/* * Copyright (c) 2007, 2013, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ #include "precompiled.hpp" #include "compiler/compileLog.hpp" #include "libadt/vectset.hpp" #include "memory/allocation.inline.hpp" #include "opto/addnode.hpp" #include "opto/callnode.hpp" #include "opto/divnode.hpp" #include "opto/matcher.hpp" #include "opto/memnode.hpp" #include "opto/mulnode.hpp" #include "opto/opcodes.hpp" #include "opto/superword.hpp" #include "opto/vectornode.hpp" // // S U P E R W O R D T R A N S F O R M //============================================================================= //------------------------------SuperWord--------------------------- SuperWord::SuperWord(PhaseIdealLoop* phase) : _phase(phase), _igvn(phase->_igvn), _arena(phase->C->comp_arena()), _packset(arena(), 8, 0, NULL), // packs for the current block _bb_idx(arena(), (int)(1.10 * phase->C->unique()), 0, 0), // node idx to index in bb _block(arena(), 8, 0, NULL), // nodes in current block _data_entry(arena(), 8, 0, NULL), // nodes with all inputs from outside _mem_slice_head(arena(), 8, 0, NULL), // memory slice heads _mem_slice_tail(arena(), 8, 0, NULL), // memory slice tails _node_info(arena(), 8, 0, SWNodeInfo::initial), // info needed per node _align_to_ref(NULL), // memory reference to align vectors to _disjoint_ptrs(arena(), 8, 0, OrderedPair::initial), // runtime disambiguated pointer pairs _dg(_arena), // dependence graph _visited(arena()), // visited node set _post_visited(arena()), // post visited node set _n_idx_list(arena(), 8), // scratch list of (node,index) pairs _stk(arena(), 8, 0, NULL), // scratch stack of nodes _nlist(arena(), 8, 0, NULL), // scratch list of nodes _lpt(NULL), // loop tree node _lp(NULL), // LoopNode _bb(NULL), // basic block _iv(NULL) // induction var {} //------------------------------transform_loop--------------------------- void SuperWord::transform_loop(IdealLoopTree* lpt) { assert(UseSuperWord, "should be"); // Do vectors exist on this architecture? if (Matcher::vector_width_in_bytes(T_BYTE) < 2) return; assert(lpt->_head->is_CountedLoop(), "must be"); CountedLoopNode *cl = lpt->_head->as_CountedLoop(); if (!cl->is_valid_counted_loop()) return; // skip malformed counted loop if (!cl->is_main_loop() ) return; // skip normal, pre, and post loops // Check for no control flow in body (other than exit) Node *cl_exit = cl->loopexit(); if (cl_exit->in(0) != lpt->_head) return; // Make sure the are no extra control users of the loop backedge if (cl->back_control()->outcnt() != 1) { return; } // Check for pre-loop ending with CountedLoopEnd(Bool(Cmp(x,Opaque1(limit)))) CountedLoopEndNode* pre_end = get_pre_loop_end(cl); if (pre_end == NULL) return; Node *pre_opaq1 = pre_end->limit(); if (pre_opaq1->Opcode() != Op_Opaque1) return; init(); // initialize data structures set_lpt(lpt); set_lp(cl); // For now, define one block which is the entire loop body set_bb(cl); assert(_packset.length() == 0, "packset must be empty"); SLP_extract(); } //------------------------------SLP_extract--------------------------- // Extract the superword level parallelism // // 1) A reverse post-order of nodes in the block is constructed. By scanning // this list from first to last, all definitions are visited before their uses. // // 2) A point-to-point dependence graph is constructed between memory references. // This simplies the upcoming "independence" checker. // // 3) The maximum depth in the node graph from the beginning of the block // to each node is computed. This is used to prune the graph search // in the independence checker. // // 4) For integer types, the necessary bit width is propagated backwards // from stores to allow packed operations on byte, char, and short // integers. This reverses the promotion to type "int" that javac // did for operations like: char c1,c2,c3; c1 = c2 + c3. // // 5) One of the memory references is picked to be an aligned vector reference. // The pre-loop trip count is adjusted to align this reference in the // unrolled body. // // 6) The initial set of pack pairs is seeded with memory references. // // 7) The set of pack pairs is extended by following use->def and def->use links. // // 8) The pairs are combined into vector sized packs. // // 9) Reorder the memory slices to co-locate members of the memory packs. // // 10) Generate ideal vector nodes for the final set of packs and where necessary, // inserting scalar promotion, vector creation from multiple scalars, and // extraction of scalar values from vectors. // void SuperWord::SLP_extract() { // Ready the block if (!construct_bb()) return; // Exit if no interesting nodes or complex graph. dependence_graph(); compute_max_depth(); compute_vector_element_type(); // Attempt vectorization find_adjacent_refs(); extend_packlist(); combine_packs(); construct_my_pack_map(); filter_packs(); schedule(); output(); } //------------------------------find_adjacent_refs--------------------------- // Find the adjacent memory references and create pack pairs for them. // This is the initial set of packs that will then be extended by // following use->def and def->use links. The align positions are // assigned relative to the reference "align_to_ref" void SuperWord::find_adjacent_refs() { // Get list of memory operations Node_List memops; for (int i = 0; i < _block.length(); i++) { Node* n = _block.at(i); if (n->is_Mem() && !n->is_LoadStore() && in_bb(n) && is_java_primitive(n->as_Mem()->memory_type())) { int align = memory_alignment(n->as_Mem(), 0); if (align != bottom_align) { memops.push(n); } } } Node_List align_to_refs; int best_iv_adjustment = 0; MemNode* best_align_to_mem_ref = NULL; while (memops.size() != 0) { // Find a memory reference to align to. MemNode* mem_ref = find_align_to_ref(memops); if (mem_ref == NULL) break; align_to_refs.push(mem_ref); int iv_adjustment = get_iv_adjustment(mem_ref); if (best_align_to_mem_ref == NULL) { // Set memory reference which is the best from all memory operations // to be used for alignment. The pre-loop trip count is modified to align // this reference to a vector-aligned address. best_align_to_mem_ref = mem_ref; best_iv_adjustment = iv_adjustment; } SWPointer align_to_ref_p(mem_ref, this); // Set alignment relative to "align_to_ref" for all related memory operations. for (int i = memops.size() - 1; i >= 0; i--) { MemNode* s = memops.at(i)->as_Mem(); if (isomorphic(s, mem_ref)) { SWPointer p2(s, this); if (p2.comparable(align_to_ref_p)) { int align = memory_alignment(s, iv_adjustment); set_alignment(s, align); } } } // Create initial pack pairs of memory operations for which // alignment is set and vectors will be aligned. bool create_pack = true; if (memory_alignment(mem_ref, best_iv_adjustment) == 0) { if (!Matcher::misaligned_vectors_ok()) { int vw = vector_width(mem_ref); int vw_best = vector_width(best_align_to_mem_ref); if (vw > vw_best) { // Do not vectorize a memory access with more elements per vector // if unaligned memory access is not allowed because number of // iterations in pre-loop will be not enough to align it. create_pack = false; } else { SWPointer p2(best_align_to_mem_ref, this); if (align_to_ref_p.invar() != p2.invar()) { // Do not vectorize memory accesses with different invariants // if unaligned memory accesses are not allowed. create_pack = false; } } } } else { if (same_velt_type(mem_ref, best_align_to_mem_ref)) { // Can't allow vectorization of unaligned memory accesses with the // same type since it could be overlapped accesses to the same array. create_pack = false; } else { // Allow independent (different type) unaligned memory operations // if HW supports them. if (!Matcher::misaligned_vectors_ok()) { create_pack = false; } else { // Check if packs of the same memory type but // with a different alignment were created before. for (uint i = 0; i < align_to_refs.size(); i++) { MemNode* mr = align_to_refs.at(i)->as_Mem(); if (same_velt_type(mr, mem_ref) && memory_alignment(mr, iv_adjustment) != 0) create_pack = false; } } } } if (create_pack) { for (uint i = 0; i < memops.size(); i++) { Node* s1 = memops.at(i); int align = alignment(s1); if (align == top_align) continue; for (uint j = 0; j < memops.size(); j++) { Node* s2 = memops.at(j); if (alignment(s2) == top_align) continue; if (s1 != s2 && are_adjacent_refs(s1, s2)) { if (stmts_can_pack(s1, s2, align)) { Node_List* pair = new Node_List(); pair->push(s1); pair->push(s2); _packset.append(pair); } } } } } else { // Don't create unaligned pack // First, remove remaining memory ops of the same type from the list. for (int i = memops.size() - 1; i >= 0; i--) { MemNode* s = memops.at(i)->as_Mem(); if (same_velt_type(s, mem_ref)) { memops.remove(i); } } // Second, remove already constructed packs of the same type. for (int i = _packset.length() - 1; i >= 0; i--) { Node_List* p = _packset.at(i); MemNode* s = p->at(0)->as_Mem(); if (same_velt_type(s, mem_ref)) { remove_pack_at(i); } } // If needed find the best memory reference for loop alignment again. if (same_velt_type(mem_ref, best_align_to_mem_ref)) { // Put memory ops from remaining packs back on memops list for // the best alignment search. uint orig_msize = memops.size(); for (int i = 0; i < _packset.length(); i++) { Node_List* p = _packset.at(i); MemNode* s = p->at(0)->as_Mem(); assert(!same_velt_type(s, mem_ref), "sanity"); memops.push(s); } MemNode* best_align_to_mem_ref = find_align_to_ref(memops); if (best_align_to_mem_ref == NULL) break; best_iv_adjustment = get_iv_adjustment(best_align_to_mem_ref); // Restore list. while (memops.size() > orig_msize) (void)memops.pop(); } } // unaligned memory accesses // Remove used mem nodes. for (int i = memops.size() - 1; i >= 0; i--) { MemNode* m = memops.at(i)->as_Mem(); if (alignment(m) != top_align) { memops.remove(i); } } } // while (memops.size() != 0 set_align_to_ref(best_align_to_mem_ref); #ifndef PRODUCT if (TraceSuperWord) { tty->print_cr("\nAfter find_adjacent_refs"); print_packset(); } #endif } //------------------------------find_align_to_ref--------------------------- // Find a memory reference to align the loop induction variable to. // Looks first at stores then at loads, looking for a memory reference // with the largest number of references similar to it. MemNode* SuperWord::find_align_to_ref(Node_List &memops) { GrowableArray cmp_ct(arena(), memops.size(), memops.size(), 0); // Count number of comparable memory ops for (uint i = 0; i < memops.size(); i++) { MemNode* s1 = memops.at(i)->as_Mem(); SWPointer p1(s1, this); // Discard if pre loop can't align this reference if (!ref_is_alignable(p1)) { *cmp_ct.adr_at(i) = 0; continue; } for (uint j = i+1; j < memops.size(); j++) { MemNode* s2 = memops.at(j)->as_Mem(); if (isomorphic(s1, s2)) { SWPointer p2(s2, this); if (p1.comparable(p2)) { (*cmp_ct.adr_at(i))++; (*cmp_ct.adr_at(j))++; } } } } // Find Store (or Load) with the greatest number of "comparable" references, // biggest vector size, smallest data size and smallest iv offset. int max_ct = 0; int max_vw = 0; int max_idx = -1; int min_size = max_jint; int min_iv_offset = max_jint; for (uint j = 0; j < memops.size(); j++) { MemNode* s = memops.at(j)->as_Mem(); if (s->is_Store()) { int vw = vector_width_in_bytes(s); assert(vw > 1, "sanity"); SWPointer p(s, this); if (cmp_ct.at(j) > max_ct || cmp_ct.at(j) == max_ct && (vw > max_vw || vw == max_vw && (data_size(s) < min_size || data_size(s) == min_size && (p.offset_in_bytes() < min_iv_offset)))) { max_ct = cmp_ct.at(j); max_vw = vw; max_idx = j; min_size = data_size(s); min_iv_offset = p.offset_in_bytes(); } } } // If no stores, look at loads if (max_ct == 0) { for (uint j = 0; j < memops.size(); j++) { MemNode* s = memops.at(j)->as_Mem(); if (s->is_Load()) { int vw = vector_width_in_bytes(s); assert(vw > 1, "sanity"); SWPointer p(s, this); if (cmp_ct.at(j) > max_ct || cmp_ct.at(j) == max_ct && (vw > max_vw || vw == max_vw && (data_size(s) < min_size || data_size(s) == min_size && (p.offset_in_bytes() < min_iv_offset)))) { max_ct = cmp_ct.at(j); max_vw = vw; max_idx = j; min_size = data_size(s); min_iv_offset = p.offset_in_bytes(); } } } } #ifdef ASSERT if (TraceSuperWord && Verbose) { tty->print_cr("\nVector memops after find_align_to_refs"); for (uint i = 0; i < memops.size(); i++) { MemNode* s = memops.at(i)->as_Mem(); s->dump(); } } #endif if (max_ct > 0) { #ifdef ASSERT if (TraceSuperWord) { tty->print("\nVector align to node: "); memops.at(max_idx)->as_Mem()->dump(); } #endif return memops.at(max_idx)->as_Mem(); } return NULL; } //------------------------------ref_is_alignable--------------------------- // Can the preloop align the reference to position zero in the vector? bool SuperWord::ref_is_alignable(SWPointer& p) { if (!p.has_iv()) { return true; // no induction variable } CountedLoopEndNode* pre_end = get_pre_loop_end(lp()->as_CountedLoop()); assert(pre_end != NULL, "we must have a correct pre-loop"); assert(pre_end->stride_is_con(), "pre loop stride is constant"); int preloop_stride = pre_end->stride_con(); int span = preloop_stride * p.scale_in_bytes(); int mem_size = p.memory_size(); int offset = p.offset_in_bytes(); // Stride one accesses are alignable if offset is aligned to memory operation size. // Offset can be unaligned when UseUnalignedAccesses is used. if (ABS(span) == mem_size && (ABS(offset) % mem_size) == 0) { return true; } // If the initial offset from start of the object is computable, // check if the pre-loop can align the final offset accordingly. // // In other words: Can we find an i such that the offset // after i pre-loop iterations is aligned to vw? // (init_offset + pre_loop) % vw == 0 (1) // where // pre_loop = i * span // is the number of bytes added to the offset by i pre-loop iterations. // // For this to hold we need pre_loop to increase init_offset by // pre_loop = vw - (init_offset % vw) // // This is only possible if pre_loop is divisible by span because each // pre-loop iteration increases the initial offset by 'span' bytes: // (vw - (init_offset % vw)) % span == 0 // int vw = vector_width_in_bytes(p.mem()); assert(vw > 1, "sanity"); Node* init_nd = pre_end->init_trip(); if (init_nd->is_Con() && p.invar() == NULL) { int init = init_nd->bottom_type()->is_int()->get_con(); int init_offset = init * p.scale_in_bytes() + offset; if (init_offset < 0) { // negative offset from object start? return false; // may happen in dead loop } if (vw % span == 0) { // If vm is a multiple of span, we use formula (1). if (span > 0) { return (vw - (init_offset % vw)) % span == 0; } else { assert(span < 0, "nonzero stride * scale"); return (init_offset % vw) % -span == 0; } } else if (span % vw == 0) { // If span is a multiple of vw, we can simplify formula (1) to: // (init_offset + i * span) % vw == 0 // => // (init_offset % vw) + ((i * span) % vw) == 0 // => // init_offset % vw == 0 // // Because we add a multiple of vw to the initial offset, the final // offset is a multiple of vw if and only if init_offset is a multiple. // return (init_offset % vw) == 0; } } return false; } //---------------------------get_iv_adjustment--------------------------- // Calculate loop's iv adjustment for this memory ops. int SuperWord::get_iv_adjustment(MemNode* mem_ref) { SWPointer align_to_ref_p(mem_ref, this); int offset = align_to_ref_p.offset_in_bytes(); int scale = align_to_ref_p.scale_in_bytes(); int elt_size = align_to_ref_p.memory_size(); int vw = vector_width_in_bytes(mem_ref); assert(vw > 1, "sanity"); int iv_adjustment; if (scale != 0) { int stride_sign = (scale * iv_stride()) > 0 ? 1 : -1; // At least one iteration is executed in pre-loop by default. As result // several iterations are needed to align memory operations in main-loop even // if offset is 0. int iv_adjustment_in_bytes = (stride_sign * vw - (offset % vw)); assert(((ABS(iv_adjustment_in_bytes) % elt_size) == 0), err_msg_res("(%d) should be divisible by (%d)", iv_adjustment_in_bytes, elt_size)); iv_adjustment = iv_adjustment_in_bytes/elt_size; } else { // This memory op is not dependent on iv (scale == 0) iv_adjustment = 0; } #ifndef PRODUCT if (TraceSuperWord) tty->print_cr("\noffset = %d iv_adjust = %d elt_size = %d scale = %d iv_stride = %d vect_size %d", offset, iv_adjustment, elt_size, scale, iv_stride(), vw); #endif return iv_adjustment; } //---------------------------dependence_graph--------------------------- // Construct dependency graph. // Add dependence edges to load/store nodes for memory dependence // A.out()->DependNode.in(1) and DependNode.out()->B.prec(x) void SuperWord::dependence_graph() { // First, assign a dependence node to each memory node for (int i = 0; i < _block.length(); i++ ) { Node *n = _block.at(i); if (n->is_Mem() || n->is_Phi() && n->bottom_type() == Type::MEMORY) { _dg.make_node(n); } } // For each memory slice, create the dependences for (int i = 0; i < _mem_slice_head.length(); i++) { Node* n = _mem_slice_head.at(i); Node* n_tail = _mem_slice_tail.at(i); // Get slice in predecessor order (last is first) mem_slice_preds(n_tail, n, _nlist); // Make the slice dependent on the root DepMem* slice = _dg.dep(n); _dg.make_edge(_dg.root(), slice); // Create a sink for the slice DepMem* slice_sink = _dg.make_node(NULL); _dg.make_edge(slice_sink, _dg.tail()); // Now visit each pair of memory ops, creating the edges for (int j = _nlist.length() - 1; j >= 0 ; j--) { Node* s1 = _nlist.at(j); // If no dependency yet, use slice if (_dg.dep(s1)->in_cnt() == 0) { _dg.make_edge(slice, s1); } SWPointer p1(s1->as_Mem(), this); bool sink_dependent = true; for (int k = j - 1; k >= 0; k--) { Node* s2 = _nlist.at(k); if (s1->is_Load() && s2->is_Load()) continue; SWPointer p2(s2->as_Mem(), this); int cmp = p1.cmp(p2); if (SuperWordRTDepCheck && p1.base() != p2.base() && p1.valid() && p2.valid()) { // Create a runtime check to disambiguate OrderedPair pp(p1.base(), p2.base()); _disjoint_ptrs.append_if_missing(pp); } else if (!SWPointer::not_equal(cmp)) { // Possibly same address _dg.make_edge(s1, s2); sink_dependent = false; } } if (sink_dependent) { _dg.make_edge(s1, slice_sink); } } #ifndef PRODUCT if (TraceSuperWord) { tty->print_cr("\nDependence graph for slice: %d", n->_idx); for (int q = 0; q < _nlist.length(); q++) { _dg.print(_nlist.at(q)); } tty->cr(); } #endif _nlist.clear(); } #ifndef PRODUCT if (TraceSuperWord) { tty->print_cr("\ndisjoint_ptrs: %s", _disjoint_ptrs.length() > 0 ? "" : "NONE"); for (int r = 0; r < _disjoint_ptrs.length(); r++) { _disjoint_ptrs.at(r).print(); tty->cr(); } tty->cr(); } #endif } //---------------------------mem_slice_preds--------------------------- // Return a memory slice (node list) in predecessor order starting at "start" void SuperWord::mem_slice_preds(Node* start, Node* stop, GrowableArray &preds) { assert(preds.length() == 0, "start empty"); Node* n = start; Node* prev = NULL; while (true) { assert(in_bb(n), "must be in block"); for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { Node* out = n->fast_out(i); if (out->is_Load()) { if (in_bb(out)) { preds.push(out); } } else { // FIXME if (out->is_MergeMem() && !in_bb(out)) { // Either unrolling is causing a memory edge