") "); } // done with encodings fprintf(fp,"\n"); } //------------------------------Effect----------------------------------------- static int effect_lookup(const char *name) { if(!strcmp(name, "USE")) return Component::USE; if(!strcmp(name, "DEF")) return Component::DEF; if(!strcmp(name, "USE_DEF")) return Component::USE_DEF; if(!strcmp(name, "KILL")) return Component::KILL; if(!strcmp(name, "USE_KILL")) return Component::USE_KILL; if(!strcmp(name, "TEMP")) return Component::TEMP; if(!strcmp(name, "INVALID")) return Component::INVALID; if(!strcmp(name, "CALL")) return Component::CALL; assert( false,"Invalid effect name specified\n"); return Component::INVALID; } Effect::Effect(const char *name) : _name(name), _use_def(effect_lookup(name)) { _ftype = Form::EFF; } Effect::~Effect() { } // Dynamic type check Effect *Effect::is_effect() const { return (Effect*)this; } // True if this component is equal to the parameter. bool Effect::is(int use_def_kill_enum) const { return (_use_def == use_def_kill_enum ? true : false); } // True if this component is used/def'd/kill'd as the parameter suggests. bool Effect::isa(int use_def_kill_enum) const { return (_use_def & use_def_kill_enum) == use_def_kill_enum; } void Effect::dump() { output(stderr); } void Effect::output(FILE *fp) { // Write info to output files fprintf(fp,"Effect: %s\n", (_name?_name:"")); } //------------------------------ExpandRule------------------------------------- ExpandRule::ExpandRule() : _expand_instrs(), _newopconst(cmpstr, hashstr, Form::arena) { _ftype = Form::EXP; } ExpandRule::~ExpandRule() { // Destructor } void ExpandRule::add_instruction(NameAndList *instruction_name_and_operand_list) { _expand_instrs.addName((char*)instruction_name_and_operand_list); } void ExpandRule::reset_instructions() { _expand_instrs.reset(); } NameAndList* ExpandRule::iter_instructions() { return (NameAndList*)_expand_instrs.iter(); } void ExpandRule::dump() { output(stderr); } void ExpandRule::output(FILE *fp) { // Write info to output files NameAndList *expand_instr = NULL; const char *opid = NULL; fprintf(fp,"\nExpand Rule:\n"); // Iterate over the instructions 'node' expands into for(reset_instructions(); (expand_instr = iter_instructions()) != NULL; ) { fprintf(fp,"%s(", expand_instr->name()); // iterate over the operand list for( expand_instr->reset(); (opid = expand_instr->iter()) != NULL; ) { fprintf(fp,"%s ", opid); } fprintf(fp,");\n"); } } //------------------------------RewriteRule------------------------------------ RewriteRule::RewriteRule(char* params, char* block) : _tempParams(params), _tempBlock(block) { }; // Constructor RewriteRule::~RewriteRule() { // Destructor } void RewriteRule::dump() { output(stderr); } void RewriteRule::output(FILE *fp) { // Write info to output files fprintf(fp,"\nRewrite Rule:\n%s\n%s\n", (_tempParams?_tempParams:""), (_tempBlock?_tempBlock:"")); } //==============================MachNodes====================================== //------------------------------MachNodeForm----------------------------------- MachNodeForm::MachNodeForm(char *id) : _ident(id) { } MachNodeForm::~MachNodeForm() { } MachNodeForm *MachNodeForm::is_machnode() const { return (MachNodeForm*)this; } //==============================Operand Classes================================ //------------------------------OpClassForm------------------------------------ OpClassForm::OpClassForm(const char* id) : _ident(id) { _ftype = Form::OPCLASS; } OpClassForm::~OpClassForm() { } bool OpClassForm::ideal_only() const { return 0; } OpClassForm *OpClassForm::is_opclass() const { return (OpClassForm*)this; } Form::InterfaceType OpClassForm::interface_type(FormDict &globals) const { if( _oplst.count() == 0 ) return Form::no_interface; // Check that my operands have the same interface type Form::InterfaceType interface; bool first = true; NameList &op_list = (NameList &)_oplst; op_list.reset(); const char *op_name; while( (op_name = op_list.iter()) != NULL ) { const Form *form = globals[op_name]; OperandForm *operand = form->is_operand(); assert( operand, "Entry in operand class that is not an operand"); if( first ) { first = false; interface = operand->interface_type(globals); } else { interface = (interface == operand->interface_type(globals) ? interface : Form::no_interface); } } return interface; } bool OpClassForm::stack_slots_only(FormDict &globals) const { if( _oplst.count() == 0 ) return false; // how? NameList &op_list = (NameList &)_oplst; op_list.reset(); const char *op_name; while( (op_name = op_list.iter()) != NULL ) { const Form *form = globals[op_name]; OperandForm *operand = form->is_operand(); assert( operand, "Entry in operand class that is not an operand"); if( !operand->stack_slots_only(globals) ) return false; } return true; } void OpClassForm::dump() { output(stderr); } void OpClassForm::output(FILE *fp) { const char *name; fprintf(fp,"\nOperand Class: %s\n", (_ident?_ident:"")); fprintf(fp,"\nCount = %d\n", _oplst.count()); for(_oplst.reset(); (name = _oplst.iter()) != NULL;) { fprintf(fp,"%s, ",name); } fprintf(fp,"\n"); } //==============================Operands======================================= //------------------------------OperandForm------------------------------------ OperandForm::OperandForm(const char* id) : OpClassForm(id), _ideal_only(false), _localNames(cmpstr, hashstr, Form::arena) { _ftype = Form::OPER; _matrule = NULL; _interface = NULL; _attribs = NULL; _predicate = NULL; _constraint= NULL; _construct = NULL; _format = NULL; } OperandForm::OperandForm(const char* id, bool ideal_only) : OpClassForm(id), _ideal_only(ideal_only), _localNames(cmpstr, hashstr, Form::arena) { _ftype = Form::OPER; _matrule = NULL; _interface = NULL; _attribs = NULL; _predicate = NULL; _constraint= NULL; _construct = NULL; _format = NULL; } OperandForm::~OperandForm() { } OperandForm *OperandForm::is_operand() const { return (OperandForm*)this; } bool OperandForm::ideal_only() const { return _ideal_only; } Form::InterfaceType OperandForm::interface_type(FormDict &globals) const { if( _interface == NULL ) return Form::no_interface; return _interface->interface_type(globals); } bool OperandForm::stack_slots_only(FormDict &globals) const { if( _constraint == NULL ) return false; return _constraint->stack_slots_only(); } // Access op_cost attribute or return NULL. const char* OperandForm::cost() { for (Attribute* cur = _attribs; cur != NULL; cur = (Attribute*)cur->_next) { if( strcmp(cur->_ident,AttributeForm::_op_cost) == 0 ) { return cur->_val; } } return NULL; } // Return the number of leaves below this complex operand uint OperandForm::num_leaves() const { if ( ! _matrule) return 0; int num_leaves = _matrule->_numleaves; return num_leaves; } // Return the number of constants contained within this complex operand uint OperandForm::num_consts(FormDict &globals) const { if ( ! _matrule) return 0; // This is a recursive invocation on all operands in the matchrule return _matrule->num_consts(globals); } // Return the number of constants in match rule with specified type uint OperandForm::num_consts(FormDict &globals, Form::DataType type) const { if ( ! _matrule) return 0; // This is a recursive invocation on all operands in the matchrule return _matrule->num_consts(globals, type); } // Return the number of pointer constants contained within this complex operand uint OperandForm::num_const_ptrs(FormDict &globals) const { if ( ! _matrule) return 0; // This is a recursive invocation on all operands in the matchrule return _matrule->num_const_ptrs(globals); } uint OperandForm::num_edges(FormDict &globals) const { uint edges = 0; uint leaves = num_leaves(); uint consts = num_consts(globals); // If we are matching a constant directly, there are no leaves. edges = ( leaves > consts ) ? leaves - consts : 0; // !!!!! // Special case operands that do not have a corresponding ideal node. if( (edges == 0) && (consts == 0) ) { if( constrained_reg_class() != NULL ) { edges = 1; } else { if( _matrule && (_matrule->_lChild == NULL) && (_matrule->_rChild == NULL) ) { const Form *form = globals[_matrule->_opType]; OperandForm *oper = form ? form->is_operand() : NULL; if( oper ) { return oper->num_edges(globals); } } } } return edges; } // Check if this operand is usable for cisc-spilling bool OperandForm::is_cisc_reg(FormDict &globals) const { const char *ideal = ideal_type(globals); bool is_cisc_reg = (ideal && (ideal_to_Reg_type(ideal) != none)); return is_cisc_reg; } bool OpClassForm::is_cisc_mem(FormDict &globals) const { Form::InterfaceType my_interface = interface_type(globals); return (my_interface == memory_interface); } // node matches ideal 'Bool' bool OperandForm::is_ideal_bool() const { if( _matrule == NULL ) return false; return _matrule->is_ideal_bool(); } // Require