/* * Copyright (c) 2010, 2011, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "compiler/compileBroker.hpp" #include "memory/resourceArea.hpp" #include "runtime/arguments.hpp" #include "runtime/simpleThresholdPolicy.hpp" #include "runtime/simpleThresholdPolicy.inline.hpp" #include "code/scopeDesc.hpp" // Print an event. void SimpleThresholdPolicy::print_event(EventType type, methodHandle mh, methodHandle imh, int bci, CompLevel level) { bool inlinee_event = mh() != imh(); ttyLocker tty_lock; tty->print("%lf: [", os::elapsedTime()); int invocation_count = mh->invocation_count(); int backedge_count = mh->backedge_count(); switch(type) { case CALL: tty->print("call"); break; case LOOP: tty->print("loop"); break; case COMPILE: tty->print("compile"); break; case REMOVE_FROM_QUEUE: tty->print("remove-from-queue"); break; case UPDATE_IN_QUEUE: tty->print("update-in-queue"); break; case REPROFILE: tty->print("reprofile"); break; case MAKE_NOT_ENTRANT: tty->print("make-not-entrant"); break; default: tty->print("unknown"); } tty->print(" level: %d ", level); ResourceMark rm; char *method_name = mh->name_and_sig_as_C_string(); tty->print("[%s", method_name); if (inlinee_event) { char *inlinee_name = imh->name_and_sig_as_C_string(); tty->print(" [%s]] ", inlinee_name); } else tty->print("] "); tty->print("@%d queues: %d,%d", bci, CompileBroker::queue_size(CompLevel_full_profile), CompileBroker::queue_size(CompLevel_full_optimization)); print_specific(type, mh, imh, bci, level); if (type != COMPILE) { methodDataHandle mdh = mh->method_data(); int mdo_invocations = 0, mdo_backedges = 0; int mdo_invocations_start = 0, mdo_backedges_start = 0; if (mdh() != NULL) { mdo_invocations = mdh->invocation_count(); mdo_backedges = mdh->backedge_count(); mdo_invocations_start = mdh->invocation_count_start(); mdo_backedges_start = mdh->backedge_count_start(); } tty->print(" total: %d,%d mdo: %d(%d),%d(%d)", invocation_count, backedge_count, mdo_invocations, mdo_invocations_start, mdo_backedges, mdo_backedges_start); tty->print(" max levels: %d,%d", mh->highest_comp_level(), mh->highest_osr_comp_level()); if (inlinee_event) { tty->print(" inlinee max levels: %d,%d", imh->highest_comp_level(), imh->highest_osr_comp_level()); } tty->print(" compilable: "); bool need_comma = false; if (!mh->is_not_compilable(CompLevel_full_profile)) { tty->print("c1"); need_comma = true; } if (!mh->is_not_compilable(CompLevel_full_optimization)) { if (need_comma) tty->print(", "); tty->print("c2"); need_comma = true; } if (!mh->is_not_osr_compilable()) { if (need_comma) tty->print(", "); tty->print("osr"); } tty->print(" status:"); if (mh->queued_for_compilation()) { tty->print(" in queue"); } else tty->print(" idle"); } tty->print_cr("]"); } void SimpleThresholdPolicy::initialize() { if (FLAG_IS_DEFAULT(CICompilerCount)) { FLAG_SET_DEFAULT(CICompilerCount, 3); } int count = CICompilerCount; if (CICompilerCountPerCPU) { count = MAX2(log2_intptr(os::active_processor_count()), 1) * 3 / 2; } set_c1_count(MAX2(count / 3, 1)); set_c2_count(MAX2(count - count / 3, 1)); } void SimpleThresholdPolicy::set_carry_if_necessary(InvocationCounter *counter) { if (!counter->carry() && counter->count() > InvocationCounter::count_limit / 2) { counter->set_carry_flag(); } } // Set carry flags on the counters if necessary void SimpleThresholdPolicy::handle_counter_overflow(methodOop method) { set_carry_if_necessary(method->invocation_counter()); set_carry_if_necessary(method->backedge_counter()); methodDataOop mdo = method->method_data(); if (mdo != NULL) { set_carry_if_necessary(mdo->invocation_counter()); set_carry_if_necessary(mdo->backedge_counter()); } } // Called with the queue locked and with at least one element CompileTask* SimpleThresholdPolicy::select_task(CompileQueue* compile_queue) { return compile_queue->first(); } void SimpleThresholdPolicy::reprofile(ScopeDesc* trap_scope, bool is_osr) { for (ScopeDesc* sd = trap_scope;; sd = sd->sender()) { if (PrintTieredEvents) { methodHandle mh(sd->method()); print_event(REPROFILE, mh, mh, InvocationEntryBci, CompLevel_none); } methodDataOop mdo = sd->method()->method_data(); if (mdo != NULL) { mdo->reset_start_counters(); } if (sd->is_top()) break; } } nmethod* SimpleThresholdPolicy::event(methodHandle method, methodHandle inlinee, int branch_bci, int bci, CompLevel comp_level, nmethod* nm, TRAPS) { if (comp_level == CompLevel_none && JvmtiExport::can_post_interpreter_events()) { assert(THREAD->is_Java_thread(), "Should be java thread"); if (((JavaThread*)THREAD)->is_interp_only_mode()) { return NULL; } } nmethod *osr_nm = NULL; handle_counter_overflow(method()); if (method() != inlinee()) { handle_counter_overflow(inlinee()); } if (PrintTieredEvents) { print_event(bci == InvocationEntryBci ? CALL : LOOP, method, inlinee, bci, comp_level); } if (bci == InvocationEntryBci) { method_invocation_event(method, inlinee, comp_level, nm, THREAD); } else { method_back_branch_event(method, inlinee, bci, comp_level, nm, THREAD); // method == inlinee if the event originated in the main method int highest_level = inlinee->highest_osr_comp_level(); if (highest_level > comp_level) { osr_nm = inlinee->lookup_osr_nmethod_for(bci, highest_level, false); } } return osr_nm; } // Check if the method can be compiled, change level if necessary void SimpleThresholdPolicy::compile(methodHandle mh, int bci, CompLevel level, TRAPS) { // Take the given ceiling into the account. // NOTE: You can set it to 1 to get a pure C1 version. if ((CompLevel)TieredStopAtLevel < level) { level = (CompLevel)TieredStopAtLevel; } if (level == CompLevel_none) { return; } // Check if the method can be compiled. If it cannot be compiled with C1, continue profiling // in the interpreter and then compile with C2 (the transition function will request that, // see common() ). If the method cannot be compiled with C2 but still can with C1, compile it with // pure C1. if (!can_be_compiled(mh, level)) { if (level == CompLevel_full_optimization && can_be_compiled(mh, CompLevel_simple)) { compile(mh, bci, CompLevel_simple, THREAD); } return; } if (bci != InvocationEntryBci && mh->is_not_osr_compilable()) { return; } if (PrintTieredEvents) { print_event(COMPILE, mh, mh, bci, level); } if (!CompileBroker::compilation_is_in_queue(mh, bci)) { submit_compile(mh, bci, level, THREAD); } } // Tell the broker to compile the method void SimpleThresholdPolicy::submit_compile(methodHandle mh, int bci, CompLevel level, TRAPS) { int hot_count = (bci == InvocationEntryBci) ? mh->invocation_count() : mh->backedge_count(); CompileBroker::compile_method(mh, bci, level, mh, hot_count, "tiered", THREAD); } // Call and loop predicates determine whether a transition to a higher // compilation level should be performed (pointers to predicate functions // are passed to common() transition function). bool SimpleThresholdPolicy::loop_predicate(int i, int b, CompLevel cur_level) { switch(cur_level) { case CompLevel_none: case CompLevel_limited_profile: { return loop_predicate_helper(i, b, 1.0); } case CompLevel_full_profile: { return loop_predicate_helper(i, b, 1.0); } default: return true; } } bool SimpleThresholdPolicy::call_predicate(int i, int b, CompLevel cur_level) { switch(cur_level) { case CompLevel_none: case CompLevel_limited_profile: { return call_predicate_helper(i, b, 1.0); } case CompLevel_full_profile: { return call_predicate_helper(i, b, 1.0); } default: return true; } } // Determine is a method is mature. bool SimpleThresholdPolicy::is_mature(methodOop method) { if (is_trivial(method)) return true; methodDataOop mdo = method->method_data(); if (mdo != NULL) { int i = mdo->invocation_count(); int b = mdo->backedge_count(); double k = ProfileMaturityPercentage / 100.0; return call_predicate_helper(i, b, k) || loop_predicate_helper(i, b, k); } return false; } // Common