not to disappear, // or need to run igvn.optimize() again before SLP } else if (out->is_Phi() && out->bottom_type() == Type::MEMORY && !in_bb(out)) { // Ditto. Not sure what else to check further. } else if (out->Opcode() == Op_StoreCM && out->in(MemNode::OopStore) == n) { // StoreCM has an input edge used as a precedence edge. // Maybe an issue when oop stores are vectorized. } else { assert(out == prev || prev == NULL, "no branches off of store slice"); } } } if (n == stop) break; preds.push(n); prev = n; assert(n->is_Mem(), err_msg_res("unexpected node %s", n->Name())); n = n->in(MemNode::Memory); } } //------------------------------stmts_can_pack--------------------------- // Can s1 and s2 be in a pack with s1 immediately preceding s2 and // s1 aligned at "align" bool SuperWord::stmts_can_pack(Node* s1, Node* s2, int align) { // Do not use superword for non-primitives BasicType bt1 = velt_basic_type(s1); BasicType bt2 = velt_basic_type(s2); if(!is_java_primitive(bt1) || !is_java_primitive(bt2)) return false; if (Matcher::max_vector_size(bt1) < 2) { return false; // No vectors for this type } if (isomorphic(s1, s2)) { if (independent(s1, s2)) { if (!exists_at(s1, 0) && !exists_at(s2, 1)) { if (!s1->is_Mem() || are_adjacent_refs(s1, s2)) { int s1_align = alignment(s1); int s2_align = alignment(s2); if (s1_align == top_align || s1_align == align) { if (s2_align == top_align || s2_align == align + data_size(s1)) { return true; } } } } } } return false; } //------------------------------exists_at--------------------------- // Does s exist in a pack at position pos? bool SuperWord::exists_at(Node* s, uint pos) { for (int i = 0; i < _packset.length(); i++) { Node_List* p = _packset.at(i); if (p->at(pos) == s) { return true; } } return false; } //------------------------------are_adjacent_refs--------------------------- // Is s1 immediately before s2 in memory? bool SuperWord::are_adjacent_refs(Node* s1, Node* s2) { if (!s1->is_Mem() || !s2->is_Mem()) return false; if (!in_bb(s1) || !in_bb(s2)) return false; // Do not use superword for non-primitives if (!is_java_primitive(s1->as_Mem()->memory_type()) || !is_java_primitive(s2->as_Mem()->memory_type())) { return false; } // FIXME - co_locate_pack fails on Stores in different mem-slices, so // only pack memops that are in the same alias set until that's fixed. if (_phase->C->get_alias_index(s1->as_Mem()->adr_type()) != _phase->C->get_alias_index(s2->as_Mem()->adr_type())) return false; SWPointer p1(s1->as_Mem(), this); SWPointer p2(s2->as_Mem(), this); if (p1.base() != p2.base() || !p1.comparable(p2)) return false; int diff = p2.offset_in_bytes() - p1.offset_in_bytes(); return diff == data_size(s1); } //------------------------------isomorphic--------------------------- // Are s1 and s2 similar? bool SuperWord::isomorphic(Node* s1, Node* s2) { if (s1->Opcode() != s2->Opcode()) return false; if (s1->req() != s2->req()) return false; if (s1->in(0) != s2->in(0)) return false; if (!same_velt_type(s1, s2)) return false; return true; } //------------------------------independent--------------------------- // Is there no data path from s1 to s2 or s2 to s1? bool SuperWord::independent(Node* s1, Node* s2) { // assert(s1->Opcode() == s2->Opcode(), "check isomorphic first"); int d1 = depth(s1); int d2 = depth(s2); if (d1 == d2) return s1 != s2; Node* deep = d1 > d2 ? s1 : s2; Node* shallow = d1 > d2 ? s2 : s1; visited_clear(); return independent_path(shallow, deep); } //------------------------------independent_path------------------------------ // Helper for independent bool SuperWord::independent_path(Node* shallow, Node* deep, uint dp) { if (dp >= 1000) return false; // stop deep recursion visited_set(deep); int shal_depth = depth(shallow); assert(shal_depth <= depth(deep), "must be"); for (DepPreds preds(deep, _dg); !preds.done(); preds.next()) { Node* pred = preds.current(); if (in_bb(pred) && !visited_test(pred)) { if (shallow == pred) { return false; } if (shal_depth < depth(pred) && !independent_path(shallow, pred, dp+1)) { return false; } } } return true; } //------------------------------set_alignment--------------------------- void SuperWord::set_alignment(Node* s1, Node* s2, int align) { set_alignment(s1, align); if (align == top_align || align == bottom_align) { set_alignment(s2, align); } else { set_alignment(s2, align + data_size(s1)); } } //------------------------------data_size--------------------------- int SuperWord::data_size(Node* s) { int bsize = type2aelembytes(velt_basic_type(s)); assert(bsize != 0, "valid size"); return bsize; } //------------------------------extend_packlist--------------------------- // Extend packset by following use->def and def->use links from pack members. void SuperWord::extend_packlist() { bool changed; do { changed = false; for (int i = 0; i < _packset.length(); i++) { Node_List* p = _packset.at(i); changed |= follow_use_defs(p); changed |= follow_def_uses(p); } } while (changed); #ifndef PRODUCT if (TraceSuperWord) { tty->print_cr("\nAfter extend_packlist"); print_packset(); } #endif } //------------------------------follow_use_defs--------------------------- // Extend the packset by visiting operand definitions of nodes in pack p bool SuperWord::follow_use_defs(Node_List* p) { assert(p->size() == 2, "just checking"); Node* s1 = p->at(0); Node* s2 = p->at(1); assert(s1->req() == s2->req(), "just checking"); assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking"); if (s1->is_Load()) return false; int align = alignment(s1); bool changed = false; int start = s1->is_Store() ? MemNode::ValueIn : 1; int end = s1->is_Store() ? MemNode::ValueIn+1 : s1->req(); for (int j = start; j < end; j++) { Node* t1 = s1->in(j); Node* t2 = s2->in(j); if (!in_bb(t1) || !in_bb(t2)) continue; if (stmts_can_pack(t1, t2, align)) { if (est_savings(t1, t2) >= 0) { Node_List* pair = new Node_List(); pair->push(t1); pair->push(t2); _packset.append(pair); set_alignment(t1, t2, align); changed = true; } } } return changed; } //------------------------------follow_def_uses--------------------------- // Extend the packset by visiting uses of nodes in pack p bool SuperWord::follow_def_uses(Node_List* p) { bool changed = false; Node* s1 = p->at(0); Node* s2 = p->at(1); assert(p->size() == 2, "just checking"); assert(s1->req() == s2->req(), "just checking"); assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking"); if (s1->is_Store()) return false; int align = alignment(s1); int savings = -1; Node* u1 = NULL; Node* u2 = NULL; for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) { Node* t1 = s1->fast_out(i); if (!in_bb(t1)) continue; for (DUIterator_Fast jmax, j = s2->fast_outs(jmax); j < jmax; j++) { Node* t2 = s2->fast_out(j); if (!in_bb(t2)) continue; if (!opnd_positions_match(s1, t1, s2, t2)) continue; if (stmts_can_pack(t1, t2, align)) { int my_savings = est_savings(t1, t2); if (my_savings > savings) { savings = my_savings; u1 = t1; u2 = t2; } } } } if (savings >= 0) { Node_List* pair = new Node_List(); pair->push(u1); pair->push(u2); _packset.append(pair); set_alignment(u1, u2, align); changed = true; } return changed; } //---------------------------opnd_positions_match------------------------- // Is the use of d1 in u1 at the same operand position as d2 in u2? bool SuperWord::opnd_positions_match(Node* d1, Node* u1, Node* d2, Node* u2) { uint ct = u1->req(); if (ct != u2->req()) return false; uint i1 = 0; uint i2 = 0; do { for (i1++; i1 < ct; i1++) if (u1->in(i1) == d1) break; for (i2++; i2 < ct; i2++) if (u2->in(i2) == d2) break; if (i1 != i2) { if ((i1 == (3-i2)) && (u2->is_Add() || u2->is_Mul())) { // Further analysis relies on operands position matching. u2->swap_edges(i1, i2); } else { return false; } } } while (i1 < ct); return true; } //------------------------------est_savings--------------------------- // Estimate the savings from executing s1 and s2 as a pack int SuperWord::est_savings(Node* s1, Node* s2) { int save_in = 2 - 1; // 2 operations per instruction in packed form // inputs for (uint i = 1; i < s1->req(); i++) { Node* x1 = s1->in(i); Node* x2 = s2->in(i); if (x1 != x2) { if (are_adjacent_refs(x1, x2)) { save_in += adjacent_profit(x1, x2); } else if (!in_packset(x1, x2)) { save_in -= pack_cost(2); } else { save_in += unpack_cost(2); } } } // uses of result uint ct = 0; int save_use = 0; for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) { Node* s1_use = s1->fast_out(i); for (int j = 0; j < _packset.length(); j++) { Node_List* p = _packset.at(j); if (p->at(0) == s1_use) { for (DUIterator_Fast kmax, k = s2->fast_outs(kmax); k < kmax; k++) { Node* s2_use = s2->fast_out(k); if (p->at(p->size()-1) == s2_use) { ct++; if (are_adjacent_refs(s1_use, s2_use)) { save_use += adjacent_profit(s1_use, s2_use); } } } } } } if (ct < s1->outcnt()) save_use += unpack_cost(1); if (ct < s2->outcnt()) save_use += unpack_cost(1); return MAX2(save_in, save_use); } //------------------------------costs--------------------------- int SuperWord::adjacent_profit(Node* s1, Node* s2) { return 2; } int SuperWord::pack_cost(int ct) { return ct; } int SuperWord::unpack_cost(int ct) { return ct; } //------------------------------combine_packs--------------------------- // Combine packs A and B with A.last == B.first into A.first..,A.last,B.second,..B.last void SuperWord::combine_packs() { bool changed = true; // Combine packs regardless max vector size. while (changed) { changed = false; for (int i = 0; i < _packset.length(); i++) { Node_List* p1 = _packset.at(i); if (p1 == NULL) continue; for (int j = 0; j < _packset.length(); j++) { Node_List* p2 = _packset.at(j); if (p2 == NULL) continue; if (i == j) continue; if (p1->at(p1->size()-1) == p2->at(0)) { for (uint k = 1; k < p2->size(); k++) { p1->push(p2->at(k)); } _packset.at_put(j, NULL); changed = true; } } } } // Split packs which have size greater then max vector size. for (int i = 0; i < _packset.length(); i++) { Node_List* p1 = _packset.at(i); if (p1 != NULL) { BasicType bt = velt_basic_type(p1->at(0)); uint max_vlen = Matcher::max_vector_size(bt); // Max elements in vector assert(is_power_of_2(max_vlen), "sanity"); uint psize = p1->size(); if (!is_power_of_2(psize)) { // Skip pack which can't be vector. // case1: for(...) { a[i] = i; } elements values are different (i+x) // case2: for(...) { a[i] = b[i+1]; } can't align both, load and store _packset.at_put(i, NULL); continue; } if (psize > max_vlen) { Node_List* pack = new Node_List(); for (uint j = 0; j < psize; j++) { pack->push(p1->at(j)); if (pack->size() >= max_vlen) { assert(is_power_of_2(pack->size()), "sanity"); _packset.append(pack); pack = new Node_List(); } } _packset.at_put(i, NULL); } } } // Compress list. for (int i = _packset.length() - 1; i >= 0; i--) { Node_List* p1 = _packset.at(i); if (p1 == NULL) { _packset.remove_at(i); } } #ifndef PRODUCT if (TraceSuperWord) { tty->print_cr("\nAfter combine_packs"); print_packset(); } #endif } //-----------------------------construct_my_pack_map-------------------------- // Construct the map from nodes to packs. Only valid after the // point where a node is only in one pack (after combine_packs). void SuperWord::construct_my_pack_map() { Node_List* rslt = NULL; for (int i = 0; i < _packset.length(); i++) { Node_List* p = _packset.at(i); for (uint j = 0; j < p->size(); j++) { Node* s = p->at(j); assert(my_pack(s) == NULL, "only in one pack"); set_my_pack(s, p); } } } //------------------------------filter_packs--------------------------- // Remove packs that are not implemented or not profitable. void SuperWord::filter_packs() { // Remove packs that are not implemented for (int i = _packset.length() - 1; i >= 0; i--) { Node_List* pk = _packset.at(i); bool impl = implemented(pk); if (!impl) { #ifndef PRODUCT if (TraceSuperWord && Verbose) { tty->print_cr("Unimplemented"); pk->at(0)->dump(); } #endif remove_pack_at(i); } } // Remove packs that are not profitable bool changed; do { changed = false; for (int i = _packset.length() - 1; i >= 0; i--) { Node_List* pk = _packset.at(i); bool prof = profitable(pk); if (!prof) { #ifndef PRODUCT if (TraceSuperWord && Verbose) { tty->print_cr("Unprofitable"); pk->at(0)->dump(); } #endif remove_pack_at(i); changed = true; } } } while (changed); #ifndef PRODUCT if (TraceSuperWord) { tty->print_cr("\nAfter filter_packs"); print_packset(); tty->cr(); } #endif } //------------------------------implemented--------------------------- // Can code be generated for pack p? bool SuperWord::implemented(Node_List* p) { Node* p0 = p->at(0); return VectorNode::implemented(p0->Opcode(), p->size(), velt_basic_type(p0)); } //------------------------------same_inputs-------------------------- // For pack p, are all idx operands the same? static bool same_inputs(Node_List* p, int idx) { Node* p0 = p->at(0); uint vlen = p->size(); Node* p0_def = p0->in(idx); for (uint i = 1; i < vlen; i++) { Node* pi = p->at(i); Node* pi_def = pi->in(idx); if (p0_def != pi_def) return false; } return true; } //------------------------------profitable--------------------------- // For pack p, are all operands and all uses (with in the block) vector? bool SuperWord::profitable(Node_List* p) { Node* p0 = p->at(0); uint start, end; VectorNode::vector_operands(p0, &start, &end); // Return false if some inputs are not vectors or vectors with different // size or alignment. // Also, for now, return false if not scalar promotion case when inputs are // the same. Later, implement PackNode and allow differing, non-vector inputs // (maybe just the ones from outside the block.) for (uint i = start; i < end; i++) { if (!is_vector_use(p0, i)) return false; } if (VectorNode::is_shift(p0)) { // For now, return false if shift count is vector or not scalar promotion // case (different shift counts) because it is not supported yet. Node* cnt = p0->in(2); Node_List* cnt_pk = my_pack(cnt); if (cnt_pk != NULL) return false; if (!same_inputs(p, 2)) return false; } if (!p0->is_Store()) { // For now, return false if not all uses are vector. // Later, implement ExtractNode and allow non-vector uses (maybe // just the ones outside the block.) for (uint i = 0; i < p->size(); i++) { Node* def = p->at(i); for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) { Node* use = def->fast_out(j); for (uint k = 0; k < use->req(); k++) { Node* n = use->in(k); if (def == n) { if (!is_vector_use(use, k)) { return false; } } } } } } return true; } //------------------------------schedule--------------------------- // Adjust the memory graph for the packed operations void SuperWord::schedule() { // Co-locate in the memory graph the members of each memory pack for (int i = 0; i < _packset.length(); i++) { co_locate_pack(_packset.at(i)); } } //-------------------------------remove_and_insert------------------- // Remove "current" from its current position in the memory graph and insert // it after the appropriate insertion point (lip or uip). void SuperWord::remove_and_insert(MemNode *current, MemNode *prev, MemNode *lip, Node *uip, Unique_Node_List &sched_before) { Node* my_mem = current->in(MemNode::Memory); bool sched_up = sched_before.member(current); // remove current_store from its current position in the memmory graph for (DUIterator i = current->outs(); current->has_out(i); i++) { Node* use = current->out(i); if (use->is_Mem()) { assert(use->in(MemNode::Memory) == current, "must be"); if (use == prev) { // connect prev to my_mem _igvn.replace_input_of(use, MemNode::Memory, my_mem); --i; //deleted this edge; rescan position } else if (sched_before.member(use)) { if (!sched_up) { // Will be moved together with current _igvn.replace_input_of(use, MemNode::Memory, uip); --i; //deleted this edge; rescan position } } else { if (sched_up) { // Will be moved together with current _igvn.replace_input_of(use, MemNode::Memory, lip); --i; //deleted this edge; rescan position } } } } Node *insert_pt = sched_up ? uip : lip; // all uses of insert_pt's memory state should use current's instead for (DUIterator i = insert_pt->outs(); insert_pt->has_out(i); i++) { Node* use = insert_pt->out(i); if (use->is_Mem()) { assert(use->in(MemNode::Memory) == insert_pt, "must be"); _igvn.replace_input_of(use, MemNode::Memory, current); --i; //deleted this edge; rescan position } else if (!sched_up && use->is_Phi() && use->bottom_type() == Type::MEMORY) { uint pos; //lip (lower insert point) must be the last one in the memory slice for (pos=1; pos < use->req(); pos++) { if (use->in(pos) == insert_pt) break; } _igvn.replace_input_of(use, pos, current); --i; } } //connect current to insert_pt _igvn.replace_input_of(current, MemNode::Memory, insert_pt); } //------------------------------co_locate_pack---------------------------------- // To schedule a store pack, we need to move any sandwiched memory ops either before // or after the pack, based upon dependence information: // (1) If any store in the pack depends on the sandwiched memory op, the // sandwiched memory op must be scheduled BEFORE the pack; // (2) If a sandwiched memory op depends on any store in the pack, the // sandwiched memory op must be scheduled AFTER the pack; // (3) If a sandwiched memory op (say, memA) depends on another sandwiched // memory op (say memB), memB must be scheduled before memA. So, if memA is // scheduled before the pack, memB must also be scheduled before the pack; // (4) If there is no dependence restriction for a sandwiched memory op, we simply // schedule this store AFTER the pack // (5) We know there is no dependence cycle, so there in no other case; // (6) Finally, all memory ops in another single pack should be moved in the same direction. // // To schedule a load pack, we use the memory state of either the first or the last load in // the pack, based on the dependence constraint. void SuperWord::co_locate_pack(Node_List* pk) { if (pk->at(0)->is_Store()) { MemNode* first = executed_first(pk)->as_Mem(); MemNode* last = executed_last(pk)->as_Mem(); Unique_Node_List schedule_before_pack; Unique_Node_List memops; MemNode* current = last->in(MemNode::Memory)->as_Mem(); MemNode* previous = last; while (true) { assert(in_bb(current), "stay in block"); memops.push(previous); for (DUIterator i = current->outs(); current->has_out(i); i++) { Node* use = current->out(i); if (use->is_Mem() && use != previous) memops.push(use); } if (current == first) break; previous = current; current = current->in(MemNode::Memory)->as_Mem(); } // determine which memory operations should be scheduled before the pack for (uint i = 1; i < memops.size(); i++) { Node *s1 = memops.at(i); if (!in_pack(s1, pk) && !schedule_before_pack.member(s1)) { for (uint j = 0; j< i; j++) { Node *s2 = memops.at(j); if (!independent(s1, s2)) { if (in_pack(s2, pk) || schedule_before_pack.member(s2)) { schedule_before_pack.push(s1); // s1 must be scheduled before Node_List* mem_pk = my_pack(s1); if (mem_pk != NULL) { for (uint ii = 0; ii < mem_pk->size(); ii++) { Node* s = mem_pk->at(ii); // follow partner if (memops.member(s) && !schedule_before_pack.member(s)) schedule_before_pack.push(s); } } break; } } } } } Node* upper_insert_pt = first->in(MemNode::Memory); // Following code moves loads connected to upper_insert_pt below aliased stores. // Collect such loads here and reconnect them back to upper_insert_pt later. memops.clear(); for (DUIterator i = upper_insert_pt->outs(); upper_insert_pt->has_out(i); i++) { Node* use = upper_insert_pt->out(i); if (use->is_Mem() && !use->is_Store()) { memops.push(use); } } MemNode* lower_insert_pt = last; previous = last; //previous store in pk current = last->in(MemNode::Memory)->as_Mem(); // start scheduling from "last" to "first" while (true) { assert(in_bb(current), "stay in block"); assert(in_pack(previous, pk), "previous stays in pack"); Node* my_mem = current->in(MemNode::Memory); if (in_pack(current, pk)) { // Forward users of my memory state (except "previous) to my input memory state for (DUIterator i = current->outs(); current->has_out(i); i++) { Node* use = current->out(i); if (use->is_Mem() && use != previous) { assert(use->in(MemNode::Memory) == current, "must be"); if (schedule_before_pack.member(use)) { _igvn.replace_input_of(use, MemNode::Memory, upper_insert_pt); } else { _igvn.replace_input_of(use, MemNode::Memory, lower_insert_pt); } --i; // deleted this edge; rescan position } } previous = current; } else { // !in_pack(current, pk) ==> a sandwiched store remove_and_insert(current, previous, lower_insert_pt, upper_insert_pt, schedule_before_pack); } if (current == first) break; current = my_mem->as_Mem(); } // end while // Reconnect loads back to upper_insert_pt. for (uint i = 0; i < memops.size(); i++) { Node *ld = memops.at(i); if (ld->in(MemNode::Memory) != upper_insert_pt) { _igvn.replace_input_of(ld, MemNode::Memory, upper_insert_pt); } } } else if (pk->at(0)->is_Load()) { //load // all loads in the pack should have the same memory state. By default, // we use the memory state of the last load. However, if any load could // not be moved down due to the dependence constraint, we use the memory // state of the first load. Node* last_mem = executed_last(pk)->in(MemNode::Memory); Node* first_mem = executed_first(pk)->in(MemNode::Memory); bool schedule_last = true; for (uint i = 0; i < pk->size(); i++) { Node* ld = pk->at(i); for (Node* current = last_mem; current != ld->in(MemNode::Memory); current=current->in(MemNode::Memory)) { assert(current != first_mem, "corrupted memory graph"); if(current->is_Mem() && !independent(current, ld)){ schedule_last = false; // a later store depends on this load break; } } } Node* mem_input = schedule_last ? last_mem : first_mem; _igvn.hash_delete(mem_input); // Give each load the same memory state for (uint i = 0; i < pk->size(); i++) { LoadNode* ld = pk->at(i)->as_Load(); _igvn.replace_input_of(ld, MemNode::Memory, mem_input); } } } //------------------------------output--------------------------- // Convert packs into vector node operations void SuperWord::output() { if (_packset.length() == 0) return; #ifndef PRODUCT if (TraceLoopOpts) { tty->print("SuperWord "); lpt()->dump_head(); } #endif // MUST ENSURE main loop's initial value is properly aligned: // (iv_initial_value + min_iv_offset) % vector_width_in_bytes() == 0 align_initial_loop_index(align_to_ref()); // Insert extract (unpack) operations for scalar uses for (int i = 0; i < _packset.length(); i++) { insert_extracts(_packset.at(i)); } Compile* C = _phase->C; uint max_vlen_in_bytes = 0; for (int i = 0; i < _block.length(); i++) { Node* n = _block.at(i); Node_List* p = my_pack(n); if (p && n == executed_last(p)) { uint vlen = p->size(); uint vlen_in_bytes = 0; Node* vn = NULL; Node* low_adr = p->at(0); Node* first = executed_first(p); int opc = n->Opcode(); if (n->is_Load()) { Node* ctl = n->in(MemNode::Control); Node* mem = first->in(MemNode::Memory); SWPointer p1(n->as_Mem(), this); // Identify the memory dependency for the new loadVector node by // walking up through memory chain. // This is done to give flexibility to the new loadVector node so that // it can move above independent storeVector nodes. while (mem->is_StoreVector()) { SWPointer p2(mem->as_Mem(), this); int cmp = p1.cmp(p2); if (SWPointer::not_equal(cmp) || !SWPointer::comparable(cmp)) { mem = mem->in(MemNode::Memory); } else { break; // dependent memory } } Node* adr = low_adr->in(MemNode::Address); const TypePtr* atyp = n->adr_type(); vn = LoadVectorNode::make(C, opc, ctl, mem, adr, atyp, vlen, velt_basic_type(n), control_dependency(p)); vlen_in_bytes = vn->as_LoadVector()->memory_size(); } else if (n->is_Store()) { // Promote value to be stored to vector Node* val = vector_opd(p, MemNode::ValueIn); Node* ctl = n->in(MemNode::Control); Node* mem = first->in(MemNode::Memory); Node* adr = low_adr->in(MemNode::Address); const TypePtr* atyp = n->adr_type(); vn = StoreVectorNode::make(C, opc, ctl, mem, adr, atyp, val, vlen); vlen_in_bytes = vn->as_StoreVector()->memory_size(); } else if (n->req() == 3) { // Promote operands to vector Node* in1 = vector_opd(p, 1); Node* in2 = vector_opd(p, 2); if (VectorNode::is_invariant_vector(in1) && (n->is_Add() || n->is_Mul())) { // Move invariant vector input into second position to avoid register spilling. Node* tmp = in1; in1 = in2; in2 = tmp; } vn = VectorNode::make(C, opc, in1, in2, vlen, velt_basic_type(n)); vlen_in_bytes = vn->as_Vector()->length_in_bytes(); } else { ShouldNotReachHere(); } assert(vn != NULL, "sanity"); _igvn.register_new_node_with_optimizer(vn); _phase->set_ctrl(vn, _phase->get_ctrl(p->at(0))); for (uint j = 0; j < p->size(); j++) { Node* pm = p->at(j); _igvn.replace_node(pm, vn); } _igvn._worklist.push(vn); if (vlen_in_bytes > max_vlen_in_bytes) { max_vlen_in_bytes = vlen_in_bytes; } #ifdef ASSERT if (TraceNewVectors) { tty->print("new Vector node: "); vn->dump(); } #endif } } C->set_max_vector_size(max_vlen_in_bytes); } //------------------------------vector_opd--------------------------- // Create a vector operand for the nodes in pack p for operand: in(opd_idx) Node* SuperWord::vector_opd(Node_List* p, int opd_idx) { Node* p0 = p->at(0); uint vlen = p->size(); Node* opd = p0->in(opd_idx); if (same_inputs(p, opd_idx)) { if (opd->is_Vector() || opd->is_LoadVector()) { assert(((opd_idx != 2) || !VectorNode::is_shift(p0)), "shift's count can't be vector"); return opd; // input is matching vector } if ((opd_idx == 2) && VectorNode::is_shift(p0)) { Compile* C = _phase->C; Node* cnt = opd; // Vector instructions do not mask shift count, do it here. juint mask = (p0->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1); const TypeInt* t = opd->find_int_type(); if (t != NULL && t->is_con()) { juint shift = t->get_con(); if (shift > mask) { // Unsigned cmp cnt = ConNode::make(C, TypeInt::make(shift & mask)); } } else { if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) { cnt = ConNode::make(C, TypeInt::make(mask)); _igvn.register_new_node_with_optimizer(cnt); cnt = new (C) AndINode(opd, cnt); _igvn.register_new_node_with_optimizer(cnt); _phase->set_ctrl(cnt, _phase->get_ctrl(opd)); } assert(opd->bottom_type()->isa_int(), "int type only"); // Move non constant shift count into vector register. cnt = VectorNode::shift_count(C, p0, cnt, vlen, velt_basic_type(p0)); } if (cnt != opd) { _igvn.register_new_node_with_optimizer(cnt); _phase->set_ctrl(cnt, _phase->get_ctrl(opd)); } return cnt; } assert(!opd->is_StoreVector(), "such vector is not expected here"); // Convert scalar input to vector with the same number of elements as // p0's vector. Use p0's type because size of operand's container in // vector should match p0's size regardless operand's size. const Type* p0_t = velt_type(p0); VectorNode* vn = VectorNode::scalar2vector(_phase->C, opd, vlen, p0_t); _igvn.register_new_node_with_optimizer(vn); _phase->set_ctrl(vn, _phase->get_ctrl(opd)); #ifdef ASSERT if (TraceNewVectors) { tty->print("new Vector node: "); vn->dump(); } #endif return vn; } // Insert pack operation BasicType bt = velt_basic_type(p0); PackNode* pk = PackNode::make(_phase->C, opd, vlen, bt); DEBUG_ONLY( const BasicType opd_bt = opd->bottom_type()->basic_type(); ) for (uint i = 1; i < vlen; i++) { Node* pi = p->at(i); Node* in = pi->in(opd_idx); assert(my_pack(in) == NULL, "Should already have been unpacked"); assert(opd_bt == in->bottom_type()->basic_type(), "all same type"); pk->add_opd(in); } _igvn.register_new_node_with_optimizer(pk); _phase->set_ctrl(pk, _phase->get_ctrl(opd)); #ifdef ASSERT if (TraceNewVectors) { tty->print("new Vector node: "); pk->dump(); } #endif return pk; } //------------------------------insert_extracts--------------------------- // If a use of pack p is not a vector use, then replace the // use with an extract operation. void SuperWord::insert_extracts(Node_List* p) { if (p->at(0)->is_Store()) return; assert(_n_idx_list.is_empty(), "empty (node,index) list"); // Inspect each use of each pack member. For each use that is // not a vector use, replace the use with an extract operation. for (uint i = 0; i < p->size(); i++) { Node* def = p->at(i); for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) { Node* use = def->fast_out(j); for (uint k = 0; k < use->req(); k++) { Node* n = use->in(k); if (def == n) { if (!is_vector_use(use, k)) { _n_idx_list.push(use, k); } } } } } while (_n_idx_list.is_nonempty()) { Node* use = _n_idx_list.node(); int idx = _n_idx_list.index(); _n_idx_list.pop(); Node* def = use->in(idx); // Insert extract operation _igvn.hash_delete(def); int def_pos = alignment(def) / data_size(def); Node* ex = ExtractNode::make(_phase->C, def, def_pos, velt_basic_type(def)); _igvn.register_new_node_with_optimizer(ex); _phase->set_ctrl(ex, _phase->get_ctrl(def)); _igvn.replace_input_of(use, idx, ex); _igvn._worklist.push(def); bb_insert_after(ex, bb_idx(def)); set_velt_type(ex, velt_type(def)); } } //------------------------------is_vector_use--------------------------- // Is use->in(u_idx) a vector use? bool SuperWord::is_vector_use(Node* use, int u_idx) { Node_List* u_pk = my_pack(use); if (u_pk == NULL) return false; Node* def = use->in(u_idx); Node_List* d_pk = my_pack(def); if (d_pk == NULL) { // check for scalar promotion Node* n = u_pk->at(0)->in(u_idx); for (uint i = 1; i < u_pk->size(); i++) { if (u_pk->at(i)->in(u_idx) != n) return false; } return true; } if (u_pk->size() != d_pk->size()) return false; for (uint i = 0; i < u_pk->size(); i++) { Node* ui = u_pk->at(i); Node* di = d_pk->at(i); if (ui->in(u_idx) != di || alignment(ui) != alignment(di)) return false; } return true; } //------------------------------construct_bb--------------------------- // Construct reverse postorder list of block members bool SuperWord::construct_bb() { Node* entry = bb(); assert(_stk.length() == 0, "stk is empty"); assert(_block.length() == 0, "block is empty"); assert(_data_entry.length() == 0, "data_entry is empty"); assert(_mem_slice_head.length() == 0, "mem_slice_head is empty"); assert(_mem_slice_tail.length() == 0, "mem_slice_tail is empty"); // Find non-control nodes with no inputs from within block, // create a temporary map from node _idx to bb_idx for use // by the visited and post_visited sets, // and count number of nodes in block. int bb_ct = 0; for (uint i = 0; i < lpt()->_body.size(); i++ ) { Node *n = lpt()->_body.at(i); set_bb_idx(n, i); // Create a temporary map if (in_bb(n)) { if (n->is_LoadStore() || n->is_MergeMem() || (n->is_Proj() && !n->as_Proj()->is_CFG())) { // Bailout if the loop has LoadStore, MergeMem or data Proj // nodes. Superword optimization does not work with them. return false; } bb_ct++; if (!n->is_CFG()) { bool found = false; for (uint j = 0; j < n->req(); j++) { Node* def = n->in(j); if (def && in_bb(def)) { found = true; break; } } if (!found) { assert(n != entry, "can't be entry"); _data_entry.push(n); } } } } // Find memory slices (head and tail) for (DUIterator_Fast imax, i = lp()->fast_outs(imax); i < imax; i++) { Node *n = lp()->fast_out(i); if (in_bb(n) && (n->is_Phi() && n->bottom_type() == Type::MEMORY)) { Node* n_tail = n->in(LoopNode::LoopBackControl); if (n_tail != n->in(LoopNode::EntryControl)) { if (!n_tail->is_Mem()) { assert(n_tail->is_Mem(), err_msg_res("unexpected node for memory slice: %s", n_tail->Name())); return false; // Bailout } _mem_slice_head.push(n); _mem_slice_tail.push(n_tail); } } } // Create an RPO list of nodes in block visited_clear(); post_visited_clear(); // Push all non-control nodes with no inputs from within block, then control entry for (int j = 0; j < _data_entry.length(); j++) { Node* n = _data_entry.at(j); visited_set(n); _stk.push(n); } visited_set(entry); _stk.push(entry); // Do a depth first walk over out edges int rpo_idx = bb_ct - 1; int size; while ((size = _stk.length()) > 0) { Node* n = _stk.top(); // Leave node on stack if (!visited_test_set(n)) { // forward arc in graph } else if (!post_visited_test(n)) { // cross or back arc for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { Node *use = n->fast_out(i); if (in_bb(use) && !visited_test(use) && // Don't go around backedge (!use->is_Phi() || n == entry)) { _stk.push(use); } } if (_stk.length() == size) { // There were no additional uses, post visit node now _stk.pop(); // Remove node from stack assert(rpo_idx >= 0, ""); _block.at_put_grow(rpo_idx, n); rpo_idx--; post_visited_set(n); assert(rpo_idx >= 0 || _stk.is_empty(), ""); } } else { _stk.pop(); // Remove post-visited node from stack } } // Create real map of block indices for nodes for (int j = 0; j < _block.length(); j++) { Node* n = _block.at(j); set_bb_idx(n, j); } initialize_bb(); // Ensure extra info is allocated. #ifndef PRODUCT if (TraceSuperWord) { print_bb(); tty->print_cr("\ndata entry nodes: %s", _data_entry.length() > 0 ? "" : "NONE"); for (int m = 0; m < _data_entry.length(); m++) { tty->print("%3d ", m); _data_entry.at(m)->dump(); } tty->print_cr("\nmemory slices: %s", _mem_slice_head.length() > 0 ? "" : "NONE"); for (int m = 0; m < _mem_slice_head.length(); m++) { tty->print("%3d ", m); _mem_slice_head.at(m)->dump(); tty->print(" "); _mem_slice_tail.at(m)->dump(); } } #endif assert(rpo_idx == -1 && bb_ct == _block.length(), "all block members found"); return (_mem_slice_head.length() > 0) || (_data_entry.length() > 0); } //------------------------------initialize_bb--------------------------- // Initialize per node info void SuperWord::initialize_bb() { Node* last = _block.at(_block.length() - 1); grow_node_info(bb_idx(last)); } //------------------------------bb_insert_after--------------------------- // Insert n into block after pos void SuperWord::bb_insert_after(Node* n, int pos) { int n_pos = pos + 1; // Make room for (int i = _block.length() - 1; i >= n_pos; i--) { _block.at_put_grow(i+1, _block.at(i)); } for (int j = _node_info.length() - 1; j >= n_pos; j--) { _node_info.at_put_grow(j+1, _node_info.at(j)); } // Set value _block.at_put_grow(n_pos, n); _node_info.at_put_grow(n_pos, SWNodeInfo::initial); // Adjust map from node->_idx to _block index for (int i = n_pos; i < _block.length(); i++) { set_bb_idx(_block.at(i), i); } } //------------------------------compute_max_depth--------------------------- // Compute max depth for expressions from beginning of block // Use to prune search paths during test for independence. void SuperWord::compute_max_depth() { int ct = 0; bool again; do { again = false; for (int i = 0; i < _block.length(); i++) { Node* n = _block.at(i); if (!n->is_Phi()) { int d_orig = depth(n); int d_in = 0; for (DepPreds preds(n, _dg); !preds.done(); preds.next()) { Node* pred = preds.current(); if (in_bb(pred)) { d_in = MAX2(d_in, depth(pred)); } } if (d_in + 1 != d_orig) { set_depth(n, d_in + 1); again = true; } } } ct++; } while (again); #ifndef PRODUCT if (TraceSuperWord && Verbose) tty->print_cr("compute_max_depth iterated: %d times", ct); #endif } //-------------------------compute_vector_element_type----------------------- // Compute necessary vector element type for expressions // This propagates backwards a narrower integer type when the // upper bits of the value are not needed. // Example: char a,b,c; a = b + c; // Normally the type of the add is integer, but for packed character // operations the type of the add needs to be char. void SuperWord::compute_vector_element_type() { #ifndef PRODUCT if (TraceSuperWord && Verbose) tty->print_cr("\ncompute_velt_type:"); #endif // Initial type for (int i = 0; i < _block.length(); i++) { Node* n = _block.at(i); set_velt_type(n, container_type(n)); } // Propagate integer narrowed type backwards through operations // that don't depend on higher order bits for (int i = _block.length() - 1; i >= 0; i--) { Node* n = _block.at(i); // Only integer types need be examined const Type* vtn = velt_type(n); if (vtn->basic_type() == T_INT) { uint start, end; VectorNode::vector_operands(n, &start, &end); for (uint j = start; j < end; j++) { Node* in = n->in(j); // Don't propagate through a memory if (!in->is_Mem() && in_bb(in) && velt_type(in)->basic_type() == T_INT && data_size(n) < data_size(in)) { bool same_type = true; for (DUIterator_Fast kmax, k = in->fast_outs(kmax); k < kmax; k++) { Node *use = in->fast_out(k); if (!in_bb(use) || !same_velt_type(use, n)) { same_type = false; break; } } if (same_type) { // For right shifts of small integer types (bool, byte, char, short) // we need precise information about sign-ness. Only Load nodes have // this information because Store nodes are the same for signed and // unsigned values. And any arithmetic operation after a load may // expand a value to signed Int so such right shifts can't be used // because vector elements do not have upper bits of Int. const Type* vt = vtn; if (VectorNode::is_shift(in)) { Node* load = in->in(1); if (load->is_Load() && in_bb(load) && (velt_type(load)->basic_type() == T_INT)) { vt = velt_type(load); } else if (in->Opcode() != Op_LShiftI) { // Widen type to Int to avoid creation of right shift vector // (align + data_size(s1) check in stmts_can_pack() will fail). // Note, left shifts work regardless type. vt = TypeInt::INT; } } set_velt_type(in, vt); } } } } } #ifndef PRODUCT if (TraceSuperWord && Verbose) { for (int i = 0; i < _block.length(); i++) { Node* n = _block.at(i); velt_type(n)->dump(); tty->print("\t"); n->dump(); } } #endif } //------------------------------memory_alignment--------------------------- // Alignment within a vector memory reference int SuperWord::memory_alignment(MemNode* s, int iv_adjust) { SWPointer p(s, this); if (!p.valid()) { return bottom_align; } int vw = vector_width_in_bytes(s); if (vw < 2) { return bottom_align; // No vectors for this type } int offset = p.offset_in_bytes(); offset += iv_adjust*p.memory_size(); int off_rem = offset % vw; int off_mod = off_rem >= 0 ? off_rem : off_rem + vw; return off_mod; } //---------------------------container_type--------------------------- // Smallest type containing range of values const Type* SuperWord::container_type(Node* n) { if (n->is_Mem()) { BasicType bt = n->as_Mem()->memory_type(); if (n->is_Store() && (bt == T_CHAR)) { // Use T_SHORT type instead of T_CHAR for stored values because any // preceding arithmetic operation extends values to signed Int. bt = T_SHORT; } if (n->Opcode() == Op_LoadUB) { // Adjust