/* * Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "classfile/systemDictionary.hpp" #include "classfile/vmSymbols.hpp" #include "gc_implementation/shared/mutableSpace.hpp" #include "memory/collectorPolicy.hpp" #include "memory/defNewGeneration.hpp" #include "memory/genCollectedHeap.hpp" #include "memory/generation.hpp" #include "memory/generationSpec.hpp" #include "memory/heap.hpp" #include "memory/memRegion.hpp" #include "memory/tenuredGeneration.hpp" #include "oops/oop.inline.hpp" #include "runtime/javaCalls.hpp" #include "services/classLoadingService.hpp" #include "services/lowMemoryDetector.hpp" #include "services/management.hpp" #include "services/memoryManager.hpp" #include "services/memoryPool.hpp" #include "services/memoryService.hpp" #include "utilities/growableArray.hpp" #include "utilities/macros.hpp" #if INCLUDE_ALL_GCS #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.hpp" #include "gc_implementation/g1/g1CollectedHeap.inline.hpp" #include "gc_implementation/parNew/parNewGeneration.hpp" #include "gc_implementation/parallelScavenge/parallelScavengeHeap.hpp" #include "gc_implementation/parallelScavenge/psOldGen.hpp" #include "gc_implementation/parallelScavenge/psYoungGen.hpp" #include "services/g1MemoryPool.hpp" #include "services/psMemoryPool.hpp" #endif // INCLUDE_ALL_GCS GrowableArray* MemoryService::_pools_list = new (ResourceObj::C_HEAP, mtInternal) GrowableArray(init_pools_list_size, true); GrowableArray* MemoryService::_managers_list = new (ResourceObj::C_HEAP, mtInternal) GrowableArray(init_managers_list_size, true); GCMemoryManager* MemoryService::_minor_gc_manager = NULL; GCMemoryManager* MemoryService::_major_gc_manager = NULL; MemoryPool* MemoryService::_code_heap_pool = NULL; class GcThreadCountClosure: public ThreadClosure { private: int _count; public: GcThreadCountClosure() : _count(0) {}; void do_thread(Thread* thread); int count() { return _count; } }; void GcThreadCountClosure::do_thread(Thread* thread) { _count++; } void MemoryService::set_universe_heap(CollectedHeap* heap) { CollectedHeap::Name kind = heap->kind(); switch (kind) { case CollectedHeap::GenCollectedHeap : { add_gen_collected_heap_info(GenCollectedHeap::heap()); break; } #if INCLUDE_ALL_GCS case CollectedHeap::ParallelScavengeHeap : { add_parallel_scavenge_heap_info(ParallelScavengeHeap::heap()); break; } case CollectedHeap::G1CollectedHeap : { add_g1_heap_info(G1CollectedHeap::heap()); break; } #endif // INCLUDE_ALL_GCS default: { guarantee(false, "Unrecognized kind of heap"); } } // set the GC thread count GcThreadCountClosure gctcc; heap->gc_threads_do(&gctcc); int count = gctcc.count(); if (count > 0) { _minor_gc_manager->set_num_gc_threads(count); _major_gc_manager->set_num_gc_threads(count); } // All memory pools and memory managers are initialized. // _minor_gc_manager->initialize_gc_stat_info(); _major_gc_manager->initialize_gc_stat_info(); } // Add memory pools for GenCollectedHeap // This function currently only supports two generations collected heap. // The collector for GenCollectedHeap will have two memory managers. void MemoryService::add_gen_collected_heap_info(GenCollectedHeap* heap) { CollectorPolicy* policy = heap->collector_policy(); assert(policy->is_two_generation_policy(), "Only support two generations"); guarantee(heap->n_gens() == 2, "Only support two-generation heap"); TwoGenerationCollectorPolicy* two_gen_policy = policy->as_two_generation_policy(); if (two_gen_policy != NULL) { GenerationSpec** specs = two_gen_policy->generations(); Generation::Name kind = specs[0]->name(); switch (kind) { case Generation::DefNew: _minor_gc_manager = MemoryManager::get_copy_memory_manager(); break; #if INCLUDE_ALL_GCS case Generation::ParNew: case Generation::ASParNew: _minor_gc_manager = MemoryManager::get_parnew_memory_manager(); break; #endif // INCLUDE_ALL_GCS default: guarantee(false, "Unrecognized generation spec"); break; } if (policy->is_mark_sweep_policy()) { _major_gc_manager = MemoryManager::get_msc_memory_manager(); #if INCLUDE_ALL_GCS } else if (policy->is_concurrent_mark_sweep_policy()) { _major_gc_manager = MemoryManager::get_cms_memory_manager(); #endif // INCLUDE_ALL_GCS } else { guarantee(false, "Unknown two-gen policy"); } } else { guarantee(false, "Non two-gen policy"); } _managers_list->append(_minor_gc_manager); _managers_list->append(_major_gc_manager); add_generation_memory_pool(heap->get_gen(minor), _major_gc_manager, _minor_gc_manager); add_generation_memory_pool(heap->get_gen(major), _major_gc_manager); } #if INCLUDE_ALL_GCS // Add memory pools for ParallelScavengeHeap // This function currently only supports two generations collected heap. // The collector for ParallelScavengeHeap will have two memory managers. void MemoryService::add_parallel_scavenge_heap_info(ParallelScavengeHeap* heap) { // Two managers to keep statistics about _minor_gc_manager and _major_gc_manager GC. _minor_gc_manager = MemoryManager::get_psScavenge_memory_manager(); _major_gc_manager = MemoryManager::get_psMarkSweep_memory_manager(); _managers_list->append(_minor_gc_manager); _managers_list->append(_major_gc_manager); add_psYoung_memory_pool(heap->young_gen(), _major_gc_manager, _minor_gc_manager); add_psOld_memory_pool(heap->old_gen(), _major_gc_manager); } void MemoryService::add_g1_heap_info(G1CollectedHeap* g1h) { assert(UseG1GC, "sanity"); _minor_gc_manager = MemoryManager::get_g1YoungGen_memory_manager(); _major_gc_manager = MemoryManager::get_g1OldGen_memory_manager(); _managers_list->append(_minor_gc_manager); _managers_list->append(_major_gc_manager); add_g1YoungGen_memory_pool(g1h, _major_gc_manager, _minor_gc_manager); add_g1OldGen_memory_pool(g1h, _major_gc_manager); } #endif // INCLUDE_ALL_GCS MemoryPool* MemoryService::add_gen(Generation* gen, const char* name, bool is_heap, bool support_usage_threshold) { MemoryPool::PoolType type = (is_heap ? MemoryPool::Heap : MemoryPool::NonHeap); GenerationPool* pool = new GenerationPool(gen, name, type, support_usage_threshold); _pools_list->append(pool); return (MemoryPool*) pool; } MemoryPool* MemoryService::add_space(ContiguousSpace* space, const char* name, bool is_heap, size_t max_size, bool support_usage_threshold) { MemoryPool::PoolType type = (is_heap ? MemoryPool::Heap : MemoryPool::NonHeap); ContiguousSpacePool* pool = new ContiguousSpacePool(space, name, type, max_size, support_usage_threshold); _pools_list->append(pool); return (MemoryPool*) pool; } MemoryPool* MemoryService::add_survivor_spaces(DefNewGeneration* gen, const char* name, bool is_heap, size_t max_size, bool support_usage_threshold) { MemoryPool::PoolType type = (is_heap ? MemoryPool::Heap : MemoryPool::NonHeap); SurvivorContiguousSpacePool* pool = new SurvivorContiguousSpacePool(gen, name, type, max_size, support_usage_threshold); _pools_list->append(pool); return (MemoryPool*) pool; } #if INCLUDE_ALL_GCS MemoryPool* MemoryService::add_cms_space(CompactibleFreeListSpace* space, const char* name, bool is_heap, size_t max_size, bool support_usage_threshold) { MemoryPool::PoolType type = (is_heap ? MemoryPool::Heap : MemoryPool::NonHeap); CompactibleFreeListSpacePool* pool = new CompactibleFreeListSpacePool(space, name, type, max_size, support_usage_threshold); _pools_list->append(pool); return (MemoryPool*) pool; } #endif // INCLUDE_ALL_GCS // Add memory pool(s) for one generation void MemoryService::add_generation_memory_pool(Generation* gen, MemoryManager* major_mgr, MemoryManager* minor_mgr) { Generation::Name kind = gen->kind(); int index = _pools_list->length(); switch (kind) { case Generation::DefNew: { assert(major_mgr != NULL && minor_mgr != NULL, "Should have two managers"); DefNewGeneration* young_gen = (DefNewGeneration*) gen; // Add a memory pool for each space and young gen doesn't // support low memory detection as it is expected to get filled up. MemoryPool* eden = add_space(young_gen->eden(), "Eden Space", true, /* is_heap */ young_gen->max_eden_size(), false /* support_usage_threshold */); MemoryPool* survivor = add_survivor_spaces(young_gen, "Survivor Space", true, /* is_heap */ young_gen->max_survivor_size(), false /* support_usage_threshold */); break; } #if INCLUDE_ALL_GCS case Generation::ParNew: case Generation::ASParNew: { assert(major_mgr != NULL && minor_mgr != NULL, "Should have two managers"); // Add a memory pool for each space and young gen doesn't // support low memory detection as it is expected to get filled up. ParNewGeneration* parnew_gen = (ParNewGeneration*) gen; MemoryPool* eden = add_space(parnew_gen->eden(), "Par Eden Space", true /* is_heap */, parnew_gen->max_eden_size(), false /* support_usage_threshold */); MemoryPool* survivor = add_survivor_spaces(parnew_gen, "Par Survivor Space", true, /* is_heap */ parnew_gen->max_survivor_size(), false /* support_usage_threshold */); break; } #endif // INCLUDE_ALL_GCS case Generation::MarkSweepCompact: { assert(major_mgr != NULL && minor_mgr == NULL, "Should have only one manager"); add_gen(gen, "Tenured Gen", true, /* is_heap */ true /* support_usage_threshold */); break; } #if INCLUDE_ALL_GCS case Generation::ConcurrentMarkSweep: case Generation::ASConcurrentMarkSweep: { assert(major_mgr != NULL && minor_mgr == NULL, "Should have only one manager"); ConcurrentMarkSweepGeneration* cms = (ConcurrentMarkSweepGeneration*) gen; MemoryPool* pool = add_cms_space(cms->cmsSpace(), "CMS Old Gen", true, /* is_heap */ cms->reserved().byte_size(), true /* support_usage_threshold */); break; } #endif // INCLUDE_ALL_GCS default: assert(false, "should not reach here"); // no memory pool added for others break; } assert(major_mgr != NULL, "Should have at least one manager"); // Link managers and the memory pools together for (int i = index; i < _pools_list->length(); i++) { MemoryPool* pool = _pools_list->at(i); major_mgr->add_pool(pool); if (minor_mgr != NULL) { minor_mgr->add_pool(pool); } } } #if INCLUDE_ALL_GCS void MemoryService::add_psYoung_memory_pool(PSYoungGen* gen, MemoryManager* major_mgr, MemoryManager* minor_mgr) { assert(major_mgr != NULL && minor_mgr != NULL, "Should have two managers"); // Add a memory pool for each space and young gen doesn't // support low memory detection as it is expected to get filled up. EdenMutableSpacePool* eden = new EdenMutableSpacePool(gen, gen->eden_space(), "PS Eden Space", MemoryPool::Heap, false /* support_usage_threshold */); SurvivorMutableSpacePool* survivor = new SurvivorMutableSpacePool(gen, "PS Survivor Space", MemoryPool::Heap, false /* support_usage_threshold */); major_mgr->add_pool(eden); major_mgr->add_pool(survivor); minor_mgr->add_pool(eden); minor_mgr->add_pool(survivor); _pools_list->append(eden); _pools_list->append(survivor); } void