/* * Copyright (c) 2002, 2011, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "gc_interface/collectedHeap.hpp" #include "memory/genCollectedHeap.hpp" #include "memory/heapInspection.hpp" #include "memory/resourceArea.hpp" #include "oops/klassOop.hpp" #include "runtime/os.hpp" #include "utilities/globalDefinitions.hpp" #ifndef SERIALGC #include "gc_implementation/parallelScavenge/parallelScavengeHeap.hpp" #endif // HeapInspection int KlassInfoEntry::compare(KlassInfoEntry* e1, KlassInfoEntry* e2) { if(e1->_instance_words > e2->_instance_words) { return -1; } else if(e1->_instance_words < e2->_instance_words) { return 1; } return 0; } void KlassInfoEntry::print_on(outputStream* st) const { ResourceMark rm; const char* name;; if (_klass->klass_part()->name() != NULL) { name = _klass->klass_part()->external_name(); } else { if (_klass == Universe::klassKlassObj()) name = ""; else if (_klass == Universe::arrayKlassKlassObj()) name = ""; else if (_klass == Universe::objArrayKlassKlassObj()) name = ""; else if (_klass == Universe::instanceKlassKlassObj()) name = ""; else if (_klass == Universe::typeArrayKlassKlassObj()) name = ""; else if (_klass == Universe::boolArrayKlassObj()) name = ""; else if (_klass == Universe::charArrayKlassObj()) name = ""; else if (_klass == Universe::singleArrayKlassObj()) name = ""; else if (_klass == Universe::doubleArrayKlassObj()) name = ""; else if (_klass == Universe::byteArrayKlassObj()) name = ""; else if (_klass == Universe::shortArrayKlassObj()) name = ""; else if (_klass == Universe::intArrayKlassObj()) name = ""; else if (_klass == Universe::longArrayKlassObj()) name = ""; else if (_klass == Universe::methodKlassObj()) name = ""; else if (_klass == Universe::constMethodKlassObj()) name = ""; else if (_klass == Universe::methodDataKlassObj()) name = ""; else if (_klass == Universe::constantPoolKlassObj()) name = ""; else if (_klass == Universe::constantPoolCacheKlassObj()) name = ""; else if (_klass == Universe::compiledICHolderKlassObj()) name = ""; else name = ""; } // simplify the formatting (ILP32 vs LP64) - always cast the numbers to 64-bit st->print_cr(INT64_FORMAT_W(13) " " UINT64_FORMAT_W(13) " %s", (jlong) _instance_count, (julong) _instance_words * HeapWordSize, name); } KlassInfoEntry* KlassInfoBucket::lookup(const klassOop k) { KlassInfoEntry* elt = _list; while (elt != NULL) { if (elt->is_equal(k)) { return elt; } elt = elt->next(); } elt = new KlassInfoEntry(k, list()); // We may be out of space to allocate the new entry. if (elt != NULL) { set_list(elt); } return elt; } void KlassInfoBucket::iterate(KlassInfoClosure* cic) { KlassInfoEntry* elt = _list; while (elt != NULL) { cic->do_cinfo(elt); elt = elt->next(); } } void KlassInfoBucket::empty() { KlassInfoEntry* elt = _list; _list = NULL; while (elt != NULL) { KlassInfoEntry* next = elt->next(); delete elt; elt = next; } } KlassInfoTable::KlassInfoTable(int size, HeapWord* ref) { _size = 0; _ref = ref; _buckets = NEW_C_HEAP_ARRAY(KlassInfoBucket, size, mtInternal); if (_buckets != NULL) { _size = size; for (int index = 0; index < _size; index++) { _buckets[index].initialize(); } } } KlassInfoTable::~KlassInfoTable() { if (_buckets != NULL) { for (int index = 0; index < _size; index++) { _buckets[index].empty(); } FREE_C_HEAP_ARRAY(KlassInfoBucket, _buckets, mtInternal); _size = 0; } } uint KlassInfoTable::hash(klassOop p) { assert(Universe::heap()->is_in_permanent((HeapWord*)p), "all klasses in permgen"); return (uint)(((uintptr_t)p - (uintptr_t)_ref) >> 2); } KlassInfoEntry* KlassInfoTable::lookup(const klassOop k) { uint idx = hash(k) % _size; assert(_buckets != NULL, "Allocation failure should have been caught"); KlassInfoEntry* e = _buckets[idx].lookup(k); // Lookup may fail if this is a new klass for which we // could not allocate space for an new entry. assert(e == NULL || k == e->klass(), "must be equal"); return e; } // Return false if the entry could not be recorded on account // of running out of space required to create a new entry. bool KlassInfoTable::record_instance(const oop obj) { klassOop k = obj->klass(); KlassInfoEntry* elt = lookup(k); // elt may be NULL if it's a new klass for which we // could not allocate space for a new entry in the hashtable. if (elt != NULL) { elt->set_count(elt->count() + 1); elt->set_words(elt->words() + obj->size()); return true; } else { return false; } } void KlassInfoTable::iterate(KlassInfoClosure* cic) { assert(_size == 0 || _buckets != NULL, "Allocation failure