type for unsigned byte loads, it is important for right shifts. // T_BOOLEAN is used because there is no basic type representing type // TypeInt::UBYTE. Use of T_BOOLEAN for vectors is fine because only // size (one byte) and sign is important. bt = T_BOOLEAN; } return Type::get_const_basic_type(bt); } const Type* t = _igvn.type(n); if (t->basic_type() == T_INT) { // A narrow type of arithmetic operations will be determined by // propagating the type of memory operations. return TypeInt::INT; } return t; } bool SuperWord::same_velt_type(Node* n1, Node* n2) { const Type* vt1 = velt_type(n1); const Type* vt2 = velt_type(n2); if (vt1->basic_type() == T_INT && vt2->basic_type() == T_INT) { // Compare vectors element sizes for integer types. return data_size(n1) == data_size(n2); } return vt1 == vt2; } //------------------------------in_packset--------------------------- // Are s1 and s2 in a pack pair and ordered as s1,s2? bool SuperWord::in_packset(Node* s1, Node* s2) { for (int i = 0; i < _packset.length(); i++) { Node_List* p = _packset.at(i); assert(p->size() == 2, "must be"); if (p->at(0) == s1 && p->at(p->size()-1) == s2) { return true; } } return false; } //------------------------------in_pack--------------------------- // Is s in pack p? Node_List* SuperWord::in_pack(Node* s, Node_List* p) { for (uint i = 0; i < p->size(); i++) { if (p->at(i) == s) { return p; } } return NULL; } //------------------------------remove_pack_at--------------------------- // Remove the pack at position pos in the packset void SuperWord::remove_pack_at(int pos) { Node_List* p = _packset.at(pos); for (uint i = 0; i < p->size(); i++) { Node* s = p->at(i); set_my_pack(s, NULL); } _packset.remove_at(pos); } //------------------------------executed_first--------------------------- // Return the node executed first in pack p. Uses the RPO block list // to determine order. Node* SuperWord::executed_first(Node_List* p) { Node* n = p->at(0); int n_rpo = bb_idx(n); for (uint i = 1; i < p->size(); i++) { Node* s = p->at(i); int s_rpo = bb_idx(s); if (s_rpo < n_rpo) { n = s; n_rpo = s_rpo; } } return n; } //------------------------------executed_last--------------------------- // Return the node executed last in pack p. Node* SuperWord::executed_last(Node_List* p) { Node* n = p->at(0); int n_rpo = bb_idx(n); for (uint i = 1; i < p->size(); i++) { Node* s = p->at(i); int s_rpo = bb_idx(s); if (s_rpo > n_rpo) { n = s; n_rpo = s_rpo; } } return n; } LoadNode::ControlDependency SuperWord::control_dependency(Node_List* p) { LoadNode::ControlDependency dep = LoadNode::DependsOnlyOnTest; for (uint i = 0; i < p->size(); i++) { Node* n = p->at(i); assert(n->is_Load(), "only meaningful for loads"); if (!n->depends_only_on_test()) { dep = LoadNode::Pinned; } } return dep; } //----------------------------align_initial_loop_index--------------------------- // Adjust pre-loop limit so that in main loop, a load/store reference // to align_to_ref will be a position zero in the vector. // (iv + k) mod vector_align == 0 void SuperWord::align_initial_loop_index(MemNode* align_to_ref) { CountedLoopNode *main_head = lp()->as_CountedLoop(); assert(main_head->is_main_loop(), ""); CountedLoopEndNode* pre_end = get_pre_loop_end(main_head); assert(pre_end != NULL, "we must have a correct pre-loop"); Node *pre_opaq1 = pre_end->limit(); assert(pre_opaq1->Opcode() == Op_Opaque1, ""); Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1; Node *lim0 = pre_opaq->in(1); // Where we put new limit calculations Node *pre_ctrl = pre_end->loopnode()->in(LoopNode::EntryControl); // Ensure the original loop limit is available from the // pre-loop Opaque1 node. Node *orig_limit = pre_opaq->original_loop_limit(); assert(orig_limit != NULL && _igvn.type(orig_limit) != Type::TOP, ""); SWPointer align_to_ref_p(align_to_ref, this); assert(align_to_ref_p.valid(), "sanity"); // Given: // lim0 == original pre loop limit // V == v_align (power of 2) // invar == extra invariant piece of the address expression // e == offset [ +/- invar ] // // When reassociating expressions involving '%' the basic rules are: // (a - b) % k == 0 => a % k == b % k // and: // (a + b) % k == 0 => a % k == (k - b) % k // // For stride > 0 && scale > 0, // Derive the new pre-loop limit "lim" such that the two constraints: // (1) lim = lim0 + N (where N is some positive integer < V) // (2) (e + lim) % V == 0 // are true. // // Substituting (1) into (2), // (e + lim0 + N) % V == 0 // solve for N: // N = (V - (e + lim0)) % V // substitute back into (1), so that new limit // lim = lim0 + (V - (e + lim0)) % V // // For stride > 0 && scale < 0 // Constraints: // lim = lim0 + N // (e - lim) % V == 0 // Solving for lim: // (e - lim0 - N) % V == 0 // N = (e - lim0) % V // lim = lim0 + (e - lim0) % V // // For stride < 0 && scale > 0 // Constraints: // lim = lim0 - N // (e + lim) % V == 0 // Solving for lim: // (e + lim0 - N) % V == 0 // N = (e + lim0) % V // lim = lim0 - (e + lim0) % V // // For stride < 0 && scale < 0 // Constraints: // lim = lim0 - N // (e - lim) % V == 0 // Solving for lim: // (e - lim0 + N) % V == 0 // N = (V - (e - lim0)) % V // lim = lim0 - (V - (e - lim0)) % V int vw = vector_width_in_bytes(align_to_ref); int stride = iv_stride(); int scale = align_to_ref_p.scale_in_bytes(); int elt_size = align_to_ref_p.memory_size(); int v_align = vw / elt_size; assert(v_align > 1, "sanity"); int offset = align_to_ref_p.offset_in_bytes() / elt_size; Node *offsn = _igvn.intcon(offset); Node *e = offsn; if (align_to_ref_p.invar() != NULL) { // incorporate any extra invariant piece producing (offset +/- invar) >>> log2(elt) Node* log2_elt = _igvn.intcon(exact_log2(elt_size)); Node* aref = new (_phase->C) URShiftINode(align_to_ref_p.invar(), log2_elt); _igvn.register_new_node_with_optimizer(aref); _phase->set_ctrl(aref, pre_ctrl); if (align_to_ref_p.negate_invar()) { e = new (_phase->C) SubINode(e, aref); } else { e = new (_phase->C) AddINode(e, aref); } _igvn.register_new_node_with_optimizer(e); _phase->set_ctrl(e, pre_ctrl); } if (vw > ObjectAlignmentInBytes) { // incorporate base e +/- base && Mask >>> log2(elt) Node* xbase = new(_phase->C) CastP2XNode(NULL, align_to_ref_p.base()); _igvn.register_new_node_with_optimizer(xbase); #ifdef _LP64 xbase = new (_phase->C) ConvL2INode(xbase); _igvn.register_new_node_with_optimizer(xbase); #endif Node* mask = _igvn.intcon(vw-1); Node* masked_xbase = new (_phase->C) AndINode(xbase, mask); _igvn.register_new_node_with_optimizer(masked_xbase); Node* log2_elt = _igvn.intcon(exact_log2(elt_size)); Node* bref = new (_phase->C) URShiftINode(masked_xbase, log2_elt); _igvn.register_new_node_with_optimizer(bref); _phase->set_ctrl(bref, pre_ctrl); e = new (_phase->C) AddINode(e, bref); _igvn.register_new_node_with_optimizer(e); _phase->set_ctrl(e, pre_ctrl); } // compute e +/- lim0 if (scale < 0) { e = new (_phase->C) SubINode(e, lim0); } else { e = new (_phase->C) AddINode(e, lim0); } _igvn.register_new_node_with_optimizer(e); _phase->set_ctrl(e, pre_ctrl); if (stride * scale > 0) { // compute V - (e +/- lim0) Node* va = _igvn.intcon(v_align); e = new (_phase->C) SubINode(va, e); _igvn.register_new_node_with_optimizer(e); _phase->set_ctrl(e, pre_ctrl); } // compute N = (exp) % V Node* va_msk = _igvn.intcon(v_align - 1); Node* N = new (_phase->C) AndINode(e, va_msk); _igvn.register_new_node_with_optimizer(N); _phase->set_ctrl(N, pre_ctrl); // substitute back into (1), so that new limit // lim = lim0 + N Node* lim; if (stride < 0) { lim = new (_phase->C) SubINode(lim0, N); } else { lim = new (_phase->C) AddINode(lim0, N); } _igvn.register_new_node_with_optimizer(lim); _phase->set_ctrl(lim, pre_ctrl); Node* constrained = (stride > 0) ? (Node*) new (_phase->C) MinINode(lim, orig_limit) : (Node*) new (_phase->C) MaxINode(lim, orig_limit); _igvn.register_new_node_with_optimizer(constrained); _phase->set_ctrl(constrained, pre_ctrl); _igvn.hash_delete(pre_opaq); pre_opaq->set_req(1, constrained); } //----------------------------get_pre_loop_end--------------------------- // Find pre loop end from main loop. Returns null if none. CountedLoopEndNode* SuperWord::get_pre_loop_end(CountedLoopNode *cl) { Node *ctrl = cl->in(LoopNode::EntryControl); if (!ctrl->is_IfTrue() && !ctrl->is_IfFalse()) return NULL; Node *iffm = ctrl->in(0); if (!iffm->is_If()) return NULL; Node *p_f = iffm->in(0); if (!p_f->is_IfFalse()) return NULL; if (!p_f->in(0)->is_CountedLoopEnd()) return NULL; CountedLoopEndNode *pre_end = p_f->in(0)->as_CountedLoopEnd(); CountedLoopNode* loop_node = pre_end->loopnode(); if (loop_node == NULL || !loop_node->is_pre_loop()) return NULL; return pre_end; } //------------------------------init--------------------------- void SuperWord::init() { _dg.init(); _packset.clear(); _disjoint_ptrs.clear(); _block.clear(); _data_entry.clear(); _mem_slice_head.clear(); _mem_slice_tail.clear(); _node_info.clear(); _align_to_ref = NULL; _lpt = NULL; _lp = NULL; _bb = NULL; _iv = NULL; } //------------------------------print_packset--------------------------- void SuperWord::print_packset() { #ifndef PRODUCT tty->print_cr("packset"); for (int i = 0; i < _packset.length(); i++) { tty->print_cr("Pack: %d", i); Node_List* p = _packset.at(i); print_pack(p); } #endif } //------------------------------print_pack--------------------------- void SuperWord::print_pack(Node_List* p) { for (uint i = 0; i < p->size(); i++) { print_stmt(p->at(i)); } } //------------------------------print_bb--------------------------- void SuperWord::print_bb() { #ifndef PRODUCT