/* * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "opto/compile.hpp" #include "opto/regmask.hpp" #ifdef TARGET_ARCH_MODEL_x86_32 # include "adfiles/ad_x86_32.hpp" #endif #ifdef TARGET_ARCH_MODEL_x86_64 # include "adfiles/ad_x86_64.hpp" #endif #ifdef TARGET_ARCH_MODEL_sparc # include "adfiles/ad_sparc.hpp" #endif #ifdef TARGET_ARCH_MODEL_zero # include "adfiles/ad_zero.hpp" #endif #ifdef TARGET_ARCH_MODEL_arm # include "adfiles/ad_arm.hpp" #endif #ifdef TARGET_ARCH_MODEL_ppc # include "adfiles/ad_ppc.hpp" #endif #define RM_SIZE _RM_SIZE /* a constant private to the class RegMask */ //-------------Non-zero bit search methods used by RegMask--------------------- // Find lowest 1, or return 32 if empty int find_lowest_bit( uint32 mask ) { int n = 0; if( (mask & 0xffff) == 0 ) { mask >>= 16; n += 16; } if( (mask & 0xff) == 0 ) { mask >>= 8; n += 8; } if( (mask & 0xf) == 0 ) { mask >>= 4; n += 4; } if( (mask & 0x3) == 0 ) { mask >>= 2; n += 2; } if( (mask & 0x1) == 0 ) { mask >>= 1; n += 1; } if( mask == 0 ) { n = 32; } return n; } // Find highest 1, or return 32 if empty int find_hihghest_bit( uint32 mask ) { int n = 0; if( mask > 0xffff ) { mask >>= 16; n += 16; } if( mask > 0xff ) { mask >>= 8; n += 8; } if( mask > 0xf ) { mask >>= 4; n += 4; } if( mask > 0x3 ) { mask >>= 2; n += 2; } if( mask > 0x1 ) { mask >>= 1; n += 1; } if( mask == 0 ) { n = 32; } return n; } //------------------------------dump------------------------------------------- #ifndef PRODUCT void OptoReg::dump(int r, outputStream *st) { switch (r) { case Special: st->print("r---"); break; case Bad: st->print("rBAD"); break; default: if (r < _last_Mach_Reg) st->print(Matcher::regName[r]); else st->print("rS%d",r); break; } } #endif //============================================================================= const RegMask RegMask::Empty( # define BODY(I) 0, FORALL_BODY # undef BODY 0 ); //============================================================================= bool RegMask::is_vector(uint ireg) { return (ireg == Op_VecS || ireg == Op_VecD || ireg == Op_VecX || ireg == Op_VecY); } int RegMask::num_registers(uint ireg) { switch(ireg) { case Op_VecY: return 8; case Op_VecX: return 4; case Op_VecD: case Op_RegD: case Op_RegL: #ifdef _LP64 case Op_RegP: #endif return 2; } // Op_VecS and the rest ideal registers. return 1; } //------------------------------find_first_pair-------------------------------- // Find the lowest-numbered register pair in the mask. Return the // HIGHEST register number in the pair, or BAD if no pairs. OptoReg::Name RegMask::find_first_pair() const { verify_pairs(); for( int i = 0; i < RM_SIZE; i++ ) { if( _A[i] ) { // Found some bits int bit = _A[i] & -_A[i]; // Extract low bit // Convert to bit number, return hi bit in pair return OptoReg::Name((i<<_LogWordBits)+find_lowest_bit(bit)+1); } } return OptoReg::Bad; } //------------------------------ClearToPairs----------------------------------- // Clear out partial bits; leave only bit pairs void RegMask::clear_to_pairs() { for( int i = 0; i < RM_SIZE; i++ ) { int bits = _A[i]; bits &= ((bits & 0x55555555)<<1); // 1 hi-bit set for each pair bits |= (bits>>1); // Smear 1 hi-bit into a pair _A[i] = bits; } verify_pairs(); } //------------------------------SmearToPairs----------------------------------- // Smear out partial bits; leave only bit pairs void RegMask::smear_to_pairs() { for( int i = 0; i < RM_SIZE; i++ ) { int bits = _A[i]; bits |= ((bits & 0x55555555)<<1); // Smear lo bit hi per pair bits |= ((bits & 0xAAAAAAAA)>>1); // Smear hi bit lo per pair _A[i] = bits; } verify_pairs(); } //------------------------------is_aligned_pairs------------------------------- bool RegMask::is_aligned_pairs() const { // Assert that the register mask contains only bit pairs. for( int i = 0; i < RM_SIZE; i++ ) { int bits = _A[i]; while( bits ) { // Check bits for pairing int bit = bits & -bits; // Extract low bit // Low bit is not odd means its mis-aligned. if( (bit & 0x55555555) == 0 ) return false; bits -= bit; // Remove bit from mask // Check for aligned adjacent bit if( (bits & (bit<<1)) == 0 ) return false; bits -= (bit<<1); // Remove other halve of pair } } return true; } //------------------------------is_bound1-------------------------------------- // Return TRUE if the mask contains a single bit int RegMask::is_bound1() const { if( is_AllStack() ) return false; int bit = -1; // Set to hold the one bit allowed for( int i = 0; i < RM_SIZE; i++ ) { if( _A[i] ) { // Found some bits if( bit != -1 ) return false; // Already had bits, so fail bit = _A[i] & -_A[i]; // Extract 1 bit from mask if( bit != _A[i] ) return false; // Found many bits, so fail } } // True for both the empty mask and for a single bit return true; } //------------------------------is_bound2-------------------------------------- // Return TRUE if the mask contains an adjacent pair of bits and no other bits. int RegMask::is_bound_pair() const { if( is_AllStack() ) return false; int bit = -1; // Set to hold the one bit allowed for( int i = 0; i < RM_SIZE; i++ ) { if( _A[i] ) { // Found some bits if( bit != -1 ) return false; // Already had bits, so fail bit = _A[i] & -(_A[i]); // Extract 1 bit from mask if( (bit << 1) != 0 ) { // Bit pair stays in same word? if( (bit | (bit<<1)) != _A[i] ) return false; // Require adjacent bit pair and no more bits } else { // Else its a split-pair case if( bit != _A[i] ) return false; // Found many bits, so fail i++; // Skip iteration forward if( _A[i] != 1 ) return false; // Require 1 lo bit in next word } } } // True for both the empty mask and for a bit pair return true; } static int low_bits[3] = { 0x55555555, 0x11111111, 0x01010101 }; //------------------------------find_first_set--------------------------------- // Find the lowest-numbered register set in the mask. Return the // HIGHEST register number in the set, or BAD if no sets. // Works also for size 1. OptoReg::Name RegMask::find_first_set(int size) const { verify_sets(size); for (int i = 0; i < RM_SIZE; i++) { if (_A[i]) { // Found some bits int bit = _A[i] & -_A[i]; // Extract low bit // Convert to bit number, return hi bit in pair return OptoReg::Name((i<<_LogWordBits)+find_lowest_bit(bit)+(size-1)); } } return OptoReg::Bad; } //------------------------------clear_to_sets---------------------------------- // Clear out partial bits; leave only aligned adjacent bit pairs void RegMask::clear_to_sets(int size) { if (size == 1) return; assert(2 <= size && size <= 8, "update low bits table"); assert(is_power_of_2(size), "sanity"); int low_bits_mask = low_bits[size>>2]; for (int i = 0; i < RM_SIZE; i++) { int bits = _A[i]; int sets = (bits & low_bits_mask); for (int j = 1; j < size; j++) { sets = (bits & (sets<<1)); // filter bits which produce whole sets } sets |= (sets>>1); // Smear 1 hi-bit into a set if (size > 2) { sets |= (sets>>2); // Smear 2 hi-bits into a set if (size > 4) { sets |= (sets>>4); // Smear 4 hi-bits into a set } } _A[i] = sets; } verify_sets(size); } //------------------------------smear_to_sets---------------------------------- // Smear out partial bits to aligned adjacent bit sets void RegMask::smear_to_sets(int size) { if (size == 1) return; assert(2 <= size && size <= 8, "update low bits table"); assert(is_power_of_2(size), "sanity"); int low_bits_mask = low_bits[size>>2]; for (int i = 0; i < RM_SIZE; i++) { int bits = _A[i]; int sets = 0; for (int j = 0; j < size; j++) { sets |= (bits & low_bits_mask); // collect partial bits bits = bits>>1; } sets |= (sets<<1); // Smear 1 lo-bit into a set if (size > 2) { sets |= (sets<<2); // Smear 2 lo-bits into a set if (size > 4) { sets |= (sets<<4); // Smear 4 lo-bits into a set } } _A[i] = sets; } verify_sets(size); } //------------------------------is_aligned_set-------------------------------- bool RegMask::is_aligned_sets(int size) const { if (size == 1) return true; assert(2 <= size && size <= 8, "update low bits table"); assert(is_power_of_2(size), "sanity"); int low_bits_mask = low_bits[size>>2]; // Assert that the register mask contains only bit sets. for (int i = 0; i < RM_SIZE; i++) { int bits = _A[i]; while (bits) { // Check bits for pairing int bit = bits & -bits; // Extract low bit // Low bit is not odd means