should have been caught"); for (int index = 0; index < _size; index++) { _buckets[index].iterate(cic); } } int KlassInfoHisto::sort_helper(KlassInfoEntry** e1, KlassInfoEntry** e2) { return (*e1)->compare(*e1,*e2); } KlassInfoHisto::KlassInfoHisto(const char* title, int estimatedCount) : _title(title) { _elements = new (ResourceObj::C_HEAP, mtInternal) GrowableArray(estimatedCount,true); } KlassInfoHisto::~KlassInfoHisto() { delete _elements; } void KlassInfoHisto::add(KlassInfoEntry* cie) { elements()->append(cie); } void KlassInfoHisto::sort() { elements()->sort(KlassInfoHisto::sort_helper); } void KlassInfoHisto::print_elements(outputStream* st) const { // simplify the formatting (ILP32 vs LP64) - store the sum in 64-bit jlong total = 0; julong totalw = 0; for(int i=0; i < elements()->length(); i++) { st->print("%4d: ", i+1); elements()->at(i)->print_on(st); total += elements()->at(i)->count(); totalw += elements()->at(i)->words(); } st->print_cr("Total " INT64_FORMAT_W(13) " " UINT64_FORMAT_W(13), total, totalw * HeapWordSize); } void KlassInfoHisto::print_on(outputStream* st) const { st->print_cr("%s",title()); print_elements(st); } class HistoClosure : public KlassInfoClosure { private: KlassInfoHisto* _cih; public: HistoClosure(KlassInfoHisto* cih) : _cih(cih) {} void do_cinfo(KlassInfoEntry* cie) { _cih->add(cie); } }; class RecordInstanceClosure : public ObjectClosure { private: KlassInfoTable* _cit; size_t _missed_count; public: RecordInstanceClosure(KlassInfoTable* cit) : _cit(cit), _missed_count(0) {} void do_object(oop obj) { if (!_cit->record_instance(obj)) { _missed_count++; } } size_t missed_count() { return _missed_count; } }; void HeapInspection::heap_inspection(outputStream* st, bool need_prologue) { ResourceMark rm; HeapWord* ref; CollectedHeap* heap = Universe::heap(); bool is_shared_heap = false; switch (heap->kind()) { case CollectedHeap::G1CollectedHeap: case CollectedHeap::GenCollectedHeap: { is_shared_heap = true; SharedHeap* sh = (SharedHeap*)heap; if (need_prologue) { sh->gc_prologue(false /* !full */); // get any necessary locks, etc. } ref = sh->perm_gen()->used_region().start(); break; } #ifndef SERIALGC case CollectedHeap::ParallelScavengeHeap: { ParallelScavengeHeap* psh = (ParallelScavengeHeap*)heap; ref = psh->perm_gen()->object_space()->used_region().start(); break; } #endif // SERIALGC default: ShouldNotReachHere(); // Unexpected heap kind for this op } // Collect klass instance info KlassInfoTable cit(KlassInfoTable::cit_size, ref); if (!cit.allocation_failed()) { // Iterate over objects in the heap RecordInstanceClosure ric(&cit); // If this operation encounters a bad object when using CMS, // consider using safe_object_iterate() which avoids perm gen // objects that may contain bad references. Universe::heap()->object_iterate(&ric); // Report if certain classes are not counted because of // running out of C-heap for the histogram. size_t missed_count = ric.missed_count(); if (missed_count != 0) { st->print_cr("WARNING: Ran out of C-heap; undercounted " SIZE_FORMAT " total instances in data below", missed_count); } // Sort and print klass instance info KlassInfoHisto histo("\n" " num #instances #bytes class name\n" "----------------------------------------------", KlassInfoHisto::histo_initial_size); HistoClosure hc(&histo); cit.iterate(&hc); histo.sort(); histo.print_on(st); } else { st->print_cr("WARNING: Ran out of C-heap; histogram not generated"); } st->flush(); if (need_prologue && is_shared_heap) { SharedHeap* sh = (SharedHeap*)heap; sh->gc_epilogue(false /* !full */); // release all acquired locks, etc. } } class FindInstanceClosure : public ObjectClosure { private: klassOop _klass; GrowableArray* _result; public: FindInstanceClosure(klassOop k, GrowableArray* result) : _klass(k), _result(result) {}; void do_object(oop obj) { if (obj->is_a(_klass)) { _result->append(obj); } } }; void HeapInspection::find_instances_at_safepoint(klassOop k, GrowableArray* result) { assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped"); assert(Heap_lock->is_locked(), "should have the Heap_lock"); // Ensure that the heap is parsable Universe::heap()->ensure_parsability(false); // no need to retire TALBs // Iterate over objects in the heap FindInstanceClosure fic(k, result); // If this operation encounters a bad object when using CMS, // consider using safe_object_iterate() which avoids perm gen // objects that may contain bad references. Universe::heap()->object_iterate(&fic); }