transition function. Given a predicate determines if a method should transition to another level. CompLevel SimpleThresholdPolicy::common(Predicate p, methodOop method, CompLevel cur_level) { if (is_trivial(method)) return CompLevel_simple; CompLevel next_level = cur_level; int i = method->invocation_count(); int b = method->backedge_count(); switch(cur_level) { case CompLevel_none: // If we were at full profile level, would we switch to full opt? if (common(p, method, CompLevel_full_profile) == CompLevel_full_optimization) { next_level = CompLevel_full_optimization; } else if ((this->*p)(i, b, cur_level)) { next_level = CompLevel_full_profile; } break; case CompLevel_limited_profile: case CompLevel_full_profile: { methodDataOop mdo = method->method_data(); if (mdo != NULL) { if (mdo->would_profile()) { int mdo_i = mdo->invocation_count_delta(); int mdo_b = mdo->backedge_count_delta(); if ((this->*p)(mdo_i, mdo_b, cur_level)) { next_level = CompLevel_full_optimization; } } else { next_level = CompLevel_full_optimization; } } } break; } return next_level; } // Determine if a method should be compiled with a normal entry point at a different level. CompLevel SimpleThresholdPolicy::call_event(methodOop method, CompLevel cur_level) { CompLevel osr_level = MIN2((CompLevel) method->highest_osr_comp_level(), common(&SimpleThresholdPolicy::loop_predicate, method, cur_level)); CompLevel next_level = common(&SimpleThresholdPolicy::call_predicate, method, cur_level); // If OSR method level is greater than the regular method level, the levels should be // equalized by raising the regular method level in order to avoid OSRs during each // invocation of the method. if (osr_level == CompLevel_full_optimization && cur_level == CompLevel_full_profile) { methodDataOop mdo = method->method_data(); guarantee(mdo != NULL, "MDO should not be NULL"); if (mdo->invocation_count() >= 1) { next_level = CompLevel_full_optimization; } } else { next_level = MAX2(osr_level, next_level); } return next_level; } // Determine if we should do an OSR compilation of a given method. CompLevel SimpleThresholdPolicy::loop_event(methodOop method, CompLevel cur_level) { CompLevel next_level = common(&SimpleThresholdPolicy::loop_predicate, method, cur_level); if (cur_level == CompLevel_none) { // If there is a live OSR method that means that we deopted to the interpreter // for the transition. CompLevel osr_level = MIN2((CompLevel)method->highest_osr_comp_level(), next_level); if (osr_level > CompLevel_none) { return osr_level; } } return next_level; } // Handle the invocation event. void SimpleThresholdPolicy::method_invocation_event(methodHandle mh, methodHandle imh, CompLevel level, nmethod* nm, TRAPS) { if (is_compilation_enabled() && !CompileBroker::compilation_is_in_queue(mh, InvocationEntryBci)) { CompLevel next_level = call_event(mh(), level); if (next_level != level) { compile(mh, InvocationEntryBci, next_level, THREAD); } } } // Handle the back branch event. Notice that we can compile the method // with a regular entry from here. void SimpleThresholdPolicy::method_back_branch_event(methodHandle mh, methodHandle imh, int bci, CompLevel level, nmethod* nm, TRAPS) { // If the method is already compiling, quickly bail out. if (is_compilation_enabled() && !CompileBroker::compilation_is_in_queue(mh, bci)) { // Use loop event as an opportinity to also check there's been // enough calls. CompLevel cur_level = comp_level(mh()); CompLevel next_level = call_event(mh(), cur_level); CompLevel next_osr_level = loop_event(mh(), level); next_level = MAX2(next_level, next_osr_level < CompLevel_full_optimization ? next_osr_level : cur_level); bool is_compiling = false; if (next_level != cur_level) { compile(mh, InvocationEntryBci, next_level, THREAD); is_compiling = true; } // Do the OSR version if (!is_compiling && next_osr_level != level) { compile(mh, bci, next_osr_level, THREAD); } } }