user's name for an sRegX to be stackSlotX Form::DataType OperandForm::is_user_name_for_sReg() const { DataType data_type = none; if( _ident != NULL ) { if( strcmp(_ident,"stackSlotI") == 0 ) data_type = Form::idealI; else if( strcmp(_ident,"stackSlotP") == 0 ) data_type = Form::idealP; else if( strcmp(_ident,"stackSlotD") == 0 ) data_type = Form::idealD; else if( strcmp(_ident,"stackSlotF") == 0 ) data_type = Form::idealF; else if( strcmp(_ident,"stackSlotL") == 0 ) data_type = Form::idealL; } assert((data_type == none) || (_matrule == NULL), "No match-rule for stackSlotX"); return data_type; } // Return ideal type, if there is a single ideal type for this operand const char *OperandForm::ideal_type(FormDict &globals, RegisterForm *registers) const { const char *type = NULL; if (ideal_only()) type = _ident; else if( _matrule == NULL ) { // Check for condition code register const char *rc_name = constrained_reg_class(); // !!!!! if (rc_name == NULL) return NULL; // !!!!! !!!!! // Check constraints on result's register class if( registers ) { RegClass *reg_class = registers->getRegClass(rc_name); assert( reg_class != NULL, "Register class is not defined"); // Check for ideal type of entries in register class, all are the same type reg_class->reset(); RegDef *reg_def = reg_class->RegDef_iter(); assert( reg_def != NULL, "No entries in register class"); assert( reg_def->_idealtype != NULL, "Did not define ideal type for register"); // Return substring that names the register's ideal type type = reg_def->_idealtype + 3; assert( *(reg_def->_idealtype + 0) == 'O', "Expect Op_ prefix"); assert( *(reg_def->_idealtype + 1) == 'p', "Expect Op_ prefix"); assert( *(reg_def->_idealtype + 2) == '_', "Expect Op_ prefix"); } } else if( _matrule->_lChild == NULL && _matrule->_rChild == NULL ) { // This operand matches a single type, at the top level. // Check for ideal type type = _matrule->_opType; if( strcmp(type,"Bool") == 0 ) return "Bool"; // transitive lookup const Form *frm = globals[type]; OperandForm *op = frm->is_operand(); type = op->ideal_type(globals, registers); } return type; } // If there is a single ideal type for this interface field, return it. const char *OperandForm::interface_ideal_type(FormDict &globals, const char *field) const { const char *ideal_type = NULL; const char *value = NULL; // Check if "field" is valid for this operand's interface if ( ! is_interface_field(field, value) ) return ideal_type; // !!!!! !!!!! !!!!! // If a valid field has a constant value, identify "ConI" or "ConP" or ... // Else, lookup type of field's replacement variable return ideal_type; } RegClass* OperandForm::get_RegClass() const { if (_interface && !_interface->is_RegInterface()) return NULL; return globalAD->get_registers()->getRegClass(constrained_reg_class()); } bool OperandForm::is_bound_register() const { RegClass *reg_class = get_RegClass(); if (reg_class == NULL) return false; const char * name = ideal_type(globalAD->globalNames()); if (name == NULL) return false; int size = 0; if (strcmp(name,"RegFlags")==0) size = 1; if (strcmp(name,"RegI")==0) size = 1; if (strcmp(name,"RegF")==0) size = 1; if (strcmp(name,"RegD")==0) size = 2; if (strcmp(name,"RegL")==0) size = 2; if (strcmp(name,"RegN")==0) size = 1; if (strcmp(name,"RegP")==0) size = globalAD->get_preproc_def("_LP64") ? 2 : 1; if (size == 0) return false; return size == reg_class->size(); } // Check if this is a valid field for this operand, // Return 'true' if valid, and set the value to the string the user provided. bool OperandForm::is_interface_field(const char *field, const char * &value) const { return false; } // Return register class name if a constraint specifies the register class. const char *OperandForm::constrained_reg_class() const { const char *reg_class = NULL; if ( _constraint ) { // !!!!! Constraint *constraint = _constraint; if ( strcmp(_constraint->_func,"ALLOC_IN_RC") == 0 ) { reg_class = _constraint->_arg; } } return reg_class; } // Return the register class associated with 'leaf'. const char *OperandForm::in_reg_class(uint leaf, FormDict &globals) { const char *reg_class = NULL; // "RegMask::Empty"; if((_matrule == NULL) || (_matrule->is_chain_rule(globals))) { reg_class = constrained_reg_class(); return reg_class; } const char *result = NULL; const char *name = NULL; const char *type = NULL; // iterate through all base operands // until we reach the register that corresponds to "leaf" // This function is not looking for an ideal type. It needs the first // level user type associated with the leaf. for(uint idx = 0;_matrule->base_operand(idx,globals,result,name,type);++idx) { const Form *form = (_localNames[name] ? _localNames[name] : globals[result]); OperandForm *oper = form ? form->is_operand() : NULL; if( oper ) { reg_class = oper->constrained_reg_class(); if( reg_class ) { reg_class = reg_class; } else { // ShouldNotReachHere(); } } else { // ShouldNotReachHere(); } // Increment our target leaf position if current leaf is not a candidate. if( reg_class == NULL) ++leaf; // Exit the loop with the value of reg_class when at the correct index if( idx == leaf ) break; // May iterate through all base operands if reg_class for 'leaf' is NULL } return reg_class; } // Recursive call to construct list of top-level operands. // Implementation does not modify state of internal structures void OperandForm::build_components() { if (_matrule) _matrule->append_components(_localNames, _components); // Add parameters that "do not appear in match rule". const char *name; for (_parameters.reset(); (name = _parameters.iter()) != NULL;) { OperandForm *opForm = (OperandForm*)_localNames[name]; if ( _components.operand_position(name) == -1 ) { _components.insert(name, opForm->_ident, Component::INVALID, false); } } return; } int OperandForm::operand_position(const char *name, int usedef) { return _components.operand_position(name, usedef); } // Return zero-based position in component list, only counting constants; // Return -1 if not in list. int OperandForm::constant_position(FormDict &globals, const Component *last) { // Iterate through components and count constants preceding 'constant' int position = 0; Component *comp; _components.reset(); while( (comp = _components.iter()) != NULL && (comp != last) ) { // Special case for operands that take a single user-defined operand // Skip the initial definition in the component list. if( strcmp(comp->_name,this->_ident) == 0 ) continue; const char *type = comp->_type; // Lookup operand form for replacement variable's type const Form *form = globals[type]; assert( form != NULL, "Component's type not found"); OperandForm *oper = form ? form->is_operand() : NULL; if( oper ) { if( oper->_matrule->is_base_constant(globals) != Form::none ) { ++position; } } } // Check for being passed a component that was not in the list if( comp != last ) position = -1; return position; } // Provide position of constant by "name" int OperandForm::constant_position(FormDict &globals, const char *name) { const Component *comp = _components.search(name); int idx = constant_position( globals, comp ); return idx; } // Return zero-based position in component list, only counting constants; // Return -1 if not in list. int OperandForm::register_position(FormDict &globals, const char *reg_name) { // Iterate through components and count registers preceding 'last' uint position = 0; Component *comp; _components.reset(); while( (comp = _components.iter()) != NULL && (strcmp(comp->_name,reg_name) != 0) ) { // Special case for operands that take a single user-defined operand // Skip the initial definition in the component list. if( strcmp(comp->_name,this->_ident) == 0 ) continue; const char *type = comp->_type; // Lookup operand form for component's type const Form *form = globals[type]; assert( form != NULL, "Component's type not found"); OperandForm *oper = form ? form->is_operand() : NULL; if( oper ) { if( oper->_matrule->is_base_register(globals) ) { ++position; } } } return position; } const char *OperandForm::reduce_result() const { return _ident; } // Return the name of the operand on the right hand side of the binary match // Return NULL if there is no right hand side const char *OperandForm::reduce_right(FormDict &globals) const { return ( _matrule ? _matrule->reduce_right(globals) : NULL ); } // Similar for left const char *OperandForm::reduce_left(FormDict &globals) const { return ( _matrule ? _matrule->reduce_left(globals) : NULL ); } // --------------------------- FILE *output_routines // // Output code for disp_is_oop, if true. void OperandForm::disp_is_oop(FILE *fp, FormDict &globals) { // Check it is a memory interface with a non-user-constant disp field if ( this->_interface == NULL ) return; MemInterface *mem_interface = this->_interface->is_MemInterface(); if ( mem_interface == NULL ) return; const char *disp = mem_interface->_disp; if ( *disp != '$' ) return; // Lookup replacement variable in operand's component list const char *rep_var = disp + 1; const Component *comp = this->_components.search(rep_var); assert( comp != NULL, "Replacement variable not found in components"); // Lookup operand form for replacement variable's type const char *type = comp->_type; Form *form = (Form*)globals[type]; assert( form != NULL, "Replacement variable's type not found"); OperandForm *op = form->is_operand(); assert( op, "Memory Interface 'disp' can only emit an operand form"); // Check if this is a ConP, which may require relocation if ( op->is_base_constant(globals) == Form::idealP ) { // Find the constant's index: _c0, _c1, _c2, ... , _cN uint idx = op->constant_position( globals, rep_var); fprintf(fp," virtual relocInfo::relocType disp_reloc() const {"); fprintf(fp, " return _c%d->reloc();", idx); fprintf(fp, " }\n"); } } // Generate code for internal and external format methods // // internal access to reg# node->_idx // access to subsumed constant _c0, _c1, void OperandForm::int_format(FILE *fp, FormDict &globals, uint index) { Form::DataType dtype; if (_matrule && (_matrule->is_base_register(globals) || strcmp(ideal_type(globalAD->globalNames()), "RegFlags") == 0)) { // !!!!! !!!!! fprintf(fp, "{ char reg_str[128];\n"); fprintf(fp," ra->dump_register(node,reg_str);\n"); fprintf(fp," tty->print(\"%cs\",reg_str);\n",'%'); fprintf(fp," }\n"); } else if (_matrule && (dtype = _matrule->is_base_constant(globals)) != Form::none) { format_constant( fp, index, dtype ); } else if (ideal_to_sReg_type(_ident) != Form::none) { // Special format for Stack Slot Register fprintf(fp, "{ char reg_str[128];\n"); fprintf(fp," ra->dump_register(node,reg_str);\n"); fprintf(fp," tty->print(\"%cs\",reg_str);\n",'%'); fprintf(fp," }\n"); } else { fprintf(fp,"tty->print(\"No format defined for %s\n\");\n", _ident); fflush(fp); fprintf(stderr,"No format defined for %s\n", _ident); dump(); assert( false,"Internal error:\n output_internal_operand() attempting to output other than a Register or Constant"); } } // Similar to "int_format" but for cases where data is external to operand // external access to reg# node->in(idx)->_idx, void OperandForm::ext_format(FILE *fp, FormDict &globals, uint index) { Form::DataType dtype; if (_matrule && (_matrule->is_base_register(globals) || strcmp(ideal_type(globalAD->globalNames()), "RegFlags") == 0)) { fprintf(fp, "{ char reg_str[128];\n"); fprintf(fp," ra->dump_register(node->in(idx"); if ( index != 0 ) fprintf(fp, "+%d",index); fprintf(fp, "),reg_str);\n"); fprintf(fp," tty->print(\"%cs\",reg_str);\n",'%'); fprintf(fp," }\n"); } else if (_matrule && (dtype = _matrule->is_base_constant(globals)) != Form::none) { format_constant( fp, index, dtype ); } else if (ideal_to_sReg_type(_ident) != Form::none) { // Special format for Stack Slot Register fprintf(fp, "{ char reg_str[128];\n"); fprintf(fp," ra->dump_register(node->in(idx"); if ( index != 0 ) fprintf(fp, "+%d",index); fprintf(fp, "),reg_str);\n"); fprintf(fp," tty->print(\"%cs\",reg_str);\n",'%'); fprintf(fp," }\n"); } else { fprintf(fp,"tty->print(\"No format defined for %s\n\");\n", _ident); assert( false,"Internal error:\n output_external_operand() attempting to output other than a Register or Constant"); } } void OperandForm::format_constant(FILE *fp, uint const_index, uint const_type) { switch(const_type) { case Form::idealI: fprintf(fp,"st->print(\"#%%d\", _c%d);\n", const_index); break; case Form::idealP: fprintf(fp,"_c%d->dump_on(st);\n", const_index); break; case Form::idealNKlass: case Form::idealN: fprintf(fp,"_c%d->dump_on(st);\n", const_index); break; case Form::idealL: fprintf(fp,"st->print(\"#%%lld\", _c%d);\n", const_index); break; case Form::idealF: fprintf(fp,"st->print(\"#%%f\", _c%d);\n", const_index); break; case Form::idealD: fprintf(fp,"st->print(\"#%%f\", _c%d);\n", const_index); break; default: assert( false, "ShouldNotReachHere()"); } } // Return the operand form corresponding to the given index, else NULL. OperandForm *OperandForm::constant_operand(FormDict &globals, uint index) { // !!!!! // Check behavior on complex operands uint n_consts = num_consts(globals); if( n_consts > 0 ) { uint i = 0; const char *type; Component *comp; _components.reset(); if ((comp = _components.iter()) == NULL) { assert(n_consts == 1, "Bad component list detected.\n"); // Current operand is THE operand if ( index == 0 ) { return this; } } // end if NULL else { // Skip the first component, it can not be a DEF of a constant do { type = comp->base_type(globals); // Check that "type" is a 'ConI', 'ConP', ... if ( ideal_to_const_type(type) != Form::none ) { // When at correct component, get corresponding Operand if ( index == 0 ) { return globals[comp->_type]->is_operand(); } // Decrement number of constants to go --index; } } while((comp = _components.iter()) != NULL); } } // Did not find a constant for this index. return NULL; } // If this operand has a single ideal type, return its type Form::DataType OperandForm::simple_type(FormDict &globals) const { const char *type_name = ideal_type(globals); Form::DataType type = type_name ? ideal_to_const_type( type_name ) : Form::none; return type; } Form::DataType OperandForm::is_base_constant(FormDict &globals) const { if ( _matrule == NULL ) return Form::none; return _matrule->is_base_constant(globals); } // "true" if this operand is a simple type that is swallowed bool OperandForm::swallowed(FormDict &globals) const { Form::DataType type = simple_type(globals); if( type != Form::none ) { return true; } return false; } // Output code to access the value of the index'th constant void OperandForm::access_constant(FILE *fp, FormDict &globals, uint const_index) { OperandForm *oper = constant_operand(globals, const_index); assert( oper, "Index exceeds number of constants in operand"); Form::DataType dtype = oper->is_base_constant(globals); switch(dtype) { case idealI: fprintf(fp,"_c%d", const_index); break; case idealP: fprintf(fp,"_c%d->get_con()",const_index); break; case idealL: fprintf(fp,"_c%d", const_index); break; case idealF: fprintf(fp,"_c%d", const_index); break; case idealD: fprintf(fp,"_c%d", const_index); break; default: assert( false, "ShouldNotReachHere()"); } } void OperandForm::dump() { output(stderr); } void OperandForm::output(FILE *fp) { fprintf(fp,"\nOperand: %s\n", (_ident?_ident:"")); if (_matrule) _matrule->dump(); if (_interface) _interface->dump(); if (_attribs) _attribs->dump(); if (_predicate) _predicate->dump(); if (_constraint) _constraint->dump(); if (_construct) _construct->dump(); if (_format) _format->dump(); } //------------------------------Constraint------------------------------------- Constraint::Constraint(const char *func, const char *arg) : _func(func), _arg(arg) { } Constraint::~Constraint() { /* not owner of char* */ } bool Constraint::stack_slots_only() const { return strcmp(_func, "ALLOC_IN_RC") == 0 && strcmp(_arg, "stack_slots") == 0; } void Constraint::dump() { output(stderr); } void Constraint::output(FILE *fp) { // Write info to output files assert((_func != NULL && _arg != NULL),"missing constraint function or arg"); fprintf(fp,"Constraint: %s ( %s )\n", _func, _arg); } //------------------------------Predicate-------------------------------------- Predicate::Predicate(char *pr) : _pred(pr) { } Predicate::~Predicate() { } void Predicate::dump() { output(stderr); } void Predicate::output(FILE *fp) { fprintf(fp,"Predicate"); // Write to output files } //------------------------------Interface-------------------------------------- Interface::Interface(const char *name) : _name(name) { } Interface::~Interface() { } Form::InterfaceType Interface::interface_type(FormDict &globals) const { Interface *thsi = (Interface*)this; if ( thsi->is_RegInterface() ) return Form::register_interface; if ( thsi->is_MemInterface() ) return Form::memory_interface; if ( thsi->is_ConstInterface() ) return Form::constant_interface; if ( thsi->is_CondInterface() ) return Form::conditional_interface; return Form::no_interface; } RegInterface *Interface::is_RegInterface() { if ( strcmp(_name,"REG_INTER") != 0 ) return NULL; return (RegInterface*)this; } MemInterface *Interface::is_MemInterface() { if ( strcmp(_name,"MEMORY_INTER") != 0 ) return NULL; return (MemInterface*)this; } ConstInterface *Interface::is_ConstInterface() { if ( strcmp(_name,"CONST_INTER") != 0 ) return NULL; return (ConstInterface*)this; } CondInterface *Interface::is_CondInterface() { if ( strcmp(_name,"COND_INTER") != 0 ) return NULL; return (CondInterface*)this; } void Interface::dump() { output(stderr); } // Write info to output files void Interface::output(FILE *fp) { fprintf(fp,"Interface: %s\n", (_name ? _name : "") ); } //------------------------------RegInterface----------------------------------- RegInterface::RegInterface() : Interface("REG_INTER") { } RegInterface::~RegInterface() { } void RegInterface::dump() { output(stderr); } // Write info to output files void RegInterface::output(FILE *fp) { Interface::output(fp); } //------------------------------ConstInterface--------------------------------- ConstInterface::ConstInterface() : Interface("CONST_INTER") { } ConstInterface::~ConstInterface() { } void ConstInterface::dump() { output(stderr); } // Write info to output files void ConstInterface::output(FILE *fp) { Interface::output(fp); } //------------------------------MemInterface----------------------------------- MemInterface::MemInterface(char *base, char *index, char *scale, char *disp) : Interface("MEMORY_INTER"), _base(base), _index(index), _scale(scale), _disp(disp) { } MemInterface::~MemInterface() { // not owner of any character arrays } void MemInterface::dump() { output(stderr); } // Write info to output files void MemInterface::output(FILE *fp) { Interface::output(fp); if ( _base != NULL ) fprintf(fp," base == %s\n", _base); if ( _index != NULL ) fprintf(fp," index == %s\n", _index); if ( _scale != NULL ) fprintf(fp," scale == %s\n", _scale); if ( _disp != NULL ) fprintf(fp," disp == %s\n", _disp); // fprintf(fp,"\n"); } //------------------------------CondInterface---------------------------------- CondInterface::CondInterface(const char* equal, const char* equal_format, const char* not_equal, const char* not_equal_format, const char* less, const char* less_format, const char* greater_equal, const char* greater_equal_format, const char* less_equal, const char* less_equal_format, const char* greater, const char* greater_format) : Interface("COND_INTER"), _equal(equal), _equal_format(equal_format), _not_equal(not_equal), _not_equal_format(not_equal_format), _less(less), _less_format(less_format), _greater_equal(greater_equal), _greater_equal_format(greater_equal_format), _less_equal(less_equal), _less_equal_format(less_equal_format), _greater(greater), _greater_format(greater_format) { } CondInterface::~CondInterface() { // not owner of any character arrays } void CondInterface::dump() { output(stderr); } // Write info to output files void CondInterface::output(FILE *fp) { Interface::output(fp); if ( _equal != NULL ) fprintf(fp," equal == %s\n", _equal); if ( _not_equal != NULL ) fprintf(fp," not_equal == %s\n", _not_equal); if ( _less != NULL ) fprintf(fp," less == %s\n", _less); if ( _greater_equal != NULL ) fprintf(fp," greater_equal == %s\n", _greater_equal); if ( _less_equal != NULL ) fprintf(fp," less_equal == %s\n", _less_equal); if ( _greater != NULL ) fprintf(fp," greater == %s\n", _greater); // fprintf(fp,"\n"); } //------------------------------ConstructRule---------------------------------- ConstructRule::ConstructRule(char *cnstr) : _construct(cnstr) { } ConstructRule::~ConstructRule() { } void ConstructRule::dump() { output(stderr); } void ConstructRule::output(FILE *fp) { fprintf(fp,"\nConstruct Rule\n"); // Write to output files } //==============================Shared Forms=================================== //------------------------------AttributeForm---------------------------------- int AttributeForm::_insId = 0; // start counter at 0 int AttributeForm::_opId = 0; // start counter at 0 const char* AttributeForm::_ins_cost = "ins_cost"; // required name const char* AttributeForm::_op_cost = "op_cost"; // required name AttributeForm::AttributeForm(char *attr, int type, char *attrdef) : Form(Form::ATTR), _attrname(attr), _atype(type), _attrdef(attrdef) { if (type==OP_ATTR) { id = ++_opId; } else if (type==INS_ATTR) { id = ++_insId; } else assert( false,""); } AttributeForm::~AttributeForm() { } // Dynamic type check AttributeForm *AttributeForm::is_attribute() const { return (AttributeForm*)this; } // inlined // int AttributeForm::type() { return id;} void AttributeForm::dump() { output(stderr); } void AttributeForm::output(FILE *fp) { if( _attrname && _attrdef ) { fprintf(fp,"\n// AttributeForm \nstatic const int %s = %s;\n", _attrname, _attrdef); } else { fprintf(fp,"\n// AttributeForm missing name %s or definition %s\n", (_attrname?_attrname:""), (_attrdef?_attrdef:"") ); } } //------------------------------Component-------------------------------------- Component::Component(const char *name, const char *type, int usedef) : _name(name), _type(type), _usedef(usedef) { _ftype = Form::COMP; } Component::~Component() { } // True if this component is equal to the parameter. bool Component::is(int use_def_kill_enum) const { return (_usedef == use_def_kill_enum ? true : false); } // True if this component is used/def'd/kill'd as the parameter suggests. bool Component::isa(int use_def_kill_enum) const { return (_usedef & use_def_kill_enum) == use_def_kill_enum; } // Extend this component with additional use/def/kill behavior int Component::promote_use_def_info(int new_use_def) { _usedef |= new_use_def; return _usedef; } // Check the base type of this component, if it has one const char *Component::base_type(FormDict &globals) { const Form *frm = globals[_type]; if (frm == NULL) return NULL; OperandForm *op = frm->is_operand(); if (op == NULL) return NULL; if (op->ideal_only()) return op->_ident; return (char *)op->ideal_type(globals); } void Component::dump() { output(stderr); } void Component::output(FILE *fp) { fprintf(fp,"Component:"); // Write to output files fprintf(fp, " name = %s", _name); fprintf(fp, ", type = %s", _type); const char * usedef = "Undefined Use/Def info"; switch (_usedef) { case USE: usedef = "USE"; break; case USE_DEF: usedef = "USE_DEF"; break; case USE_KILL: usedef = "USE_KILL"; break; case KILL: usedef = "KILL"; break; case TEMP: usedef = "TEMP"; break; case DEF: usedef = "DEF"; break; default: assert(false, "unknown effect"); } fprintf(fp, ", use/def = %s\n", usedef); } //------------------------------ComponentList--------------------------------- ComponentList::ComponentList() : NameList(), _matchcnt(0) { } ComponentList::~ComponentList() { // // This list may not own its elements if copied via assignment // Component *component; // for (reset(); (component = iter()) != NULL;) { // delete component; // } } void ComponentList::insert(Component *component, bool mflag) { NameList::addName((char *)component); if(mflag) _matchcnt++; } void ComponentList::insert(const char *name, const char *opType, int usedef, bool mflag) { Component * component = new Component(name, opType, usedef); insert(component, mflag); } Component *ComponentList::current() { return (Component*)NameList::current(); } Component *ComponentList::iter() { return (Component*)NameList::iter(); } Component *ComponentList::match_iter() { if(_iter < _matchcnt) return (Component*)NameList::iter(); return NULL; } Component *ComponentList::post_match_iter() { Component *comp = iter(); // At end of list? if ( comp == NULL ) { return comp; } // In post-match components? if (_iter > match_count()-1) { return comp; } return post_match_iter(); } void ComponentList::reset() { NameList::reset(); } int ComponentList::count() { return NameList::count(); } Component *ComponentList::operator[](int position) { // Shortcut complete iteration if there are not enough entries if (position >= count()) return NULL; int index = 0; Component *component = NULL; for (reset(); (component = iter()) != NULL;) { if (index == position) { return component; } ++index; } return NULL; } const Component *ComponentList::search(const char *name) { PreserveIter pi(this); reset(); for( Component *comp = NULL; ((comp = iter()) != NULL); ) { if( strcmp(comp->_name,name) == 0 ) return comp; } return NULL; } // Return number of USEs + number of DEFs // When there are no components, or the first component is a USE, // then we add '1' to hold a space for the 'result' operand. int ComponentList::num_operands() { PreserveIter pi(this); uint count = 1; // result operand uint position = 0; Component *component = NULL; for( reset(); (component = iter()) != NULL; ++position ) { if( component->isa(Component::USE) || ( position == 0 && (! component->isa(Component::DEF))) ) { ++count; } } return count; } // Return zero-based position in list; -1 if not in list. // if parameter 'usedef' is ::USE, it will match USE, USE_DEF, ... int ComponentList::operand_position(const char *name, int usedef) { PreserveIter pi(this); int position = 0; int num_opnds = num_operands(); Component *component; Component* preceding_non_use = NULL; Component* first_def = NULL; for (reset(); (component = iter()) != NULL; ++position) { // When the first component is not a DEF, // leave space for the result operand! if ( position==0 && (! component->isa(Component::DEF)) ) { ++position; ++num_opnds; } if (strcmp(name, component->_name)==0 && (component->isa(usedef))) { // When the first entry in the component list is a DEF and a USE // Treat them as being separate, a DEF first, then a USE if( position==0 && usedef==Component::USE && component->isa(Component::DEF) ) { assert(position+1 < num_opnds, "advertised index in bounds"); return position+1; } else { if( preceding_non_use && strcmp(component->_name, preceding_non_use->_name) ) { fprintf(stderr, "the name '%s' should not precede the name '%s'\n", preceding_non_use->_name, name); } if( position >= num_opnds ) { fprintf(stderr, "the name '%s' is too late in its name list\n", name); } assert(position < num_opnds, "advertised index in bounds"); return position; } } if( component->isa(Component::DEF) && component->isa(Component::USE) ) { ++position; if( position != 1 ) --position; // only use two slots for the 1st USE_DEF } if( component->isa(Component::DEF) && !first_def ) { first_def = component; } if( !component->isa(Component::USE) && component != first_def ) { preceding_non_use = component; } else if( preceding_non_use && !strcmp(component->_name, preceding_non_use->_name) ) { preceding_non_use = NULL; } } return Not_in_list; } // Find position for this name, regardless of use/def information int ComponentList::operand_position(const char *name) { PreserveIter pi(this); int position = 0; Component *component; for (reset(); (component = iter()) != NULL; ++position) { // When the first component is not a DEF, // leave space for the result operand! if ( position==0 && (! component->isa(Component::DEF)) ) { ++position; } if (strcmp(name, component->_name)==0) { return position; } if( component->isa(Component::DEF) && component->isa(Component::USE) ) { ++position; if( position != 1 ) --position; // only use two slots for the 1st USE_DEF } } return Not_in_list; } int ComponentList::operand_position_format(const char *name) { PreserveIter pi(this); int first_position = operand_position(name); int use_position = operand_position(name, Component::USE); return ((first_position < use_position) ? use_position : first_position); } int ComponentList::label_position() { PreserveIter pi(this); int position = 0; reset(); for( Component *comp; (comp = iter()) != NULL; ++position) { // When the first component is not a DEF, // leave space for the result operand! if ( position==0 && (! comp->isa(Component::DEF)) ) { ++position; } if (strcmp(comp->_type, "label")==0) { return position; } if( comp->isa(Component::DEF) && comp->isa(Component::USE) ) { ++position; if( position != 1 ) --position; // only use two slots for the 1st USE_DEF } } return -1; } int ComponentList::method_position() { PreserveIter pi(this); int position = 0; reset(); for( Component *comp; (comp = iter()) != NULL; ++position) { // When the first component is not a DEF, // leave space for the result operand! if ( position==0 && (! comp->isa(Component::DEF)) ) { ++position; } if (strcmp(comp->_type, "method")==0) { return position; } if( comp->isa(Component::DEF) && comp->isa(Component::USE) ) { ++position; if( position != 1 ) --position; // only use two slots for the 1st USE_DEF } } return -1; } void ComponentList::dump() { output(stderr); } void ComponentList::output(FILE *fp) { PreserveIter pi(this); fprintf(fp, "\n"); Component *component; for (reset(); (component = iter()) != NULL;) { component->output(fp); } fprintf(fp, "\n"); } //------------------------------MatchNode-------------------------------------- MatchNode::MatchNode(ArchDesc &ad, const char *result, const char *mexpr, const char *opType, MatchNode *lChild, MatchNode *rChild) : _AD(ad), _result(result), _name(mexpr), _opType(opType), _lChild(lChild), _rChild(rChild), _internalop(0), _numleaves(0), _commutative_id(0) { _numleaves = (lChild ? lChild->_numleaves : 0) + (rChild ? rChild->_numleaves : 0); } MatchNode::MatchNode(ArchDesc &ad, MatchNode& mnode) : _AD(ad), _result(mnode._result), _name(mnode._name), _opType(mnode._opType), _lChild(mnode._lChild), _rChild(mnode._rChild), _internalop(0), _numleaves(mnode._numleaves), _commutative_id(mnode._commutative_id) { } MatchNode::MatchNode(ArchDesc &ad, MatchNode& mnode, int clone) : _AD(ad), _result(mnode._result), _name(mnode._name), _opType(mnode._opType), _internalop(0), _numleaves(mnode._numleaves), _commutative_id(mnode._commutative_id) { if (mnode._lChild) { _lChild = new MatchNode(ad, *mnode._lChild, clone); } else { _lChild = NULL; } if (mnode._rChild) { _rChild = new MatchNode(ad, *mnode._rChild, clone); } else { _rChild = NULL; } } MatchNode::~MatchNode() { // // This node may not own its children if copied via assignment // if( _lChild ) delete _lChild; // if( _rChild ) delete _rChild; } bool MatchNode::find_type(const char *type, int &position) const { if ( (_lChild != NULL) && (_lChild->find_type(type, position)) ) return true; if ( (_rChild != NULL) && (_rChild->find_type(type, position)) ) return true; if (strcmp(type,_opType)==0) { return true; } else { ++position; } return false; } // Recursive call collecting info on top-level operands, not transitive. // Implementation does not modify state of internal structures. void MatchNode::append_components(FormDict& locals, ComponentList& components, bool def_flag) const { int usedef = def_flag ? Component::DEF : Component::USE; FormDict &globals = _AD.globalNames(); assert (_name != NULL, "MatchNode::build_components encountered empty node\n"); // Base case if (_lChild==NULL && _rChild==NULL) { // If _opType is not an operation, do not build a component for it ##### const Form *f = globals[_opType]; if( f != NULL ) { // Add non-ideals that are operands, operand-classes, if( ! f->ideal_only() && (f->is_opclass() || f->is_operand()) ) { components.insert(_name, _opType, usedef, true); } } return; } // Promote results of "Set" to DEF bool tmpdef_flag = (!strcmp(_opType, "Set")) ? true : false; if (_lChild) _lChild->append_components(locals, components, tmpdef_flag); tmpdef_flag = false; // only applies to component immediately following 'Set' if (_rChild) _rChild->append_components(locals, components, tmpdef_flag); } // Find the n'th base-operand in the match node, // recursively investigates match rules of user-defined operands. // // Implementation does not modify state of internal structures since they // can be shared. bool MatchNode::base_operand(uint &position, FormDict &globals, const char * &result, const char * &name, const char * &opType) const { assert (_name != NULL, "MatchNode::base_operand encountered empty node\n"); // Base case if (_lChild==NULL && _rChild==NULL) { // Check for special case: "Universe", "label" if (strcmp(_opType,"Universe") == 0 || strcmp(_opType,"label")==0 ) { if (position == 0) { result = _result; name = _name; opType = _opType; return 1; } else { -- position; return 0; } } const Form *form = globals[_opType]; MatchNode *matchNode = NULL; // Check for user-defined type if (form) { // User operand or instruction? OperandForm *opForm = form->is_operand(); InstructForm *inForm = form->is_instruction(); if ( opForm ) { matchNode = (MatchNode*)opForm->_matrule; } else if ( inForm ) { matchNode = (MatchNode*)inForm->_matrule; } } // if this is user-defined, recurse on match rule // User-defined operand and instruction forms have a match-rule. if (matchNode) { return (matchNode->base_operand(position,globals,result,name,opType)); } else { // Either not a form, or a system-defined form (no match rule). if (position==0) { result = _result; name = _name; opType = _opType; return 1; } else { --position; return 0; } } } else { // Examine the left child and right child as well if (_lChild) { if (_lChild->base_operand(position, globals, result, name, opType)) return 1; } if (_rChild) { if (_rChild->base_operand(position, globals, result, name, opType)) return 1; } } return 0; } // Recursive call on all operands' match rules in my match rule. uint MatchNode::num_consts(FormDict &globals) const { uint index = 0; uint num_consts = 0; const char *result; const char *name; const char *opType; for (uint position = index; base_operand(position,globals,result,name,opType); position = index) { ++index; if( ideal_to_const_type(opType) ) num_consts++; } return num_consts; } // Recursive call on all operands' match rules in my match rule. // Constants in match rule subtree with specified type uint MatchNode::num_consts(FormDict &globals, Form::DataType type) const { uint index = 0; uint num_consts = 0; const char *result; const char *name; const char *opType; for (uint position = index; base_operand(position,globals,result,name,opType); position = index) { ++index; if( ideal_to_const_type(opType) == type ) num_consts++; } return num_consts; } // Recursive call on