tty->print_cr("\nBlock"); for (int i = 0; i < _block.length(); i++) { Node* n = _block.at(i); tty->print("%d ", i); if (n) { n->dump(); } } #endif } //------------------------------print_stmt--------------------------- void SuperWord::print_stmt(Node* s) { #ifndef PRODUCT tty->print(" align: %d \t", alignment(s)); s->dump(); #endif } //------------------------------blank--------------------------- char* SuperWord::blank(uint depth) { static char blanks[101]; assert(depth < 101, "too deep"); for (uint i = 0; i < depth; i++) blanks[i] = ' '; blanks[depth] = '\0'; return blanks; } //==============================SWPointer=========================== //----------------------------SWPointer------------------------ SWPointer::SWPointer(MemNode* mem, SuperWord* slp) : _mem(mem), _slp(slp), _base(NULL), _adr(NULL), _scale(0), _offset(0), _invar(NULL), _negate_invar(false) { Node* adr = mem->in(MemNode::Address); if (!adr->is_AddP()) { assert(!valid(), "too complex"); return; } // Match AddP(base, AddP(ptr, k*iv [+ invariant]), constant) Node* base = adr->in(AddPNode::Base); // The base address should be loop invariant if (!invariant(base)) { assert(!valid(), "base address is loop variant"); return; } //unsafe reference could not be aligned appropriately without runtime checking if (base == NULL || base->bottom_type() == Type::TOP) { assert(!valid(), "unsafe access"); return; } for (int i = 0; i < 3; i++) { if (!scaled_iv_plus_offset(adr->in(AddPNode::Offset))) { assert(!valid(), "too complex"); return; } adr = adr->in(AddPNode::Address); if (base == adr || !adr->is_AddP()) { break; // stop looking at addp's } } _base = base; _adr = adr; assert(valid(), "Usable"); } // Following is used to create a temporary object during // the pattern match of an address expression. SWPointer::SWPointer(SWPointer* p) : _mem(p->_mem), _slp(p->_slp), _base(NULL), _adr(NULL), _scale(0), _offset(0), _invar(NULL), _negate_invar(false) {} //------------------------scaled_iv_plus_offset-------------------- // Match: k*iv + offset // where: k is a constant that maybe zero, and // offset is (k2 [+/- invariant]) where k2 maybe zero and invariant is optional bool SWPointer::scaled_iv_plus_offset(Node* n) { if (scaled_iv(n)) { return true; } if (offset_plus_k(n)) { return true; } int opc = n->Opcode(); if (opc == Op_AddI) { if (scaled_iv(n->in(1)) && offset_plus_k(n->in(2))) { return true; } if (scaled_iv(n->in(2)) && offset_plus_k(n->in(1))) { return true; } } else if (opc == Op_SubI) { if (scaled_iv(n->in(1)) && offset_plus_k(n->in(2), true)) { return true; } if (scaled_iv(n->in(2)) && offset_plus_k(n->in(1))) { _scale *= -1; return true; } } return false; } //----------------------------scaled_iv------------------------ // Match: k*iv where k is a constant that's not zero bool SWPointer::scaled_iv(Node* n) { if (_scale != 0) { return false; // already found a scale } if (n == iv()) { _scale = 1; return true; } int opc = n->Opcode(); if (opc == Op_MulI) { if (n->in(1) == iv() && n->in(2)->is_Con()) { _scale = n->in(2)->get_int(); return true; } else if (n->in(2) == iv() && n->in(1)->is_Con()) { _scale = n->in(1)->get_int(); return true; } } else if (opc == Op_LShiftI) { if (n->in(1) == iv() && n->in(2)->is_Con()) { _scale = 1 << n->in(2)->get_int(); return true; } } else if (opc == Op_ConvI2L) { if (n->in(1)->Opcode() == Op_CastII && n->in(1)->as_CastII()->has_range_check()) { // Skip range check dependent CastII nodes n = n->in(1); } if (scaled_iv_plus_offset(n->in(1))) { return true; } } else if (opc == Op_LShiftL) { if (!has_iv() && _invar == NULL) { // Need to preserve the current _offset value, so // create a temporary object for this expression subtree. // Hacky, so should re-engineer the address pattern match. SWPointer tmp(this); if (tmp.scaled_iv_plus_offset(n->in(1))) { if (tmp._invar == NULL) { int mult = 1 << n->in(2)->get_int(); _scale = tmp._scale * mult; _offset += tmp._offset * mult; return true; } } } } return false; } //----------------------------offset_plus_k------------------------ // Match: offset is (k [+/- invariant]) // where k maybe zero and invariant is optional, but not both. bool SWPointer::offset_plus_k(Node* n, bool negate) { int opc = n->Opcode(); if (opc == Op_ConI) { _offset += negate ? -(n->get_int()) : n->get_int(); return true; } else if (opc == Op_ConL) { // Okay if value fits into an int const TypeLong* t = n->find_long_type(); if (t->higher_equal(TypeLong::INT)) { jlong loff = n->get_long(); jint off = (jint)loff; _offset += negate ? -off : loff; return true; } return false; } if (_invar != NULL) return false; // already have an invariant if (opc == Op_AddI) { if (n->in(2)->is_Con() && invariant(n->in(1))) { _negate_invar = negate; _invar = n->in(1); _offset += negate ? -(n->in(2)->get_int()) : n->in(2)->get_int(); return true; } else if (n->in(1)->is_Con() && invariant(n->in(2))) { _offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int(); _negate_invar = negate; _invar = n->in(2); return true; } } if (opc == Op_SubI) { if (n->in(2)->is_Con() && invariant(n->in(1))) { _negate_invar = negate; _invar = n->in(1); _offset += !negate ? -(n->in(2)->get_int()) : n->in(2)->get_int(); return true; } else if (n->in(1)->is_Con() && invariant(n->in(2))) { _offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int(); _negate_invar = !negate; _invar = n->in(2); return true; } } if (invariant(n)) { _negate_invar = negate; _invar = n; return true; } return false; } //----------------------------print------------------------ void SWPointer::print() { #ifndef PRODUCT tty->print("base: %d adr: %d scale: %d offset: %d invar: %c%d\n", _base != NULL ? _base->_idx : 0, _adr != NULL ? _adr->_idx : 0, _scale, _offset, _negate_invar?'-':'+', _invar != NULL ? _invar->_idx : 0); #endif } // ========================= OrderedPair ===================== const OrderedPair OrderedPair::initial; // ========================= SWNodeInfo ===================== const SWNodeInfo SWNodeInfo::initial; // ============================ DepGraph =========================== //------------------------------make_node--------------------------- // Make a new dependence graph node for an ideal node. DepMem* DepGraph::make_node(Node* node) { DepMem* m = new (_arena) DepMem(node); if (node != NULL) { assert(_map.at_grow(node->_idx) == NULL, "one init only"); _map.at_put_grow(node->_idx, m); } return m; } //------------------------------make_edge--------------------------- // Make a new dependence graph edge from dpred -> dsucc DepEdge* DepGraph::make_edge(DepMem* dpred, DepMem* dsucc) { DepEdge* e = new (_arena) DepEdge(dpred, dsucc, dsucc->in_head(), dpred->out_head()); dpred->set_out_head(e); dsucc->set_in_head(e); return e; } // ========================== DepMem ======================== //------------------------------in_cnt--------------------------- int DepMem::in_cnt() { int ct = 0; for (DepEdge* e = _in_head; e != NULL; e = e->next_in()) ct++; return ct; } //------------------------------out_cnt--------------------------- int DepMem::out_cnt() { int ct = 0; for (DepEdge* e = _out_head; e != NULL; e = e->next_out()) ct++; return ct; } //------------------------------print----------------------------- void DepMem::print() { #ifndef PRODUCT tty->print(" DepNode %d (", _node->_idx); for (DepEdge* p = _in_head; p != NULL; p = p->next_in()) { Node* pred = p->pred()->node(); tty->print(" %d", pred != NULL ? pred->_idx : 0); } tty->print(") ["); for (DepEdge* s = _out_head; s != NULL; s = s->next_out()) { Node* succ = s->succ()->node(); tty->print(" %d", succ != NULL ? succ->_idx : 0); } tty->print_cr(" ]"); #endif } // =========================== DepEdge ========================= //------------------------------DepPreds--------------------------- void DepEdge::print() { #ifndef PRODUCT tty->print_cr("DepEdge: %d [ %d ]", _pred->node()->_idx, _succ->node()->_idx); #endif } // =========================== DepPreds ========================= // Iterator over predecessor edges in the dependence graph. //------------------------------DepPreds--------------------------- DepPreds::DepPreds(Node* n, DepGraph& dg) { _n = n; _done = false; if (_n->is_Store() || _n->is_Load()) { _next_idx = MemNode::Address; _end_idx = n->req(); _dep_next = dg.dep(_n)->in_head(); } else if (_n->is_Mem()) { _next_idx = 0; _end_idx = 0; _dep_next = dg.dep(_n)->in_head(); } else { _next_idx = 1; _end_idx = _n->req(); _dep_next = NULL; } next(); } //------------------------------next--------------------------- void DepPreds::next() { if (_dep_next != NULL) { _current = _dep_next->pred()->node(); _dep_next = _dep_next->next_in(); } else if (_next_idx < _end_idx) { _current = _n->in(_next_idx++); } else { _done = true; } } // =========================== DepSuccs ========================= // Iterator over successor edges in the dependence graph. //------------------------------DepSuccs--------------------------- DepSuccs::DepSuccs(Node* n, DepGraph& dg) { _n = n; _done = false; if (_n->is_Load()) { _next_idx = 0; _end_idx = _n->outcnt(); _dep_next = dg.dep(_n)->out_head(); } else if (_n->is_Mem() || _n->is_Phi() && _n->bottom_type() == Type::MEMORY) { _next_idx = 0; _end_idx = 0; _dep_next = dg.dep(_n)->out_head(); } else { _next_idx = 0; _end_idx = _n->outcnt(); _dep_next = NULL; } next(); } //-------------------------------next--------------------------- void DepSuccs::next() { if (_dep_next != NULL) { _current = _dep_next->succ()->node(); _dep_next = _dep_next->next_out(); } else if (_next_idx < _end_idx) { _current = _n->raw_out(_next_idx++); } else { _done = true; } }