MemoryService::add_psOld_memory_pool(PSOldGen* gen, MemoryManager* mgr) { PSGenerationPool* old_gen = new PSGenerationPool(gen, "PS Old Gen", MemoryPool::Heap, true /* support_usage_threshold */); mgr->add_pool(old_gen); _pools_list->append(old_gen); } void MemoryService::add_g1YoungGen_memory_pool(G1CollectedHeap* g1h, MemoryManager* major_mgr, MemoryManager* minor_mgr) { assert(major_mgr != NULL && minor_mgr != NULL, "should have two managers"); G1EdenPool* eden = new G1EdenPool(g1h); G1SurvivorPool* survivor = new G1SurvivorPool(g1h); major_mgr->add_pool(eden); major_mgr->add_pool(survivor); minor_mgr->add_pool(eden); minor_mgr->add_pool(survivor); _pools_list->append(eden); _pools_list->append(survivor); } void MemoryService::add_g1OldGen_memory_pool(G1CollectedHeap* g1h, MemoryManager* mgr) { assert(mgr != NULL, "should have one manager"); G1OldGenPool* old_gen = new G1OldGenPool(g1h); mgr->add_pool(old_gen); _pools_list->append(old_gen); } #endif // INCLUDE_ALL_GCS void MemoryService::add_code_heap_memory_pool(CodeHeap* heap) { _code_heap_pool = new CodeHeapPool(heap, "Code Cache", true /* support_usage_threshold */); MemoryManager* mgr = MemoryManager::get_code_cache_memory_manager(); mgr->add_pool(_code_heap_pool); _pools_list->append(_code_heap_pool); _managers_list->append(mgr); } MemoryManager* MemoryService::get_memory_manager(instanceHandle mh) { for (int i = 0; i < _managers_list->length(); i++) { MemoryManager* mgr = _managers_list->at(i); if (mgr->is_manager(mh)) { return mgr; } } return NULL; } MemoryPool* MemoryService::get_memory_pool(instanceHandle ph) { for (int i = 0; i < _pools_list->length(); i++) { MemoryPool* pool = _pools_list->at(i); if (pool->is_pool(ph)) { return pool; } } return NULL; } void MemoryService::track_memory_usage() { // Track the peak memory usage for (int i = 0; i < _pools_list->length(); i++) { MemoryPool* pool = _pools_list->at(i); pool->record_peak_memory_usage(); } // Detect low memory LowMemoryDetector::detect_low_memory(); } void MemoryService::track_memory_pool_usage(MemoryPool* pool) { // Track the peak memory usage pool->record_peak_memory_usage(); // Detect low memory if (LowMemoryDetector::is_enabled(pool)) { LowMemoryDetector::detect_low_memory(pool); } } void MemoryService::gc_begin(bool fullGC, bool recordGCBeginTime, bool recordAccumulatedGCTime, bool recordPreGCUsage, bool recordPeakUsage) { GCMemoryManager* mgr; if (fullGC) { mgr = _major_gc_manager; } else { mgr = _minor_gc_manager; } assert(mgr->is_gc_memory_manager(), "Sanity check"); mgr->gc_begin(recordGCBeginTime, recordPreGCUsage, recordAccumulatedGCTime); // Track the peak memory usage when GC begins if (recordPeakUsage) { for (int i = 0; i < _pools_list->length(); i++) { MemoryPool* pool = _pools_list->at(i); pool->record_peak_memory_usage(); } } } void MemoryService::gc_end(bool fullGC, bool recordPostGCUsage, bool recordAccumulatedGCTime, bool recordGCEndTime, bool countCollection, GCCause::Cause cause) { GCMemoryManager* mgr; if (fullGC) { mgr = (GCMemoryManager*) _major_gc_manager; } else { mgr = (GCMemoryManager*) _minor_gc_manager; } assert(mgr->is_gc_memory_manager(), "Sanity check"); // register the GC end statistics and memory usage mgr->gc_end(recordPostGCUsage, recordAccumulatedGCTime, recordGCEndTime, countCollection, cause); } void MemoryService::oops_do(OopClosure* f) { int i; for (i = 0; i < _pools_list->length(); i++) { MemoryPool* pool = _pools_list->at(i); pool->oops_do(f); } for (i = 0; i < _managers_list->length(); i++) { MemoryManager* mgr = _managers_list->at(i); mgr->oops_do(f); } } bool MemoryService::set_verbose(bool verbose) { MutexLocker m(Management_lock); // verbose will be set to the previous value bool succeed = CommandLineFlags::boolAtPut((char*)"PrintGC", &verbose, MANAGEMENT); assert(succeed, "Setting PrintGC flag fails"); ClassLoadingService::reset_trace_class_unloading(); return verbose; } Handle MemoryService::create_MemoryUsage_obj(MemoryUsage usage, TRAPS) { Klass* k = Management::java_lang_management_MemoryUsage_klass(CHECK_NH); instanceKlassHandle ik(THREAD, k); instanceHandle obj = ik->allocate_instance_handle(CHECK_NH); JavaValue result(T_VOID); JavaCallArguments args(10); args.push_oop(obj); // receiver args.push_long(usage.init_size_as_jlong()); // Argument 1 args.push_long(usage.used_as_jlong()); // Argument 2 args.push_long(usage.committed_as_jlong()); // Argument 3 args.push_long(usage.max_size_as_jlong()); // Argument 4 JavaCalls::call_special(&result, ik, vmSymbols::object_initializer_name(), vmSymbols::long_long_long_long_void_signature(), &args, CHECK_NH); return obj; } // // GC manager type depends on the type of Generation. Depending on the space // availablity and vm options the gc uses major gc manager or minor gc // manager or both. The type of gc manager depends on the generation kind. // For DefNew, ParNew and ASParNew generation doing scavenge gc uses minor // gc manager (so _fullGC is set to false ) and for other generation kinds // doing mark-sweep-compact uses major gc manager (so _fullGC is set // to true). TraceMemoryManagerStats::TraceMemoryManagerStats(Generation::Name kind, GCCause::Cause cause) { switch (kind) { case Generation::DefNew: #if INCLUDE_ALL_GCS case Generation::ParNew: case Generation::ASParNew: #endif // INCLUDE_ALL_GCS _fullGC=false; break; case Generation::MarkSweepCompact: #if INCLUDE_ALL_GCS case Generation::ConcurrentMarkSweep: case Generation::ASConcurrentMarkSweep: #endif // INCLUDE_ALL_GCS _fullGC=true; break; default: assert(false, "Unrecognized gc generation kind."); } // this has to be called in a stop the world pause and represent // an entire gc pause, start to finish: initialize(_fullGC, cause,true, true, true, true, true, true, true); } TraceMemoryManagerStats::TraceMemoryManagerStats(bool fullGC, GCCause::Cause cause, bool recordGCBeginTime, bool recordPreGCUsage, bool recordPeakUsage, bool recordPostGCUsage, bool recordAccumulatedGCTime, bool recordGCEndTime, bool countCollection) { initialize(fullGC, cause, recordGCBeginTime, recordPreGCUsage, recordPeakUsage, recordPostGCUsage, recordAccumulatedGCTime, recordGCEndTime, countCollection); } // for a subclass to create then initialize an instance before invoking // the MemoryService void TraceMemoryManagerStats::initialize(bool fullGC, GCCause::Cause cause, bool recordGCBeginTime, bool recordPreGCUsage, bool recordPeakUsage, bool recordPostGCUsage, bool recordAccumulatedGCTime, bool recordGCEndTime, bool countCollection) { _fullGC = fullGC; _recordGCBeginTime = recordGCBeginTime; _recordPreGCUsage = recordPreGCUsage; _recordPeakUsage = recordPeakUsage; _recordPostGCUsage = recordPostGCUsage; _recordAccumulatedGCTime = recordAccumulatedGCTime; _recordGCEndTime = recordGCEndTime; _countCollection = countCollection; _cause = cause; MemoryService::gc_begin(_fullGC, _recordGCBeginTime, _recordAccumulatedGCTime, _recordPreGCUsage, _recordPeakUsage); } TraceMemoryManagerStats::~TraceMemoryManagerStats() { MemoryService::gc_end(_fullGC, _recordPostGCUsage, _recordAccumulatedGCTime, _recordGCEndTime, _countCollection, _cause); }