all operands' match rules in my match rule. uint MatchNode::num_const_ptrs(FormDict &globals) const { return num_consts( globals, Form::idealP ); } bool MatchNode::sets_result() const { return ( (strcmp(_name,"Set") == 0) ? true : false ); } const char *MatchNode::reduce_right(FormDict &globals) const { // If there is no right reduction, return NULL. const char *rightStr = NULL; // If we are a "Set", start from the right child. const MatchNode *const mnode = sets_result() ? (const MatchNode *const)this->_rChild : (const MatchNode *const)this; // If our right child exists, it is the right reduction if ( mnode->_rChild ) { rightStr = mnode->_rChild->_internalop ? mnode->_rChild->_internalop : mnode->_rChild->_opType; } // Else, May be simple chain rule: (Set dst operand_form), rightStr=NULL; return rightStr; } const char *MatchNode::reduce_left(FormDict &globals) const { // If there is no left reduction, return NULL. const char *leftStr = NULL; // If we are a "Set", start from the right child. const MatchNode *const mnode = sets_result() ? (const MatchNode *const)this->_rChild : (const MatchNode *const)this; // If our left child exists, it is the left reduction if ( mnode->_lChild ) { leftStr = mnode->_lChild->_internalop ? mnode->_lChild->_internalop : mnode->_lChild->_opType; } else { // May be simple chain rule: (Set dst operand_form_source) if ( sets_result() ) { OperandForm *oper = globals[mnode->_opType]->is_operand(); if( oper ) { leftStr = mnode->_opType; } } } return leftStr; } //------------------------------count_instr_names------------------------------ // Count occurrences of operands names in the leaves of the instruction // match rule. void MatchNode::count_instr_names( Dict &names ) { if( !this ) return; if( _lChild ) _lChild->count_instr_names(names); if( _rChild ) _rChild->count_instr_names(names); if( !_lChild && !_rChild ) { uintptr_t cnt = (uintptr_t)names[_name]; cnt++; // One more name found names.Insert(_name,(void*)cnt); } } //------------------------------build_instr_pred------------------------------- // Build a path to 'name' in buf. Actually only build if cnt is zero, so we // can skip some leading instances of 'name'. int MatchNode::build_instr_pred( char *buf, const char *name, int cnt ) { if( _lChild ) { if( !cnt ) strcpy( buf, "_kids[0]->" ); cnt = _lChild->build_instr_pred( buf+strlen(buf), name, cnt ); if( cnt < 0 ) return cnt; // Found it, all done } if( _rChild ) { if( !cnt ) strcpy( buf, "_kids[1]->" ); cnt = _rChild->build_instr_pred( buf+strlen(buf), name, cnt ); if( cnt < 0 ) return cnt; // Found it, all done } if( !_lChild && !_rChild ) { // Found a leaf // Wrong name? Give up... if( strcmp(name,_name) ) return cnt; if( !cnt ) strcpy(buf,"_leaf"); return cnt-1; } return cnt; } //------------------------------build_internalop------------------------------- // Build string representation of subtree void MatchNode::build_internalop( ) { char *iop, *subtree; const char *lstr, *rstr; // Build string representation of subtree // Operation lchildType rchildType int len = (int)strlen(_opType) + 4; lstr = (_lChild) ? ((_lChild->_internalop) ? _lChild->_internalop : _lChild->_opType) : ""; rstr = (_rChild) ? ((_rChild->_internalop) ? _rChild->_internalop : _rChild->_opType) : ""; len += (int)strlen(lstr) + (int)strlen(rstr); subtree = (char *)malloc(len); sprintf(subtree,"_%s_%s_%s", _opType, lstr, rstr); // Hash the subtree string in _internalOps; if a name exists, use it iop = (char *)_AD._internalOps[subtree]; // Else create a unique name, and add it to the hash table if (iop == NULL) { iop = subtree; _AD._internalOps.Insert(subtree, iop); _AD._internalOpNames.addName(iop); _AD._internalMatch.Insert(iop, this); } // Add the internal operand name to the MatchNode _internalop = iop; _result = iop; } void MatchNode::dump() { output(stderr); } void MatchNode::output(FILE *fp) { if (_lChild==0 && _rChild==0) { fprintf(fp," %s",_name); // operand } else { fprintf(fp," (%s ",_name); // " (opcodeName " if(_lChild) _lChild->output(fp); // left operand if(_rChild) _rChild->output(fp); // right operand fprintf(fp,")"); // ")" } } int MatchNode::needs_ideal_memory_edge(FormDict &globals) const { static const char *needs_ideal_memory_list[] = { "StoreI","StoreL","StoreP","StoreN","StoreNKlass","StoreD","StoreF" , "StoreB","StoreC","Store" ,"StoreFP", "LoadI", "LoadL", "LoadP" ,"LoadN", "LoadD" ,"LoadF" , "LoadB" , "LoadUB", "LoadUS" ,"LoadS" ,"Load" , "StoreVector", "LoadVector", "LoadRange", "LoadKlass", "LoadNKlass", "LoadL_unaligned", "LoadD_unaligned", "LoadPLocked", "StorePConditional", "StoreIConditional", "StoreLConditional", "CompareAndSwapI", "CompareAndSwapL", "CompareAndSwapP", "CompareAndSwapN", "StoreCM", "ClearArray", "GetAndAddI", "GetAndSetI", "GetAndSetP", "GetAndAddL", "GetAndSetL", "GetAndSetN", }; int cnt = sizeof(needs_ideal_memory_list)/sizeof(char*); if( strcmp(_opType,"PrefetchRead")==0 || strcmp(_opType,"PrefetchWrite")==0 || strcmp(_opType,"PrefetchAllocation")==0 ) return 1; if( _lChild ) { const char *opType = _lChild->_opType; for( int i=0; ineeds_ideal_memory_edge(globals) ) return 1; } if( _rChild ) { const char *opType = _rChild->_opType; for( int i=0; ineeds_ideal_memory_edge(globals) ) return 1; } return 0; } // TRUE if defines a derived oop, and so needs a base oop edge present // post-matching. int MatchNode::needs_base_oop_edge() const { if( !strcmp(_opType,"AddP") ) return 1; if( strcmp(_opType,"Set") ) return 0; return !strcmp(_rChild->_opType,"AddP"); } int InstructForm::needs_base_oop_edge(FormDict &globals) const { if( is_simple_chain_rule(globals) ) { const char *src = _matrule->_rChild->_opType; OperandForm *src_op = globals[src]->is_operand(); assert( src_op, "Not operand class of chain rule" ); return src_op->_matrule ? src_op->_matrule->needs_base_oop_edge() : 0; } // Else check instruction return _matrule ? _matrule->needs_base_oop_edge() : 0; } //-------------------------cisc spilling methods------------------------------- // helper routines and methods for detecting cisc-spilling instructions //-------------------------cisc_spill_merge------------------------------------ int MatchNode::cisc_spill_merge(int left_spillable, int right_spillable) { int cisc_spillable = Maybe_cisc_spillable; // Combine results of left and right checks if( (left_spillable == Maybe_cisc_spillable) && (right_spillable == Maybe_cisc_spillable) ) { // neither side is spillable, nor prevents cisc spilling cisc_spillable = Maybe_cisc_spillable; } else if( (left_spillable == Maybe_cisc_spillable) && (right_spillable > Maybe_cisc_spillable) ) { // right side is spillable cisc_spillable = right_spillable; } else if( (right_spillable == Maybe_cisc_spillable) && (left_spillable > Maybe_cisc_spillable) ) { // left side is spillable cisc_spillable = left_spillable; } else if( (left_spillable == Not_cisc_spillable) || (right_spillable == Not_cisc_spillable) ) { // left or right prevents cisc spilling this instruction cisc_spillable = Not_cisc_spillable; } else { // Only allow one to spill cisc_spillable = Not_cisc_spillable; } return cisc_spillable; } //-------------------------root_ops_match-------------------------------------- bool static root_ops_match(FormDict &globals, const char *op1, const char *op2) { // Base Case: check that the current operands/operations match assert( op1, "Must have op's name"); assert( op2, "Must have op's name"); const Form *form1 = globals[op1]; const Form *form2 = globals[op2]; return (form1 == form2); } //-------------------------cisc_spill_match_node------------------------------- // Recursively check two MatchRules for legal conversion via cisc-spilling int MatchNode::cisc_spill_match(FormDict& globals, RegisterForm* registers, MatchNode* mRule2, const char* &operand, const char* ®_type) { int cisc_spillable = Maybe_cisc_spillable; int left_spillable = Maybe_cisc_spillable; int right_spillable = Maybe_cisc_spillable; // Check that each has same number of operands at this level if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable; // Base Case: check that the current operands/operations match // or are CISC spillable assert( _opType, "Must have _opType"); assert( mRule2->_opType, "Must have _opType"); const Form *form = globals[_opType]; const Form *form2 = globals[mRule2->_opType]; if( form == form2 ) { cisc_spillable = Maybe_cisc_spillable; } else { const InstructForm *form2_inst = form2 ? form2->is_instruction() : NULL; const char *name_left = mRule2->_lChild ? mRule2->_lChild->_opType : NULL; const char *name_right = mRule2->_rChild ? mRule2->_rChild->_opType : NULL; DataType data_type = Form::none; if (form->is_operand()) { // Make sure the loadX matches the type of the reg data_type = form->ideal_to_Reg_type(form->is_operand()->ideal_type(globals)); } // Detect