its mis-aligned. if ((bit & low_bits_mask) == 0) return false; // Do extra work since (bit << size) may overflow. int hi_bit = bit << (size-1); // high bit int set = hi_bit + ((hi_bit-1) & ~(bit-1)); // Check for aligned adjacent bits in this set if ((bits & set) != set) return false; bits -= set; // Remove this set } } return true; } //------------------------------is_bound_set----------------------------------- // Return TRUE if the mask contains one adjacent set of bits and no other bits. // Works also for size 1. int RegMask::is_bound_set(int size) const { if( is_AllStack() ) return false; assert(1 <= size && size <= 8, "update low bits table"); int bit = -1; // Set to hold the one bit allowed for (int i = 0; i < RM_SIZE; i++) { if (_A[i] ) { // Found some bits if (bit != -1) return false; // Already had bits, so fail bit = _A[i] & -_A[i]; // Extract 1 bit from mask int hi_bit = bit << (size-1); // high bit if (hi_bit != 0) { // Bit set stays in same word? int set = hi_bit + ((hi_bit-1) & ~(bit-1)); if (set != _A[i]) return false; // Require adjacent bit set and no more bits } else { // Else its a split-set case if (((-1) & ~(bit-1)) != _A[i]) return false; // Found many bits, so fail i++; // Skip iteration forward and check high part assert(size <= 8, "update next code"); // The lower 24 bits should be 0 since it is split case and size <= 8. int set = bit>>24; set = set & -set; // Remove sign extension. set = (((set << size) - 1) >> 8); if (_A[i] != set) return false; // Require 1 lo bit in next word } } } // True for both the empty mask and for a bit set return true; } //------------------------------is_UP------------------------------------------ // UP means register only, Register plus stack, or stack only is DOWN bool RegMask::is_UP() const { // Quick common case check for DOWN (any stack slot is legal) if( is_AllStack() ) return false; // Slower check for any stack bits set (also DOWN) if( overlap(Matcher::STACK_ONLY_mask) ) return false; // Not DOWN, so must be UP return true; } //------------------------------Size------------------------------------------- // Compute size of register mask in bits uint RegMask::Size() const { extern uint8 bitsInByte[256]; uint sum = 0; for( int i = 0; i < RM_SIZE; i++ ) sum += bitsInByte[(_A[i]>>24) & 0xff] + bitsInByte[(_A[i]>>16) & 0xff] + bitsInByte[(_A[i]>> 8) & 0xff] + bitsInByte[ _A[i] & 0xff]; return sum; } #ifndef PRODUCT //------------------------------print------------------------------------------ void RegMask::dump(outputStream *st) const { st->print("["); RegMask rm = *this; // Structure copy into local temp OptoReg::Name start = rm.find_first_elem(); // Get a register if (OptoReg::is_valid(start)) { // Check for empty mask rm.Remove(start); // Yank from mask OptoReg::dump(start, st); // Print register OptoReg::Name last = start; // Now I have printed an initial register. // Print adjacent registers as "rX-rZ" instead of "rX,rY,rZ". // Begin looping over the remaining registers. while (1) { // OptoReg::Name reg = rm.find_first_elem(); // Get a register if (!OptoReg::is_valid(reg)) break; // Empty mask, end loop rm.Remove(reg); // Yank from mask if (last+1 == reg) { // See if they are adjacent // Adjacent registers just collect into long runs, no printing. last = reg; } else { // Ending some kind of run if (start == last) { // 1-register run; no special printing } else if (start+1 == last) { st->print(","); // 2-register run; print as "rX,rY" OptoReg::dump(last, st); } else { // Multi-register run; print as "rX-rZ" st->print("-"); OptoReg::dump(last, st); } st->print(","); // Seperate start of new run start = last = reg; // Start a new register run OptoReg::dump(start, st); // Print register } // End of if ending a register run or not } // End of while regmask not empty if (start == last) { // 1-register run; no special printing } else if (start+1 == last) { st->print(","); // 2-register run; print as "rX,rY" OptoReg::dump(last, st); } else { // Multi-register run; print as "rX-rZ" st->print("-"); OptoReg::dump(last, st); } if (rm.is_AllStack()) st->print("..."); } st->print("]"); } #endif