reg vs (loadX memory) if( form->is_cisc_reg(globals) && form2_inst && data_type != Form::none && (is_load_from_memory(mRule2->_opType) == data_type) // reg vs. (load memory) && (name_left != NULL) // NOT (load) && (name_right == NULL) ) { // NOT (load memory foo) const Form *form2_left = name_left ? globals[name_left] : NULL; if( form2_left && form2_left->is_cisc_mem(globals) ) { cisc_spillable = Is_cisc_spillable; operand = _name; reg_type = _result; return Is_cisc_spillable; } else { cisc_spillable = Not_cisc_spillable; } } // Detect reg vs memory else if( form->is_cisc_reg(globals) && form2->is_cisc_mem(globals) ) { cisc_spillable = Is_cisc_spillable; operand = _name; reg_type = _result; return Is_cisc_spillable; } else { cisc_spillable = Not_cisc_spillable; } } // If cisc is still possible, check rest of tree if( cisc_spillable == Maybe_cisc_spillable ) { // Check that each has same number of operands at this level if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable; // Check left operands if( (_lChild == NULL) && (mRule2->_lChild == NULL) ) { left_spillable = Maybe_cisc_spillable; } else { left_spillable = _lChild->cisc_spill_match(globals, registers, mRule2->_lChild, operand, reg_type); } // Check right operands if( (_rChild == NULL) && (mRule2->_rChild == NULL) ) { right_spillable = Maybe_cisc_spillable; } else { right_spillable = _rChild->cisc_spill_match(globals, registers, mRule2->_rChild, operand, reg_type); } // Combine results of left and right checks cisc_spillable = cisc_spill_merge(left_spillable, right_spillable); } return cisc_spillable; } //---------------------------cisc_spill_match_rule------------------------------ // Recursively check two MatchRules for legal conversion via cisc-spilling // This method handles the root of Match tree, // general recursive checks done in MatchNode int MatchRule::matchrule_cisc_spill_match(FormDict& globals, RegisterForm* registers, MatchRule* mRule2, const char* &operand, const char* ®_type) { int cisc_spillable = Maybe_cisc_spillable; int left_spillable = Maybe_cisc_spillable; int right_spillable = Maybe_cisc_spillable; // Check that each sets a result if( !(sets_result() && mRule2->sets_result()) ) return Not_cisc_spillable; // Check that each has same number of operands at this level if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable; // Check left operands: at root, must be target of 'Set' if( (_lChild == NULL) || (mRule2->_lChild == NULL) ) { left_spillable = Not_cisc_spillable; } else { // Do not support cisc-spilling instruction's target location if( root_ops_match(globals, _lChild->_opType, mRule2->_lChild->_opType) ) { left_spillable = Maybe_cisc_spillable; } else { left_spillable = Not_cisc_spillable; } } // Check right operands: recursive walk to identify reg->mem operand if( (_rChild == NULL) && (mRule2->_rChild == NULL) ) { right_spillable = Maybe_cisc_spillable; } else { right_spillable = _rChild->cisc_spill_match(globals, registers, mRule2->_rChild, operand, reg_type); } // Combine results of left and right checks cisc_spillable = cisc_spill_merge(left_spillable, right_spillable); return cisc_spillable; } //----------------------------- equivalent ------------------------------------ // Recursively check to see if two match rules are equivalent. // This rule handles the root. bool MatchRule::equivalent(FormDict &globals, MatchNode *mRule2) { // Check that each sets a result if (sets_result() != mRule2->sets_result()) { return false; } // Check that the current operands/operations match assert( _opType, "Must have _opType"); assert( mRule2->_opType, "Must have _opType"); const Form *form = globals[_opType]; const Form *form2 = globals[mRule2->_opType]; if( form != form2 ) { return false; } if (_lChild ) { if( !_lChild->equivalent(globals, mRule2->_lChild) ) return false; } else if (mRule2->_lChild) { return false; // I have NULL left child, mRule2 has non-NULL left child. } if (_rChild ) { if( !_rChild->equivalent(globals, mRule2->_rChild) ) return false; } else if (mRule2->_rChild) { return false; // I have NULL right child, mRule2 has non-NULL right child. } // We've made it through the gauntlet. return true; } //----------------------------- equivalent ------------------------------------ // Recursively check to see if two match rules are equivalent. // This rule handles the operands. bool MatchNode::equivalent(FormDict &globals, MatchNode *mNode2) { if( !mNode2 ) return false; // Check that the current operands/operations match assert( _opType, "Must have _opType"); assert( mNode2->_opType, "Must have _opType"); const Form *form = globals[_opType]; const Form *form2 = globals[mNode2->_opType]; if( form != form2 ) { return false; } // Check that their children also match if (_lChild ) { if( !_lChild->equivalent(globals, mNode2->_lChild) ) return false; } else if (mNode2->_lChild) { return false; // I have NULL left child, mNode2 has non-NULL left child. } if (_rChild ) { if( !_rChild->equivalent(globals, mNode2->_rChild) ) return false; } else if (mNode2->_rChild) { return false; // I have NULL right child, mNode2 has non-NULL right child. } // We've made it through the gauntlet. return true; } //-------------------------- has_commutative_op ------------------------------- // Recursively check for commutative operations with subtree operands // which could be swapped. void MatchNode::count_commutative_op(int& count) { static const char *commut_op_list[] = { "AddI","AddL","AddF","AddD", "AndI","AndL", "MaxI","MinI", "MulI","MulL","MulF","MulD", "OrI" ,"OrL" , "XorI","XorL" }; int cnt = sizeof(commut_op_list)/sizeof(char*); if( _lChild && _rChild && (_lChild->_lChild || _rChild->_lChild) ) { // Don't swap if right operand is an immediate constant. bool is_const = false; if( _rChild->_lChild == NULL && _rChild->_rChild == NULL ) { FormDict &globals = _AD.globalNames(); const Form *form = globals[_rChild->_opType]; if ( form ) { OperandForm *oper = form->is_operand(); if( oper && oper->interface_type(globals) == Form::constant_interface ) is_const = true; } } if( !is_const ) { for( int i=0; i 0 break; } } } } if( _lChild ) _lChild->count_commutative_op(count); if( _rChild ) _rChild->count_commutative_op(count); } //-------------------------- swap_commutative_op ------------------------------ // Recursively swap specified commutative operation with subtree operands. void MatchNode::swap_commutative_op(bool atroot, int id) { if( _commutative_id == id ) { // id should be > 0 assert(_lChild && _rChild && (_lChild->_lChild || _rChild->_lChild ), "not swappable operation"); MatchNode* tmp = _lChild; _lChild = _rChild; _rChild = tmp; // Don't exit here since we need to build internalop. } bool is_set = ( strcmp(_opType, "Set") == 0 ); if( _lChild ) _lChild->swap_commutative_op(is_set, id); if( _rChild ) _rChild->swap_commutative_op(is_set, id); // If not the root, reduce this subtree to an internal operand if( !atroot && (_lChild || _rChild) ) { build_internalop(); } } //-------------------------- swap_commutative_op ------------------------------ // Recursively swap specified commutative operation with subtree operands. void MatchRule::matchrule_swap_commutative_op(const char* instr_ident, int count, int& match_rules_cnt) { assert(match_rules_cnt < 100," too many match rule clones"); // Clone MatchRule* clone = new MatchRule(_AD, this); // Swap operands of commutative operation ((MatchNode*)clone)->swap_commutative_op(true, count); char* buf = (char*) malloc(strlen(instr_ident) + 4); sprintf(buf, "%s_%d", instr_ident, match_rules_cnt++); clone->_result = buf; clone->_next = this->_next; this-> _next = clone; if( (--count) > 0 ) { this-> matchrule_swap_commutative_op(instr_ident, count, match_rules_cnt); clone->matchrule_swap_commutative_op(instr_ident, count, match_rules_cnt); } } //------------------------------MatchRule-------------------------------------- MatchRule::MatchRule(ArchDesc &ad) : MatchNode(ad), _depth(0), _construct(NULL), _numchilds(0) { _next = NULL; } MatchRule::MatchRule(ArchDesc &ad, MatchRule* mRule) : MatchNode(ad, *mRule, 0), _depth(mRule->_depth), _construct(mRule->_construct), _numchilds(mRule->_numchilds) { _next = NULL; } MatchRule::MatchRule(ArchDesc &ad, MatchNode* mroot, int depth, char *cnstr, int numleaves) : MatchNode(ad,*mroot), _depth(depth), _construct(cnstr), _numchilds(0) { _next = NULL; mroot->_lChild = NULL; mroot->_rChild = NULL; delete mroot; _numleaves = numleaves; _numchilds = (_lChild ? 1 : 0) + (_rChild ? 1 : 0); } MatchRule::~MatchRule() { } // Recursive call collecting info on top-level operands, not transitive. // Implementation does not modify state of internal structures. void MatchRule::append_components(FormDict& locals, ComponentList& components, bool def_flag) const { assert (_name != NULL, "MatchNode::build_components encountered empty node\n"); MatchNode::append_components(locals, components, false /* not necessarily a def */); } // Recursive call on all operands' match rules in my match rule. // Implementation does not modify state of internal structures since they // can be shared. // The MatchNode that is called first treats its bool MatchRule::base_operand(uint &position0, FormDict &globals, const char *&result, const char * &name, const char * &opType)const{ uint position = position0; return (MatchNode::base_operand( position, globals, result, name, opType)); } bool MatchRule::is_base_register(FormDict &globals) const { uint position = 1; const char *result = NULL; const char *name = NULL; const char *opType = NULL; if (!base_operand(position, globals, result, name, opType)) { position = 0; if( base_operand(position, globals, result, name, opType) && (strcmp(opType,"RegI")==0 || strcmp(opType,"RegP")==0 || strcmp(opType,"RegN")==0 || strcmp(opType,"RegL")==0 || strcmp(opType,"RegF")==0 || strcmp(opType,"RegD")==0 || strcmp(opType,"VecS")==0 || strcmp(opType,"VecD")==0 || strcmp(opType,"VecX")==0 || strcmp(opType,"VecY")==0 || strcmp(opType,"Reg" )==0) ) { return 1; } } return 0; } Form::DataType MatchRule::is_base_constant(FormDict &globals) const { uint position = 1; const char *result = NULL; const char *name = NULL; const char *opType = NULL; if (!base_operand(position, globals, result, name, opType)) { position = 0; if (base_operand(position, globals, result, name, opType)) { return ideal_to_const_type(opType); } } return Form::none; } bool MatchRule::is_chain_rule(FormDict &globals) const { // Check for chain rule, and do not generate a match list for it if ((_lChild == NULL) && (_rChild == NULL) ) { const Form *form = globals[_opType]; // If this is ideal, then it is a base match, not a chain rule. if ( form && form->is_operand() && (!form->ideal_only())) { return true; } } // Check for "Set" form of chain rule, and do not generate a match list if (_rChild) { const char *rch = _rChild->_opType; const Form *form = globals[rch]; if ((!strcmp(_opType,"Set") && ((form) && form->is_operand()))) { return true; } } return false; } int MatchRule::is_ideal_copy() const { if( _rChild ) { const char *opType = _rChild->_opType; #if 1 if( strcmp(opType,"CastIP")==0 ) return 1; #else if( strcmp(opType,"CastII")==0 ) return 1; // Do not treat *CastPP this way, because it // may transfer a raw pointer to an oop. // If the register allocator were to coalesce this // into a single LRG, the GC maps would be incorrect. //if( strcmp(opType,"CastPP")==0 ) // return 1; //if( strcmp(opType,"CheckCastPP")==0 ) // return 1; // // Do not treat CastX2P or CastP2X this way, because // raw pointers and int types are treated differently // when saving local & stack info for safepoints in // Output(). //if( strcmp(opType,"CastX2P")==0 ) // return 1; //if( strcmp(opType,"CastP2X")==0 ) // return 1; #endif } if( is_chain_rule(_AD.globalNames()) && _lChild && strncmp(_lChild->_opType,"stackSlot",9)==0 ) return 1; return 0; } int MatchRule::is_expensive() const { if( _rChild ) { const char *opType = _rChild->_opType; if( strcmp(opType,"AtanD")==0 || strcmp(opType,"CosD")==0 || strcmp(opType,"DivD")==0 || strcmp(opType,"DivF")==0 || strcmp(opType,"DivI")==0 || strcmp(opType,"ExpD")==0 || strcmp(opType,"LogD")==0 || strcmp(opType,"Log10D")==0 || strcmp(opType,"ModD")==0 || strcmp(opType,"ModF")==0 || strcmp(opType,"ModI")==0 || strcmp(opType,"PowD")==0 || strcmp(opType,"SinD")==0 || strcmp(opType,"SqrtD")==0 || strcmp(opType,"TanD")==0 || strcmp(opType,"ConvD2F")==0 || strcmp(opType,"ConvD2I")==0 || strcmp(opType,"ConvD2L")==0 || strcmp(opType,"ConvF2D")==0 || strcmp(opType,"ConvF2I")==0 || strcmp(opType,"ConvF2L")==0 || strcmp(opType,"ConvI2D")==0 || strcmp(opType,"ConvI2F")==0 || strcmp(opType,"ConvI2L")==0 || strcmp(opType,"ConvL2D")==0 || strcmp(opType,"ConvL2F")==0 || strcmp(opType,"ConvL2I")==0 || strcmp(opType,"DecodeN")==0 || strcmp(opType,"EncodeP")==0 || strcmp(opType,"EncodePKlass")==0 || strcmp(opType,"DecodeNKlass")==0 || strcmp(opType,"RoundDouble")==0 || strcmp(opType,"RoundFloat")==0 || strcmp(opType,"ReverseBytesI")==0 || strcmp(opType,"ReverseBytesL")==0 || strcmp(opType,"ReverseBytesUS")==0 || strcmp(opType,"ReverseBytesS")==0 || strcmp(opType,"ReplicateB")==0 || strcmp(opType,"ReplicateS")==0 || strcmp(opType,"ReplicateI")==0 || strcmp(opType,"ReplicateL")==0 || strcmp(opType,"ReplicateF")==0 || strcmp(opType,"ReplicateD")==0 || 0 /* 0 to line up columns nicely */ ) return 1; } return 0; } bool MatchRule::is_ideal_if() const { if( !_opType ) return false; return !strcmp(_opType,"If" ) || !strcmp(_opType,"CountedLoopEnd"); } bool MatchRule::is_ideal_fastlock() const { if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) { return (strcmp(_rChild->_opType,"FastLock") == 0); } return false; } bool MatchRule::is_ideal_membar() const { if( !_opType ) return false; return !strcmp(_opType,"MemBarAcquire" ) || !strcmp(_opType,"MemBarRelease" ) || !strcmp(_opType,"MemBarAcquireLock") || !strcmp(_opType,"MemBarReleaseLock") || !strcmp(_opType,"MemBarVolatile" ) || !strcmp(_opType,"MemBarCPUOrder" ) || !strcmp(_opType,"MemBarStoreStore" ); } bool MatchRule::is_ideal_loadPC() const { if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) { return (strcmp(_rChild->_opType,"LoadPC") == 0); } return false; } bool MatchRule::is_ideal_box() const { if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) { return (strcmp(_rChild->_opType,"Box") == 0); } return false; } bool MatchRule::is_ideal_goto() const { bool ideal_goto = false; if( _opType && (strcmp(_opType,"Goto") == 0) ) { ideal_goto = true; } return ideal_goto; } bool MatchRule::is_ideal_jump() const { if( _opType ) { if( !strcmp(_opType,"Jump") ) return true; } return false; } bool MatchRule::is_ideal_bool() const { if( _opType ) { if( !strcmp(_opType,"Bool") ) return true; } return false; } Form::DataType MatchRule::is_ideal_load() const { Form::DataType ideal_load = Form::none; if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) { const char *opType = _rChild->_opType; ideal_load = is_load_from_memory(opType); } return ideal_load; } bool MatchRule::is_vector() const { static const char *vector_list[] = { "AddVB","AddVS","AddVI","AddVL","AddVF","AddVD", "SubVB","SubVS","SubVI","SubVL","SubVF","SubVD", "MulVS","MulVI","MulVF","MulVD", "DivVF","DivVD", "AndV" ,"XorV" ,"OrV", "LShiftCntV","RShiftCntV", "LShiftVB","LShiftVS","LShiftVI","LShiftVL", "RShiftVB","RShiftVS","RShiftVI","RShiftVL", "URShiftVB","URShiftVS","URShiftVI","URShiftVL", "ReplicateB","ReplicateS","ReplicateI","ReplicateL","ReplicateF","ReplicateD", "LoadVector","StoreVector", // Next are not supported currently. "PackB","PackS","PackI","PackL","PackF","PackD","Pack2L","Pack2D", "ExtractB","ExtractUB","ExtractC","ExtractS","ExtractI","ExtractL","ExtractF","ExtractD" }; int cnt = sizeof(vector_list)/sizeof(char*); if (_rChild) { const char *opType = _rChild->_opType; for (int i=0; i_opType; if (strcmp("LoadKlass", opType) == 0 || strcmp("LoadNKlass", opType) == 0 || strcmp("LoadRange", opType) == 0) { return true; } } return false; } Form::DataType MatchRule::is_ideal_store() const { Form::DataType ideal_store = Form::none; if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) { const char *opType = _rChild->_opType; ideal_store = is_store_to_memory(opType); } return ideal_store; } void MatchRule::dump() { output(stderr); } void MatchRule::output(FILE *fp) { fprintf(fp,"MatchRule: ( %s",_name); if (_lChild) _lChild->output(fp); if (_rChild) _rChild->output(fp); fprintf(fp," )\n"); fprintf(fp," nesting depth = %d\n", _depth); if (_result) fprintf(fp," Result Type = %s", _result); fprintf(fp,"\n"); } //------------------------------Attribute-------------------------------------- Attribute::Attribute(char *id, char* val, int type) : _ident(id), _val(val), _atype(type) { } Attribute::~Attribute() { } int Attribute::int_val(ArchDesc &ad) { // Make sure it is an integer constant: int result = 0; if (!_val || !ADLParser::is_int_token(_val, result)) { ad.syntax_err(0, "Attribute %s must have an integer value: %s", _ident, _val ? _val : ""); } return result; } void Attribute::dump() { output(stderr); } // Debug printer // Write to output files void Attribute::output(FILE *fp) { fprintf(fp,"Attribute: %s %s\n", (_ident?_ident:""), (_val?_val:"")); } //------------------------------FormatRule---------------------------------- FormatRule::FormatRule(char *temp) : _temp(temp) { } FormatRule::~FormatRule() { } void FormatRule::dump() { output(stderr); } // Write to output files void FormatRule::output(FILE *fp) { fprintf(fp,"\nFormat Rule: \n%s", (_temp?_temp:"")); fprintf(fp,"\n"); }